About this Research Topic
Molecular recognition is essentially the art of creation of weak intermolecular forces for the construction of structures able to recognize size, shape, functional group distribution, and charge distribution of the target molecule. Target molecules can be charged as well as neutral; however, selective recognition for the latter is more difficult. If the target molecule is in an intermediate state, the host becomes a supramolecular catalyst, reducing the activation energy for the conversion of substrate into product.
This Research Topic aims to showcase cutting-edge research in the field of molecular recognition for catalytic purposes, spanning from phase transfer catalysis reactions to functional nanometric devices for supramolecular catalysis, although it is open to any example of catalysis in which supramolecular interactions play a role--for instance in product or substrate selectivity.
Keywords: Supramolecular chemistry, supramolecular catalysis, molecular recognition, non-covalent interactions, self-assembly
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.