About this Research Topic
There is a growing interest in creating 3-dimensional microphysiological models of the heart and vessels as tool to understand significance of the various cellular and extracellular components. By recapitulating the complex microenvironment that exists in the native tissues, cardiovascular microphysiological systems are proposed as new platforms that could bridge the gap between currently available models and the human body. It is believed that beyond facilitating therapeutic tissue engineering, these systems will enable new insights into tissue morphogenesis, pathogenesis, and drug-induced structural and functional remodelling. Thus, these can be used for applications ranging from biological studies to areas such as pharmaceutical screening, nanomedicine, or toxicology. Current strategies that leverage induced pluripotent stem cells (iPSCs) may increase the relevance of tissue models for these approaches.
Within this Research Topic, we welcome articles (e.g. reviews, original research or methodology articles) on cardiovascular cell-to-cell communications as well as on current in vitro and in vivo strategies for physiologically/therapeutically relevant multicellular cardiovascular systems, including stem cell-based approaches, 3D microphysiological models, and engineered microtissues.
Keywords: multicellularity, in vitro 3D modelling, engineered cardiovascular tissues
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.