About this Research Topic
Immunodeficiency disorders have been attributed to both loss- and gain-of-function mutations in the genes encoding p110δ or p85α. There is also now evidence that some of the features caused by p110δ hyperactivation are recapitulated in patients with loss-of-function mutations in the PTEN phosphatase, which functions to dephosphorylate the PIP3 second messenger and suppress PI3K signaling. Very recent data have also emerged indicating pro-inflammatory effects of p110γ inhibition in animals, highlighting a potential negative regulatory function of p110γ predominantly in myeloid cells. Outside the immune system, class I PI3K gene mutations have been found as the cause of a spectrum of rare tissue overgrowth disorders and multi-system syndromes. Integrating knowledge gleaned from these diverse disorders and the wealth of information on fundamental PI3K biology offers the potential to gain a more complete picture of this important pathway and potential effects of its therapeutic manipulation for treatment of a vast array of pathologies.
This Research Topic will provide a comprehensive overview of disorders of PI3K biology and will cover various aspects of the primary immunodeficiency disorder called Activated PI3Kδ Syndrome (APDS), or PASLI disease, caused by mutations in the genes encoding p110δ or p85α. It will also cover the physiological consequences of PTEN deficiency, p110γ inhibition, p85α deficiency, p110δ deficiency, and inherited non-immune overgrowth and metabolic disorders from mutations in PI3K genes.
Keywords: PI3K, Monogenic Disorders, Immunodeficiency, Overgrowth
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.