About this Research Topic
The phenotypic changes occurring during aging or under different environments have long been studied and described through various mathematical functions. With the discovery of DNA and the age of genotyping and whole DNA sequencing, thousands of genes have been identified. However, the study of gene expression or the association of a gene/marker with a specific phenotype is often based on static or averaged phenotypic records, neglecting the potential time- and environment dependent activities of genes.
Several techniques have been developed to uncover genes affecting phenotypes. At the molecular level, gene expression studies measure the protein profile and quantity within cells of a certain tissue or at a specific time-point. To measure gene expression, biopsies of the tissue are required, however, this invasive process damages the donor organism and the laboratory methods are financially and diuturnally expensive. Alternatively, genetic markers can be used as a non-invasive and tissue-independent approach. The more often a specific marker is identified within individuals with a certain trait the more likely it is that the actual candidate gene with the causative variation is close by. Linkage analyses with relatively few markers are performed within families or populations where the relationship status is known and the inheritance of markers can be traced back. High-density genome-wide studies ensure close linkage between marker and causal gene, thus, known family structures become less important. Whilst these genome-wide association studies (GWAS) do not determine the amount of gene product, a strong association between a marker and a phenotype infers that a gene linked to this marker has an effect on the expression of the phenotype. Thus, putative causative genes can be identified.
Understanding GxExT interactions has the potential to solve problems in the food availability chain such as energy deficiency during peak production or imbalanced growth in livestock, which will have a direct impact on the animals’ health, longevity, production costs and level. Plant growth and the application of fertilizer is similarly impacted. There are also implications for related research subjects, such as the ability of an organism to react to environmental changes such as climate, or pathogen burdens. Finally, GxExT interactions could potentially provide targets for the development of gene-specific treatment plans in animals, humans, and plants alike.
Keywords: time-dependent, longitudinal, time series, GWAS, environment-dependent, GxE, GxT, GxExT, dynamic
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.