About this Research Topic
In principal accordance, this Research Topic features original interdisciplinary research aimed at the convergence of neurobiology and quantum-, nano- and micro-sciences that lead to novel sensing, stimulation, and control approaches for bench-to-bedside translation of closed-loop neuromodulation systems. To give examples, continuous electroencephalogram monitoring may allow for detection of delayed cerebral ischemia and seizures present in aneurysmal subarachnoid hemorrhages where bench-to-bedside translation requires the development and validation of robust sensor technology. Here, minimizing the foreign body response to these sensor technologies is critical for optimal use of implantable systems that requires convergence of neurobiology and quantum-, nano- and micro-sciences. Furthermore, multi-level spatiotemporal interactions in neurobiological systems presents a challenge, for which development of neurobiology driven computational models and signal classification techniques may be required in order to implement novel neuromodulation strategies. Thus, we are convinced that in addition to novel sensors, advancement of stimulation techniques, including optical stimulation along with neurobiology inspired control approaches will spearhead the bench-to-bedside translation of closed-loop neuromodulation systems. Therefore, the main focus of this Research Topic is on recent advances representing a diverse set of sensing, stimulation, and control approaches at the convergence of neurobiology and quantum-, nano- and microsciences for closed-loop neuromodulation systems.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.