About this Research Topic
This broader context addresses specific properties such as brittleness, stiffness, the elastic limit and the practical absence of ductility, which are understood as a direct result of molecular, intermediate-range and surface topology. Identification of determinant design principles and topo-chemical constraints, and their engineering towards ultrahigh toughness are considered as major future breakthroughs. Here, it has been anticipated that significant synergy can be found in the joint treatment of the two archetype classes of glass, inorganic oxide glasses and metallic glasses, which present different degrees of bond localization and directionality. Hence, these materials provide two principally different routes to tailor the structural response to mechanical loading.
The present Research Theme issue addresses this subject, taking into account the interdisciplinarity of the field. It will consider both metallic and non-metallic, inorganic glasses in order to generate an understanding of the topo-chemical principles and surface reactions which underlie the macroscopic mechanical properties. It also welcomes application-oriented contributions which demonstrate examples of glasses with improved mechanical properties, or of processes which are suitable for their generation.
Keywords: glass, strength, fracture, brittleness
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.