About this Research Topic
Since statistical methods form an integral part of ML techniques, a review of these methods as applied to space sciences is timely and a virtual conference, "Applications of Statistical Methods and Machine Learning in the Space Sciences", was held on 17-21 May 2021 (http://spacescience.org/workshops/mlconference2021.php) that brought together experts in academia and industry to leverage the advancements in statistics, data science, methods of artificial intelligence (AI such as machine learning and deep learning, and information theory to improve the analytic models and their predictive capabilities making use of the enormous data in the field of space sciences. The multidisciplinary conference welcomed students and researchers from all disciplines of space science (solar physics and aeronomy, planetary sciences, geology, exoplanet and astrobiology, galaxies), from the fields of AI, statistics, and data science, and from industry who implement methods of advanced statistics and AI in their research. In addition to keynote lectures and contributed talks/posters, there were discussion sessions designated to handle different topics on each each day with emphasis on the interpretability and explainability of the ML models.
The proposed research topic will be a collection of works presented at this virtual conference and new contributions from the broader scientific community in the form of original research articles, reviews/mini-reviews, brief reports and commentaries on the present scenario, and scope of statistical methods and ML in the various fields of space sciences such as solar and heliospheric studies, planetary sciences and exoplanets, astrophysics, space weather research and operations, and atmospheric and magnetospheric sciences. We encourage contributions from a wide range of topics including but not limited to advanced statistical methods, deep learning, neural networks, times series analysis, Bayesian methods, feature identification and feature extraction, physics-based models combined with machine learning techniques and surrogate models, space weather prediction and other domain topics in space sciences where statistical methods and AI are applied, model validation and uncertainty quantification, turbulence and non-linear dynamics in space plasma, physics informed neural networks, information theory and data reconstruction and data assimilation.
Keywords: machine learning, deep learning, space weather, atmospheric sciences, astrophysics, exoplanets, Bayesian approach, big data, surrogate models
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.