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Editorial on the Research Topic

Applications of statistical methods and machine learning in the space
sciences

The fully virtual conference, Applications of Statistical Methods and Machine Learning in the
Space Sciences, hosted by Space Science Institute’s (SSI) Center for Data Science (CDS) and
sponsored by the National Science Foundation (NSF), was held during 17–21 May 2021
(http://spacescience.org/workshops/mlconference2021.php). This event brought together
experts in various disciplines of the space sciences (such as solar physics and aeronomy,
planetary and exoplanetary sciences, geology, astrobiology, and astronomy) and industry to
leverage the advancements in statistics, data science, methods of artificial intelligence (AI),
and information theory with the aim of improving the analytic models and their predictive
capabilities utilizing the enormous volume of data in these fields.

This multidisciplinary conference provided a vibrant forum for industry professionals,
senior scientists, early career researchers, and students to present their latest results using a
wide variety of techniques and methods in advanced statistics, to enhance their knowledge
on the recent trends in AI and to participate in a platform for future collaborations.
The conference covered a wide range of Research Topics, such as advanced statistical
methods, deep learning and neural networks, time series analysis, Bayesianmethods, feature
identification and feature extraction, physics-basedmodels combinedwithmachine learning
(ML) techniques and surrogatemodels, spaceweather prediction and other domainResearch
Topics where AI is applied, model validation and uncertainty quantification, turbulence
and non-linear dynamics in space plasma, physics informed neural networks, information
theory, and data reconstruction and data assimilation.

AI methods have already been applied to various problems in the field of solar-
terrestrial physics since the 1990s (Newell et al., 1991; Lundstedt, 1992; Lundstedt,
1996; Wintoft and Lundstedt, 1997; Wing et al., 2005; Lundstedt, 2006). These included
classifications of auroral particle precipitation, predictions of solar wind velocity,
geomagnetic disturbances, and the planetary K-index Kp, used to characterize the
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magnitude of geomagnetic storms (https://www.gfz-potsdam.
de/en/section/geomagnetism/data-products-services/geomagnetic-
kp-index). Information theory has proved useful in establishing
linear and non-linear relationships and causalities in the studies
of solar and space physics (Wing et al., 2016; Wing et al., 2018).
Early attempts to apply ML techniques involve the forecasting
of geomagnetic indices (e.g., Wu and Lundstedt, 1996; Wu and
Lundstedt, 1997), the relativistic electrons at geosynchronous orbits
(e.g., Stringer et al., 1996), and solar eruptions (Fozzard et al.,
1988; Camporeale et al., 2019). A summary of current efforts
on applying ML methods in the field of space sciences in
comparison with those efforts in other fields of natural sciences
and recommendations for ML in planetary science to funding
agencies and the planetary community can be found in Azari et al.
(2021). Figure 1 of Azari et al. (2021) illustrated that heliophysics
and space physics had the highest percentage of published
works discussing ML in 2020, followed by astrophysics and
Earth science, and they concluded with recommendations for
the next decade for supporting a data-rich future for planetary
science.

The “International Workshop on Artificial Intelligence
Applications in Solar-Terrestrial Physics,” held in 1993, was
one of the first of its kind which focused on “neural network
applications of Multi-Layer-Error-Back-Propagation (MLBP)
and Self-Organizing Map (SOM) neural nets and traditional
expert systems and fuzzy expert systems” (Joselyn et al., 1993).
Unlike this and other conferences on ML (Camporeale and SOC-
ML-Helio, 2020), the SSI virtual conference had an emphasis
on understanding the physics and dynamics of systems while
seeking accurate solutions using ML methods (“black box” versus
“interpretable” models). Furthermore, this virtual conference
highlighted the interdisciplinary nature of ML applications in
space sciences, the main theme of the conference. The research
works presented revealed close collaborations among researchers in
space science, statistics, computer science, and AI, showcasing how
these experts can collaborate to soundly improve their models and
predictions.

The virtual conference served as an initiative of SSI/CDS to
bring together domain experts in space sciences and highly skilled
corporate talents sharing a common interest in data science and
ML. The CDS aims to inspire the scientific community to utilize
key insights on emerging technologies, transforming this possibility
into reality. SSI hosted 219 registered participants from more than
25 countries over Zoom for this event. Though participants were
not asked to provide their demographic information, based on 103
of the conference registrants for whom the conference organizers
could reasonably determine their backgrounds, we understand
that there were 32 female participants, 43 from underrepresented
minorities, and 45 early career (within 5 years after earning their
Ph.D.s) scientists. We had 79 oral and 28 e-poster presentations
in addition to interactive sessions demonstrating data processing
and ML methods. The virtual conference featured 14 keynote
speakers, 50% of whom were female scientists and 5 early career
scientists. Links to these presentation slides and the recordings
are available at the conference website (http://spacescience.org/
workshops/mlconference2021.php).

The highlight of the conference was the lively discussion
sessions. The virtual conference designated 45 min each day for live

discussion sessions to discuss AI and ML trends in specific domains
of space science and to encourage cross-disciplinary approaches to
problems in different fields. Discussions were distributed among
different Research Topics and centered around the applicability of
Statistical Methods and ML in Astronomy, Aeronomy, Heliophysics,
Magnetospheric Studies, Planetary Sciences and Exoplanets, and
Turbulence and Non-linear Dynamics. Moreover, these sessions
highlighted the importance and the impact of a few fundamental
aspects in all the space science domains, such as the interpretability
and explainability of ML models, reproducibility, and the need and
availability of AI-ready data. These designated sessions addressed:
the challenges of big data and small data sets; how to handle
overfitting; uncertainties and gaps in the data sets and how they
are incorporated into the models; supervised and unsupervised
ML; and how to compare models. These discussions defined and
emphasized the necessity of AI-ready data in all the disciplines
of space sciences, and the participants shared information on the
various data sets currently available and what are the steps to
be taken to create better and more concise AI-ready data. We
believe that these discussion sessions were particularly helpful for
the students, early career researchers, and early ML practitioners
who constituted a substantial fraction of the conference attendees,
because these sessions covered links and access to a number
of educational, software, and data resources. These discussions
revealed the interdisciplinary nature of ML applications in the
space sciences and how this virtual conference presented itself
as a platform for connecting the various components of this fast
emerging, dynamical trend of AI applications.

This topical collection compiles the works presented at the
above virtual conference, along with new contributions from the
broader scientific community in the form of original research
articles, reviews/mini-reviews, brief reports and commentaries on
the present scenario of AI applications in the space sciences, and
scope of statistical and ML methods in the various fields of space
sciences.

Active galactic nuclei (AGNs) are very bright, compact regions at
the center of certain galaxies, the brightness of which arise from the
accretion disks around supermassive black holes. Implementation
of ML techniques in the redshift estimation of AGNs is becoming a
common practice in astrophysics, but the data gaps in large-scale
galactic surveys are often a hindrance to the smooth and reliable
application of ML —a common problem in ML applications in
general. Gibson et al. presents a technique for rectifying the missing
data problem called Multivariate Imputation by Chained Equations
(MICE) following Dainotti et al. (2021).

Outliers, observations that appear to differ considerably from
others in the sample, are of great significance, especially in scientific
data, for at least two reasons: 1) they may imply bad data,
or a mistake in the experiment, code, or observation which, if
detected, needs to be eliminated from the analysis, and 2) they
may instead be scientifically interesting, indicating, for example, a
random variation, and thereby, need to be detected and analyzed
separately. In either case, detection of outliers is not an easy task,
especially if the data set is enormously huge. Kerner et al. present a
technique, Domain-agnostic Outlier Ranking Algorithms (DORA),
for the automatic detection of outliers. DORA is a configurable
pipeline for evaluation of outlier detection methods in different
domains, supporting different data types such as image, raster, time
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series, or feature vector and outlier detection methods including
Isolation Forest, DEMUD, PCA, RX detector, Local RX, negative
sampling, and probabilistic autoencoder. They experimented with
various data sets and algorithms, and report their findings in
Kerner et al.

In a Perspective article, Delzanno and Borovsky brings out the
need for and the importance of a combined system science approach
to global magnetospheric models and to spacecraft magnetospheric
data. They opine that this approach provides statistical validation
of global magnetospheric models without directly comparing with
spacecraft data in addition to revealing the drawbacks of the model
while providing the physics support to system analysis performed
on the magnetospheric system. They emphasize that the question in
this context is in fact, “Do simulations behave in the same manner
as the magnetosphere does?”, instead of the standard question,
“How well do simulations reproduce spacecraft data?”. The authors
consider that this approach will provide statistical validation of
global magnetospheric models without a direct comparison with
spacecraft data and expose the deficiencies of the models, while
providing physics support to the system analysis conducted on the
magnetospheric system.

Blandin et al. compares the predictions of the magnitude of the
north-south component of the geomagnetic field |BN| using amulti-
variate Long Short Term Memory (LSTM) neural networks with the
predictions of multivariate linear regression models. Both models
use the same input, namely, a 15-year solar wind and heliospheric
magnetic field from the NASA/GSFC’s OMNI database accessible
through https://omniweb.gsfc.nasa.gov.

For a direct comparison with the Geospace Environment
Modeling (GEM) challenge of ground magnetic field perturbations
for evaluating the predictive capabilities of empirical and first
principle models and to select a model for operational purposes
(Pulkkinen et al., 2013), Pinto et al. carried out a prediction of the
horizontal component of the ground magnetic field rate of change
(dBH/dt) over six different ground magnetometer stations utilizing
ML models based on feed-forward neural network, LSTM recurrent
network, and CNN to forecast, and present the results.

Yeakel et al. utilized particle and magnetic field instrument data
from the Cassini spacecraft mission to classify orbit segments as
magnetosphere, magnetosheath, or solar wind. They trained and
tested ML algorithms for classification, such as random forest,
support vector machine, logistic regression, and LSTM, using a
list of manually detected magnetopause and bow shock crossings
by Cassini mission scientists, and present the results of this
classification and a detailed error analysis.

Zhu et al. presents a new empirical reconstruction model
of the three-dimensional magnetic field and the associated
plasma currents, combining observations made by a constellation
of satellites and a set of physics-based equations as physical
constraints to build spatially smooth distributions. Here, the authors
implement a stochastic optimization method to minimize the
loss function characterizing the model-measurement differences
and the model departures from linear or non-linear physical
constraints. They further detail their discovery when applied to
NASA’s Magnetospheric Multiscale mission data.

Prediction of solar flares has been one of the greatest challenges
in the domain of space weather, both operationally and from
the perspective of scientific research. Pandey et al. present new

heuristics in the training and deployment of the operational solar
flare predictionmethod.They present twomodels, one based on full-
disk and the other based on active regions (AR), for the prediction
of flares belonging to classes ≥M1.0. They show that their model
could predict a full-disk flare probability for the next 24 h and
their proposed logistic regression, an ensemble model, improves on
the full-disk and AR-based models (both base learners). They also
discuss the model performances based on various metrics such as
True Skill Statistic and Heidke Skill Score.

Bayesian inference is one of the ML applications that has been
widely used in the field of space sciences in recent years and
Arregui presents an example where it has successfully applied in
coronal seismology and shows how the method can be applied to
related areas of coronal loops, prominences, and other extended
coronal regions. They point out that the Bayesian method becomes
successful in these regions mainly because information about these
regions is already incomplete and uncertain due to lack of direct
access and most of the studies involve comparison of model
predictions and remote observations, leading to the results being
interpreted in terms of probabilities.

Narock et al. explores the utility of CNN in the prediction of the
orientation of the embedded magnetic flux rope that are identified
in the in-situ solar wind. They used magnetic field vectors from
simulated flux rope data, that includes a number of possibilities in
the spacecraft trajectories and flux rope orientations, to train the
CNN. They explore different neural network topologies, the various
factors that influence the prediction accuracy, and compares with
an Interplanetary Coronal Mass Ejection (ICME) observed by Wind
spacecraft.

The mini review by Telloni highlights the author’s previous
works based on statistical analyses of interplanetary and
geomagnetic data in the context of space weather prediction. The
first two of the three papers reviewed here were on what triggers the
space weather effects, such as the geomagnetic storm; the first paper
focuses on the detection, characterization, and geo-effectiveness
of ICMEs and the second one considers other solar events, during
the same period of study as in the first paper, and focuses on the
connection between solar wind energy and geomagnetic activity.
The third paper addresses the recovery phase and explores the
reasons for the slow restoration of equilibrium conditions of the
Earth’s magnetosphere.

Verkhoglyadova et al. discuss their perspectives on
implementing a mixture method approach and a computer vision
approach in quantitatively addressing the anomalies and high
density regions (HDRs) that are present in a global ionospheric
map, and how the number of the HDRs and their intensities depend
on solar and geomagnetic activities. The article finds that they are
complementary and helpful in understanding the properties of the
global ionosphere and emphasize the importance of a consistent
definition of large-scale ionospheric structures.

One of the mechanisms of radiation belt loss is the electron
precipitation (EP) through two known processes, wave-particle
interactions (relativistic electronprecipitation, REP) or current sheet
scattering (CSS), and which of these processes dominates is still not
fully understood (e.g., Schulz and Lanzerotti, 1974). It is well-known
that EP drives atmospheric effects that are related to space weather
adversities. Capannolo et al. developed a model based on LSTM to
identify relativistic precipitation events and, their associated driver
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(REPs or CSSs) and classify them as REPs or CSSs. They find that
this large data set of REP and CSS events is useful in obtaining
the location and properties of the precipitation driven by these two
processes at all L-shells and magnetic local time sectors, thereby
improving the radiation belt models.

Solar granulation, the dark and bright granular structure visible
on the photosphere, depicts the overturning convective transport
of magnetized plasma and energy in the region right below
the photosphere (see Stix, 2002, for details). There exist specific
and systematic morphological patterns including the exploding
granules and bright points that have been extensively studied. U-
net, a CNN used for biomedical image segmentation, has been
found to be promising in the classification of solar granulation
structures as shown by Díaz Castillo making use of the continuum
intensity maps of the IMaX instrument on board Sunrise I and
corresponding segmented maps as a training set. The authors find
that U-net architecture is quite promising in identifying cellular
patterns in solar granulation images with an average accuracy above
80%.

Song et al. presents their automatic identification algorithm
to detect the magnetopause crossing events in THEMIS data
from 2007 to 2021 in a study of overshoot structure in the
magnetospheric magnetic field. They found that about half of the
identified magnetopause crossing events near the subsolar region
“appear [to have] an overshoot structure.” The rate of change of a
magnetosphericmagnetic field near themagnetopause bears a linear
relation to the magnetopause velocity, implying that the cause of
the overshoot structure can be considered as the magnetospheric
magnetic field redistribution caused by the rapid motion of the
magnetopause.

El Mir and Perinpanayagam reviews the current certification
of landing gear available for use in the aerospace industry. The
authors discuss the role of ML techniques in structural health
monitoring and points out that the non-deterministic nature
of deep learning algorithms could be a hurdle for certification
and verification in the industry. For implementing ML methods
successfully, the safe-life fatigue assessment needs to be certified
so that the remaining useful life may be accurately predicted and
trusted.They further discuss the riskmanagement and explainability
for different end user categories involved in the certification
process.

In addition to this topical collection that reveals the
interdisciplinary nature of the applications of AI and statistical
methods, as the virtual conference aimed at, the most significant
outcome is the multi-authored white paper on the AI-readiness
(Poduval et al., 2022) of the numerous space science data for AI/ML
applications that was submitted to The National Academies of
Science, Engineering, and Medicine’s Decadal Survey for Solar and
Space Physics (Heliophysics) 2024–2033. There is a strong urgency
in the space sciences to make all existing data AI-ready within a
decade, which is ambitious, not only because of the timescale and
enormity of the data sets involved, but also because AI-readiness

lacks a concrete definition within and across all fields in space
science. Poduval et al. (2022) provides a definition of AI-readiness
that conveys the widely accepted norms and concepts in the space
sciences community and recommend mitigation strategies such as
unambiguously defining AI-readiness; prioritizing certain data sets,
their storage and accessibility; and identifying the agencies, private
sector partners, or funded individuals who will be responsible. We
hope this topical collection will help the scientific community to
further advance the initiative to get the space science data AI-ready
in a timely fashion.
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The Need for a System Science
Approach to Global Magnetospheric
Models
Gian Luca Delzanno1* and Joseph E. Borovsky2

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States, 2Space Science Institute, Boulder, CO,
United States

This perspective advocates for the need of a combined system science approach to global
magnetospheric models and to spacecraft magnetospheric data to answer the question
“Do simulations behave in the same manner as the magnetosphere does?” (instead of the
standard validation question “How well do simulations reproduce spacecraft data?”). This
approach will 1) validate global magnetospheric models statistically, without the need for a
direct comparison against spacecraft data, 2) expose the deficiencies of the models, and
3) provide physics support to the system analysis performed on the magnetospheric
system.

Keywords: planetary magnetospheres, global magnetospheric models, system science, information theory, model
validation

INTRODUCTION

The Helio2050 workshop was organized in May 2021 to develop a vision for Heliophysics (the Sun,
the solar wind, and planetary magnetospheres and ionospheres) for the next 30 years.
Acknowledging the tremendous progress made in understanding the various parts of the
heliospheric system over many decades, one of the themes for the future that had strong
support from diverse areas of the community is the need to understand the heliospheric system
as a whole. The same considerations also apply to the Earth’s magnetosphere. In fact, the idea of the
magnetosphere as a “system of systems” is not new. For decades researchers have applied the tools of
system science to data from solar wind, from magnetospheric spacecraft, and from geomagnetic
indices and analyzed the correlations between causes (i.e., solar wind drivers) and effects
(magnetospheric response). Reviews of magnetospheric system science are in Valdivia et al.
(2005), Valdivia et al. (2013), and Borovsky and Valdivia (2018).

Here we are suggesting that system-science techniques be applied in parallel to 1) global
magnetospheric simulations and 2) the actual magnetosphere. This methodology will result in a
better assessment of the validity of the simulations and it will enable the identification of
deficiencies in the simulation models. To validate the models, we will ask the question “Does the
simulation behave in the same manner as the magnetosphere behaves?” rather than the
standard validation question “How well does the simulation describe the data?”. This
methodology can also clarify the utility of system-science techniques for the
magnetosphere, and help refining those techniques. A final motivation for this
methodology is to open an avenue of communication between two diverse magnetospheric
research communities: 1) the systems analysis community and 2) the more-mainstream
reductionist community of data analysis, instrument designers, plasma and space
physicists, and numerical simulators.
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MAGNETOSPHERIC SYSTEM SCIENCE

The magnetosphere-ionosphere system exhibits many forms of
activity when driven by the solar wind (cf. Borovsky and Valdivia,
2018): magnetospheric convection, morphology changes,
substorms, aurora, ionospheric outflows, plasma-wave activity,
radiation-belt intensification, and radio emission.
Magnetospheric system science examines correlations and
information flow between the solar wind and the
magnetosphere and looks at statistical properties of the
multiple behaviors of the solar-wind-driven magnetosphere.
Much of the motivation for these methods comes from the
science of systems. The earliest form of magnetospheric
system analysis was correlation studies between the spacecraft
measurements of the solar wind and geomagnetic indices (Snyder
et al., 1963; Bargatze et al., 1985), a method that is still heavily
used today, (e.g., McPherron et al., 2015): this methodology yields
information about how the solar wind drives the magnetosphere
and about various system reaction times. For the driving of the
magnetosphere, cause-and-effect among the solar-wind variables
can be better established using similar methods based on
information transfer (cf. Wing and Johnson, 2019). State
vector analysis has built on these simpler solar-wind/
magnetosphere correlative studies (Fung and Shao, 2008;
Borovsky and Osmane, 2019). Using the proper tools, analysis
of magnetospheric time series (typically geomagnetic indices) can
yield information about the statistics of magnetospheric
dynamics through measurements of fractality, dimensionality,
criticality, chaotic output: these time-series studies are discussed
in multiple reviews [Voros, 1994; Lakhina, 1994; Klimas et al.,
1996; Vassiliadis, 2000; Vassiliadis, 2006; Chapman et al., 2004;
Valdivia et al., 2005; Valdivia et al., 2013; Dendy and Chapman,
2006; Sharma, 2010, 2014; Pavlos et al., 2011; and Stepanova and
Valdivia, 2016. See also Watkins et al., 2001; Watkins et al., 2012;
and Watkins, 2002]. A different type of time-series analysis
identifies events in the time series and examines the statistics
of event occurrences and amplitudes (Liou et al., 2018). Finally,
there is a long history of building and analyzing mathematical
(analog) models of the magnetosphere (Smith et al., 1986; Goertz
et al., 1991; Goertz et al., 1993; Vassiliadis et al., 1993; Klimas
et al., 1997; Klimas et al., 2004; Freeman and Morley 2004;
Valdivia et al., 2006; Spencer et al., 2018). These models
provide information 1) that can be used to test our physical
understanding about how the solar-wind-driven system works, 2)
that can inform us about which parameters in the solar wind are
key to controlling the reaction of the magnetosphere-ionosphere
system, 3) about the global modes of reaction of the
magnetosphere to the solar wind, 4) about the flow of
information into and through the system, and 5) about where
in the system chaotic behaviors emerges. These system methods
can improve our scientific knowledge of the magnetosphere (e.g.,
the uncovering of secondary modes of reaction of the Earth
system to the solar wind (Borovsky and Osmane, 2019) and can
uncover improved ways to predict space weather (e.g., the
expectation of accurately predicting the reaction of the Earth-
system to as-yet-unseen severe levels of solar-wind driving
(Borovsky and Denton, 2018)). Note that, at present, system

science methods do not appear to be used yet in their most
general form for space weather prediction outside academia.

GLOBAL MAGNETOSPHERIC MODELS

In what at first might appear as an unrelated topic of
magnetospheric research, global magnetospheric models have
long been used to describe and understand the behavior of the
Earth’s magnetosphere. Initial efforts focused on a fluid
magnetohydrodynamics (MHD) description of the solar wind
andmagnetospheric plasmas, owing to the limitations in available
computer power (Gombosi et al., 2000; Raeder et al., 2001a;
White et al., 2001; Lyon et al., 2004). More recently global
magnetospheric models are evolving towards a description of
the underlying kinetic plasma beyond MHD, acknowledging the
importance of non-MHD physics for several key processes
operating in the magnetosphere, such as solar-wind/
magnetosphere coupling (day-side reconnection, plasma entry,
Kelvin-Helmholz coupling), the ion foreshock, tail reconnection,
and for wave-particle interactions [see the discussion in Palmroth
et al., 2018]. This is in part because MHD becomes problematic
for thin boundary layers such as those at the bow shock and the
magnetopause. Examples of beyond-MHD approaches at various
stages of development include more-sophisticated fluid models
(Wang et al., 2018), hybrid approaches that treat ions kinetically
and electrons as a massless fluid (Karimabadi et al., 2014; Lin
et al., 2017; Palmroth et al., 2018; Omelchenko et al., 2021),
spectral methods (Koshkarov et al., 2021) and MHD models
locally coupled with kinetic solvers (Daldorff et al., 2014; Chen
et al., 2017). Global magnetospheric models are also becoming
more complex in terms of the number of sub-systems that they
include. For instance, global MHD models have evolved to
include ionospheric models (Fedder and Lyon, 1987; White
et al., 2001; Raeder et al., 2001b; Wang et al., 2004; Ridley
et al., 2004), ion outflow (Winglee, 2000; Glocer et al., 2009;
Brambles et al., 2010), plasmaspheric models (Ouellette et al.,
2016; Glocer et al., 2020), inner magnetospheric models to
capture drift physics (Toffoletto et al., 2004; Welling and
Ridley, 2010; Jordanova et al., 2018), and, as mentioned above,
some embed kinetic solvers locally (Chen et al., 2017).

One critical aspect of global magnetospheric models is
validation against spacecraft observations. Earlier works
focused on applying global MHD codes to specific event
challenges (Raeder et al., 1997; Ridley et al., 2002), which led
to community-wide event challenges to assess the performance of
different codes against observational data (see for instance
Pulkkinen et al., 2013). This type of study is very useful in
identifying the general trends of different models, in providing
physics support and understanding magnetospheric reactions,
and in providing comparisons with other codes. However, it is
limited in its ability to achieve true validation in light of
uncertainties in initial conditions, in particular the lack of
knowledge of the actual solar wind hitting the magnetosphere
(e.g., Borovsky, 2018; Walsh et al., 2019), boundary conditions,
and lack of adequate physics that make it hard to really capture
the local spatial and temporal variability of the magnetosphere.
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Indeed, the magnetosphere is a high-Reynolds number system
that can exhibit unpredictable and chaotic behavior.1. Attempts
to reproduce all details of its spatial and temporal variability
should be taken with a “grain of salt”.

Recognizing the limitations just described, other efforts have
taken a statistical approach to model validation. Some of these
approaches still involve a direct comparison with data. For
instance, Ridley et al. (2016) analyzed 662 global MHD
simulations at the Community Coordinated Modeling Center
to make statistical comparisons of different MHD codes against
spacecraft magnetic field measurements. They concluded that
models perform worse for higher geomagnetic activity and that
coupling global MHD codes with inner magnetospheric models
produced statistically better results (the latter conclusion agrees
with Rastatter et al. (2013)). Other approaches do not involve a
direct comparison with data but rather a ‘behavioral’ comparison
against expressions derived from data. White et al. (2001) used
the ISM code to study turbulent transport in the magnetotail
under various IMF conditions and computed autocorrelation
functions that were in reasonable agreement with
autocorrelation functions calculated from ISEE-2 spacecraft
measurements in the magnetotail. Specifically, the simulations
could recover the general ordering of the decorrelation times for
magnetic field component Bx, density n and magnetic field
components By and Bz and the fact that the velocity
components decorrelated more rapidly than the magnetic field
components and density (Fig. 4 of White et al. (2001)) but could
not recover the long tails seen in the data. El-Alaoui et al. (2013)
studied plasma-sheet turbulence with MHD simulations and
compared simulation power spectral densities against power
spectral densities calculated from THEMIS spacecraft data,
finding good agreement in the inertial range but not in the
dissipative range. Gordeev et al. (2015) used different MHD
models to evaluate several quantities representative of
magnetospheric activity (examples include the subsolar
magnetopause distance or the cross polar cap potential)
against empirical relations obtained from spacecraft data. They
found that no code provided satisfactory scores for all the
magnetospheric variables considered. Haiducek et al. (2020)
performed a month-long MHD simulation wherein over 100
substorms occurred: to validate the model for substorm
occurrence, a distribution of substorm-to-substorm waiting
times from the code was compiled and compared to
equivalent distributions created from geomagnetic indices. The
comparison showed a magnetospheric response in the code that
was qualitatively similar to that observed for the real
magnetosphere. The MHD simulation was also shown to have
a small but statistically significant skill in predicting substorm
occurrence times.

DISCUSSION: SYSTEM SCIENCE OF
GLOBAL MAGNETOSPHERIC MODELS

In this perspective, we point out the need to apply system science
tools to global magnetospheric models to understand if the
system behavior of the global models is the same as the
system behavior of the real magnetosphere and to overcome
the limitations described above. There are clear advantages to this
strategy. First, this approach offers the opportunity to validate the
global models statistically, without attempting a direct
comparison with spacecraft measurements in a high-Reynolds-
number magnetosphere. Second, insight could be gained from a
side-by-side statistical comparison of system science techniques
applied to the outputs of global models and to spacecraft data.
One could look at classic quantities of non-linear time series
analysis (such as fractality, dimensionality, Lyapunov exponents,
. . .) and check whether these quantities are the same in the
models and in the real data. For those quantities that do not
behave in the same manner, one can investigate why the behavior
is different. From a correlation-analysis or information-analysis
point of view, several natural questions immediately arise:

1) Are the same solar-wind variables important in the simulation
as in the real system?

2) Is the derived driver function for the simulation similar to the
derived driver function of the real system?

3) Are the time lags the same in the simulation and the real
system?

4) Does the simulation show the same degrees of correlation as
does the real system?

5) Does the simulation show the same modes of reaction to the
solar wind as does the real system?

6) Does the code exhibit the same patterns of information flow as
does the magnetosphere?

Third, as a corollary to the previous point, the system science
of global models will facilitate exposing the deficiencies of the
models. By turning on and off certain couplings in the
simulations, one could ascertain how well the simulations
reproduce the statistical correlations of the real system and
what is the sensitivity to the various coupling elements. This

TABLE 1 | Examples of equivalent quantities that could be compared between
simulations and the magnetospheric systems.

Quantity in simulation Quantity in magnetospheric
system

Magnetospheric convection Kp, am indices
Inner edge of electron plasma sheet MBI index
Ion pressure ion pressure
Ion-plasma-sheet number density ion-plasma-sheet number density
Nightside electrojet current AL index
Cross-polar-cap ionospheric current PCI index
Flux of 1-MeV radiation-belt electrons Flux of 1-MeV radiation-belt electrons
Flux of 130-keV substorm electrons Flux of 130-keV substorm electrons
Power in electron precipitation Power in electron precipitation
Power in ion precipitation Power in ion precipitation
ULF wave intensity ULF index

1Note, also, that collisionless or weakly-collisional plasmas can develop an effective
viscosity due to kinetic physics that can be significantly larger than that induced by
collisions (see, for instance, Squire et al. (2017)) and that, even if this might
effectively lower the Reynolds number of the system, an MHD description would
still be inadequate (see also the discussion in Borovsky and Gary (2009)).
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will also provide guidance on what parts of the global models
need more improvement. Fourth, from the perspective of system
science of the real data, it could provide the physics basis to
understand the meaning of the driver functions and state vectors
identified by system science tools.

To enable the application of system science tools to global
models and its comparison against data, the first step is to
determine a set of measurements from the global simulations
and match them with an equivalent set of measurements in the
magnetospheric system. Table 1 shows examples of such
equivalent quantities. Initially one could look at a single
quantity in the simulations and the equivalent quantity in the
magnetosphere to 1) compare the statistical behaviors of the pair
of quantities, and 2) discern if the correlations with the solar wind
are similar. Next, time-dependent state vectors comprised of
multiple quantities could be created with the goal of 1)
discerning whether the simulations exhibit the same collective
modes of reaction to the solar wind as does the magnetosphere, 2)
discerning whether the simulations have similar composite
scalars as does the magnetosphere, and 3) discerning whether
the simulations have the same high vector-vector correlations
with the solar wind as the magnetosphere does.

An important question to consider is how much data would
actually be needed to perform a meaningful system science
analysis of global models. There are two distinct aspects to
this point. The first is how much data from the solar wind
input is necessary to obtain a magnetospheric response that is
sufficiently representative of the variability of the environment.
The second is the computational cost to obtain the necessary data
through the simulations. To answer the first point, we turn to the
analysis performed by Borovsky and Denton (2018) (hereafter
“BD2018”). They used canonical correlation analysis (CCA) to

correlate 8 solar wind state variables and 11 magnetospheric state
variables for the years 1991–2007, a total of 102,672 hourly points
for each state variable, i.e., 102,672*19 = 1,950,768 total points.
They found a high prediction efficiency (PE) of 84% and a
correlation coefficient (CC) of 0.92. We have performed the
same canonical correlation analysis on a subset of the data to
understand the minimum dataset that would give us a similar PE
and CC. To do this, we select samples with Nsample = 19*N points
randomly from the whole dataset; perform CCA on those Nsample

points; construct S1
in (S1

out) and E1
in (E1

out) from the CCA
coefficients for points inside (outside) the sample; compute
CCin (CCout) between the solar wind state vector S1

in (S1
out)

and the magnetospheric state vector E1
in (E1

out); compute the
linear regression relating S1

in to E1
in and S1

out to E1
out; use the

linear regression formula to predict values of E1 from S1, for the
data points within and outside the sample; compute PEin and
PEout as in BD2018. We also compute the error of the coefficients
of each state variable relative to those found in BD2018. For a
generic coefficient Ci, we define the relative error as

ε � maxi
|Ci−CBD2018

i |
∑i

|CBD2018
i |. Note that we repeat this procedure

100 times and average the results, to reduce the noise
associated with random sampling. The results are plotted in
Figure 1A, where we show the relative error for the solar
wind state vector (red line) and magnetospheric state vector
(blue line) versus the number of points per variable N. One
can see that in general there is a decreasing trend of the error and
that with only 3 points per variable (i.e., 57 points) the error is
fairly small, ~10%. Figure 1B show CC and PE versus N. CCin

and PEin are monotonically decreasing functions of N (note that
for N = 1, CCin = PEin = 1 because CCA can fit the data points
exactly) while CCout and PEout are monotonically increasing
functions of N. Asymptotically, all quantities converge to the

FIGURE 1 | (A) Relative errors for the mean solar wind state (red line, maximum over 8 state variables) and magnetospheric (blue line, maximum over 11 state
variables) coefficients as a function of the number of data points per independent variable N used in the canonical correlation analysis. The errors are relative to the results
of Borovsky and Denton (2018). (B) Prediction efficiency and correlation coefficient as a function of N, obtained for points inside (solid line, labelled as “in”) and outside
(dashed line, “out”) of a given sample. The shaded areas are within ±3% of CC (red) and PE (blue) evaluated in BD2018 over the whole dataset. See the text for more
details.
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values of BD2018 computed from the whole dataset. N~3-4 (7) is
sufficient for CCout (PEout) to be within 3% of the results of
BD2018, i.e., to be within the shaded area of Figure 1B. These
results are consistent with those of Hair et al. (2010) who indicate
that CCA can be applied effectively with only 10 data points per
independent variable, showing that CCA is extremely robust and
does not need a lot of data. Finally, we also note that applying
CCA on the data for January 2005 (i.e., the same time interval
used by Haiducek et al. (2020) to study substorm onset with
global MHD) yields CCin = 0.93, CCout = 0.97, PEin = 0.87, and
PEout = 0.79, with ϵSW � 0.09 and ϵMS � 0.13. Although
preliminary, these results are very encouraging as they show
that fairly little data is sufficient to enable effective multi-variable
correlation analysis. In terms of computational performance,
we note that currently global MHD codes are sufficiently fast
to enable system-science studies. For instance, the data from
January 2005 is sufficient for meaningful CCA and so the
simulation output from Haiducek et al. (2020) could already
be used for this purpose. As another example, the GAMERA-
REMIX code (Zhang et al., 2019; Sorathia et al., 2020), which
combines the GAMERA global MHD solver and the REMIX
ionospheric potential solver, runs at ~3,000 core-hours per
hour of real time [K. Sorathia, private communication],
implying that a simulation study that requires ~200 hourly
points could be completed with ~600,000 core-hours. These
performance numbers correspond to the high-resolution
simulations, e.g., resolving plasma sheet mesoscale
dynamics (Sorathia et al., 2021). This is a fairly small
allocation on modern high-performance computing
architectures. On the other hand, the cost of a single
computational run of the more sophisticated global models
under development is still very high. For instance, a
representative simulation cost of the hybrid global code
HYPERS is ~1-million core-hrs for a 1-hour-long
simulation of the Earth’s magnetosphere [Y. Omelchenko,
private communication], extrapolated from the simulations
presented in Omelchenko et al. (2021) for that specific
resolution. As another example, the recent first 6D run of
the hybrid global code Vlasiator cost ~15-million core-hrs for
a 30-minutes-long simulation of the coupled solar
wind—magnetosphere system using the Earth’s dipole
magnetic field [M. Palmroth, private communication].
Further computational optimization of the beyond-MHD
global codes will be necessary to take full advantage of the
upcoming exascale computing facilities and render statistical
studies accessible with these codes. Note also that approaches
targeting information theory have already been applied
effectively without requiring as many simulation runs, e.g.,
Johnson et al. (2019) who are using transfer entropy to study
causal relationships in a single global hybrid simulation run.
We therefore conclude that a system science approach to
global magnetospheric models is feasible with present-day
tools and should be pursued. In general, it will be important to
test a variety of system-science methods to obtain
complementary information and understanding of the
system.

As a final remark, we have focused this perspective on
global magnetospheric models because of the general interest
of the magnetospheric community to develop a holistic view
of the magnetosphere. However, many of the same
considerations are still applicable to the individual sub-
systems and much could be learned from a side-by-side
system science comparison of models and spacecraft data
at the sub-system level.
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Redshifts of Active Galactic Nuclei
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Redshift measurement of active galactic nuclei (AGNs) remains a time-consuming and
challenging task, as it requires follow up spectroscopic observations and detailed analysis.
Hence, there exists an urgent requirement for alternative redshift estimation techniques.
The use of machine learning (ML) for this purpose has been growing over the last few years,
primarily due to the availability of large-scale galactic surveys. However, due to
observational errors, a significant fraction of these data sets often have missing entries,
rendering that fraction unusable for ML regression applications. In this study, we
demonstrate the performance of an imputation technique called Multivariate Imputation
by Chained Equations (MICE), which rectifies the issue of missing data entries by imputing
them using the available information in the catalog. We use the Fermi-LAT Fourth Data
Release Catalog (4LAC) and impute 24% of the catalog. Subsequently, we follow the
methodology described in Dainotti et al. (ApJ, 2021, 920, 118) and create an MLmodel for
estimating the redshift of 4LAC AGNs. We present results which highlight positive impact
of MICE imputation technique on the machine learning models performance and obtained
redshift estimation accuracy.

Keywords: redshift, AGNs, BLLs, FSRQs, FERMI 4LAC, machine learning regressors, imputation, MICE

1 INTRODUCTION

Spectroscopic redshift measurement of Active Galactic Nuclei (AGNs) is a highly time-consuming
operation and is a strong limiting factor for a large-scale extragalactic surveys. Hence, there is a
pressing requirement for alternative redshift estimation techniques that provide reasonably good
results Salvato et al. (2019). In current cosmological studies, such alternative redshift estimates,
referred to as photometric redshifts, play a key role in our understanding of the Extragalactic
Background Light (EBL) origins Wakely and Horan (2008)1, magnetic field structure in the
intergalactic medium Marcotulli et al. (2020); Venters and Pavlidou (2013); Fermi-LAT
Collaboration et al. (2018) and help in determining the bounds on various cosmological
parameters Domínguez et al. (2019); Petrosian (1976); Singal et al. (2013b), Singal et al. (2012),
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Singal et al. (2014); Singal (2015); Singal et al. (2013a); Chiang
et al. (1995); Ackermann et al. (2015); Singal et al. (2013b);
Ackermann et al. (2012).

One technique that has gained significant momentum is the
use of machine learning (ML) to determine the photometric
redshift of AGNs Brescia et al. (2013), Brescia et al. (2019);
Dainotti et al. (2021); Nakoneczny et al. (2019); Jones and
Singal (2017); Cavuoti et al. (2014); Fotopoulou and Paltani
(2018); Logan and Fotopoulou (2020); Yang et al. (2017);
Zhang et al. (2019); Curran (2020); Nakoneczny et al. (2019);
Pasquet-Itam and Pasquet (2018); Jones and Singal (2017). Large
AGN data sets derived from all-sky surveys like the Wide-field
Infrared Survey Explorer (WISE) Brescia et al. (2019); Ilbert et al.
(2008); Hildebrandt et al. (2010); Brescia et al. (2013); Wright
et al. (2010); D’Isanto and Polsterer (2018) and Sloan Digital Sky
Survey (SDSS) Aihara et al. (2011) have played a significant role
in the proliferation ofML approaches. However, the quality of the
results from an ML approach depends significantly on the size
and quality of the training data: the data on which the MLmodels
learn the underlying relationship to predict the redshift.
Unfortunately, almost all of these large data sets suffer from
the issue of missing entries, which can lead to a considerable
portion of the data being discarded.

This is especially problematic in catalogs of smaller size, such
as in the case of gamma-ray loud AGNs.

Using the Fermi Fourth Data Release Catalog’s (4LAC)
gamma-ray loud AGNs Ajello et al. (2020); Abdollahi et al.
(2020), Dainotti et al. (2021) demonstrated that ML methods
lead to promising results, with a 71% correlation between the
predicted and observed redshifts. However, in that study, the
training set consists of only 730 AGNs, and a majority of the data
(50%) are discarded due to missing entries. More specifically, we
have several reasons why the sources are missing also in relation
to the variables we consider. Regarding the missing values of the
Gaia magnitudes: this could be either because the sources are too
faint and thus they undergo the so called Malmquist bias effect
(only the brightest sources are visible at high-z) or the coordinates
are not accurate enough and the cross-matching is failing to
produce a counterpart (the latter is not that likely, the former is
much more likely).

Regarding the variables observed in γ-rays: here the source is
detected, but it is faint in gamma-rays and again we have the
Malmquist bias effect in relation to the detector threshold of
Fermi-LAT and/or it does not appear variable and/or the spectral
fitting fails to produce values, hence the missing values.

Regarding the multi-wavelength estimates (], ]f]): these
depend on the availability of multi-wavelength data from radio
to X-rays. If sufficient data exists then a value can be estimated, so
the missing values are most likely sources that have not been
observed by telescopes. In other words, this does not mean that
the sources are necessarily faint, they could be bright, but just no
telescope performed follow-up observations.

There is also the possibility to explain the missing values
because of the relativistic effects that dominate blazar emission.
The relativistic effects, quantified by a parameter called the
Doppler factor, boost the observed flux across all frequencies,
but also shorten the timescales making sources appear more

variable. It has been shown that sources detected in γ-rays have
higher Doppler factors and are more variable Liodakis et al.
(2017), Liodakis et al. (2018). This would suggest that sources
observed more off-axis, i.e., lower Doppler factor, would have a
lower γ-ray flux and appear less variable. Therefore introduce
more missing values as we have discussed above.

In this study, we address this issue of missing entries using an
imputation technique called Multivariate Imputation by Chained
Equations (MICE) Van Buuren and Groothuis-Oudshoorn
(2011). This technique was also recently used by Luken et al.
(2021) for redshift estimation of Radio-loud AGNs.

Luken et al. (2021) test multiple imputation techniques, MICE
included, to determine the best tool for reliably imputing missing
values. Their study considers the redshift estimation of radio-loud
galaxies present in the Australia Telescope Large Area Survey
(ATLAS). However, in contrast to our approach where we impute
actual missing information in the catalog, they manually set
specific percentages of their data as missing and test how
effective various imputation techniques are. Their results
demonstrate distinctly that MICE is the best imputation
technique, leading to the least root mean square error (RMSE)
and outlier percentages for the regression algorithms they have
tested.

In our study, we are using the updated 4LAC catalog, and
using MICE imputations to fill in missing entries, we achieve a
training data set which is 98% larger than the one used in Dainotti
et al. (2021). We achieve results on this more extensive training
set that are comparable to Dainotti et al. (2021) while attaining
higher correlations. Furthermore, we are using additional ML
algorithms in the SuperLearner ensemble technique, as compared
to Dainotti et al. (2021).

Section 2 discusses the specifics of the extended 4LAC data set:
how we create the training set, which predictors are used and
which outliers are removed. In Section 3 we discuss the MICE
imputation technique, the SuperLearner ensemble with a brief
description of the six algorithms used in this analysis, followed by
the different feature engineering techniques implemented.
Finally, we present the results in Section 4, followed by the
discussion and conclusions in Section 5.

2 SAMPLE

This study uses the Fermi Fourth Data Release Catalog (4LAC),
containing 3,511 gamma-ray loud AGNs, 1764 of which have a
measured spectroscopic redshift. Two categories of AGNs
dominate the 4LAC catalog, BL Lacertae (BLL) objects and
Flat Spectrum Radio Quasars (FSRQ). To keep the analysis
consistent with Dainotti et al. (2021), we remove all the non-
BLL and non-FSRQ AGNs.

These AGNs have 13 measured properties in the 4LAC
catalog; however, we only use 11 and a categorical variable
that distinguishes BLLs and FSRQs. The two omitted
properties in the analysis are Highest_Energy and
Fractional_Variability because 42.5% of the entries are
missing, and there is insufficient information to impute them
reliably. We consider imputation of predictors which have
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missing entries in less than 18% of the data. The remaining 11
properties and the categorical variables are Gaia_G_Magnitude,
Variability_Index, Flux, Energy_Flux, PL_Index, ]f], LP_Index,
Significance, Pivot_Energy, ], and LP_β and LabelNo, serve as the
predictors for the redshift in the machine learning models and are
defined in Dainotti et al. (2021) and Ajello et al. (2020). However,
some of these properties are not used as they appear in the 4LAC,
since they span several orders of magnitude. The properties Flux,
Energy_Flux, Significance, Variability_Index, ], ]f], and
Pivot_Energy are used in their base-10 logarithmic form. In
the categorical variable LabelNo we assign the values 2 and 3
to BLLs and FSRQs, respectively. We are not training the ML
models to predict the redshift directly. Instead, we train the
models to predict 1/(z + 1), where z is the redshift. Such a
transformation of the target variable is crucial as it helps improve
the model’s performance. In addition, 1/(z + 1) is known as the
scale factor and has a more substantial cosmological significance
than redshift itself. We remove AGNs with an LP_β < 0.7,
LP_Index > 1, and LogFlux > -10.5, as they are outliers of
their respective distributions. These steps lead us to a final
data sample of 1897 AGNs, out of which 1,444 AGNs have a
measured redshift (see Figure 1). These AGNs form the training
sample, while the remaining 453 AGNs, which do not have a
measured redshift, form the generalization sample.

3 METHODOLOGY

Here we present the various techniques implemented in the
study, definitions of the statistical metrics used, and a
comprehensive step-by-step description of our procedure to
obtain the results. We use the following metrics to measure
the performance of our ML model:

• Bias: Mean of the difference between the observed and
predicted values.

• σNMAD: Normalized median absolute deviation between the
predicted and observed measurements.

• r: Pearson correlation coefficient between the predicted and
observed measurements.

• Root Mean Square Error (RMSE) between the predicted and
observed redshift

• Standard Deviation σ between the predicted and observed
redshift

We present these metrics for both Δznorm and Δz, which are
defined as:

Δz � zobserved − zpredicted (1)
Δznorm � Δz

1 + zobserved
(2)

We also quote the catastrophic outlier percentage, defined as
the percentage of predictions that lies beyond the 2σ error. The
metrics presented in this study are the same as in Dainotti et al.
(2021), allowing for easy comparison.

3.1 Procedure
Here we provide a walk-through of how the final results are
obtained. First, we remove all the non-BLL and non-FSRQ AGNs
from the 4LAC data set, in addition to outliers, and end up with
1897 AGNs for the total set. Then, we impute the missing entries
using MICE (see Section 3.2). Having obtained a complete data
set, we split it into the training and the generalization sets,
depending on whether the AGNs have or do not have a
measured redshift value. We aim to train an ensemble model
that is the least complex and best suited to the data at hand. For
this purpose, we need to test many different algorithms with ten-

FIGURE 1 | Redshift distribution of the training set.
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FIGURE 2 | (A): The coefficients assigned by SuperLearner to the algorithms tested. We select the algorithms that have a coefficient above 0.05 to be incorporated
into our ensemble. (B): The RMSE error (risk) of each of the algorithms, scaled to show the minimum risk algorithm at 0, which is Cforest. These values are average over
one hundred iterations of 10fCV.

FIGURE 3 | The pattern of the missing data. The blue cells represent complete values, while the pink ones indicate where we havemissing data. The first row shows
that there are 1,432 AGNs without missing values. Second row shows that there are 228 data points with Gaia_G_Magnitude missing. Third row shows that there are
122 data points with Log] and Log]f]missing. And finally, the last row shows that there are 115 data points with missing values inGaia_G_Magnitude, Log] and Log]f].
The columns indicate that there are 237 missing values in Log] and Log]f], and 343 missing values in Gaia_G_Magnitude. The remaining predictors have no
missing entries.
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fold cross-validation (10fCV). Cross-validation is a resampling
procedure that uses different portions of the data, in this case 10,
to train and test a model, and find out which algorithm performs
the best in terms of the previously defined metrics. However,
since there is inherent randomness in how the folds are created
during 10fCV, we perform 10fCV one hundred times and average
the results to derandomize and stabilize them. This repeated

k-fold cross-validation technique is standard in evaluating ML
models. In each of the one hundred iterations of 10fCV, we train a
SuperLearner model (see Section 3.3) on the training set using
the twelve algorithms shown in Figure 2. Finally, averaging over
the one hundred iterations, we obtained the coefficients and risk
measurements associated with each SuperLearner ensemble
model, as well as the individual algorithms. Following the
previous step, we pick six algorithms that have coefficients
greater than 0.05 (see Section 3.4 for information about these
algorithms).

With the six best ML algorithms, we create an ensemble with
SuperLearner and perform the 10fCV one hundred times once
more. The final cross-validated results are again an average of
these one hundred iterations.

Next, we proceed to show the results obtained without the
repeated cross-validation procedure. For this, we simply select
a fixed validation set by choosing the last 111 AGNs from the
1,444 AGNs of the previously used training data. Now, with
the new training set of 1,333 AGNs, we train a SuperLearner
model, with the algorithms being the same as in the cross-
validation step, and we predict the redshift of the validation
set. We then calculate the same statistical metrics for these
results as we did for the cross-validated results. The results on
this fixed validation set provide a representative of the
performance of the SuperLearner model, which we have
explored in more details (and in a more computationally
expensive way) during the repeated cross-validation
procedure.

3.2 Multivariate Imputation by Chained
Equations
Multivariate Imputation by Chained Equations (MICE) is a
method for imputing missing values for multivariate data Van
Buuren and Groothuis-Oudshoorn (2011); Luken et al. (2021).
The multivariate in MICE highlights its use of multiple variables
to impute missing values. The MICE algorithm works under the
assumption that the data are missing at random (MAR). MAR
was first detailed in the paper Rubin (1976). It implies that errors
in the system or with users cause the missing entries and not
intrinsic features of the object being measured. Furthermore,
MAR implies the possibility that the missing entries can be
inferred by the other variables present in the data Schafer and
Graham (2002). Indeed, this is a strong assumption, and it is our
first step to deal with missing data. However, we know that
selection biases play an important role for the flux detection.
Although this problem is mitigated for the gamma-ray sources,
for the G-band magnitude, one can argue that, e.g., BL Lacs are
systematically fainter than FSRQs and below the Gaia limiting
magnitude. A more in-depth analysis to take this problem into
account is worthwhile, but this is beyond the scope of the
current paper.

With this assumption, MICE attempts to fill in the absent
entries using the complete variables in the data set iteratively. We
impute the missing variables 20 times with each iteration of
MICE consisting of multiple steps. General practice is to perform
the imputation ten times as in Luken et al. (2021) and Van

FIGURE 4 | The white bars show the initial distribution of the variables.
The magenta bars plotted on top of it are the MICE imputed values. The top
plot shows the distribution of Gaia_G_Magnitude with and without MICE. The
central plot shows this for Log]f], and the bottom plot shows this
for Log].
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Buuren and Groothuis-Oudshoorn (2011), but we perform it
twenty times to stabilize the imputation.

Here, we use the method “midastouch”—a predictive mean
matching (PMM) method Little and Rubin (2019). It works by
initializing a feature’s missing entries with its mean and then
estimating them by training a model using the rest of the
complete data. For each prediction, a probability is assigned
based on its distance from the value imputed for the desired
entry. The missing entry is imputed by randomly drawing from
the observed values of the respective predictor, weighted
according to the probability defined previously.

The process is repeated for each missing entry until all have
been refitted. This new complete table is used as a basis for the
next iteration of MICE, where the same process is repeated until
the sequence of table converges or a set number of iterations is
achieved.

3.3 SuperLearner
SuperLearner Van der Laan et al. (2007) is an algorithm that
constructs an ensemble of ML models predictions using a cross-
validated metric and a set of normalized coefficients. By default
Superlearner uses a ten-fold cross-validation procedure. It
outputs a combination of user-provided ML models such that
the RMSE of the final prediction is minimized by default Polley
and Van der Laan (2010) (or any other user-defined metric
defining the expected risk of the task at hand). In our setup,
SuperLearner achieves this using 10fCV, where the training data
is divided into ten equal portions or folds, the models are trained
on nine folds, and the 10th fold is used as a test set. The models
predict the target variable of the test set, and based on the RMSE
of their predictions, SuperLearner assigns a coefficient. If an
algorithm has a lower RMSE in 10fCV, it will be assigned a
higher coefficient. Finally, it creates the ensemble as a linear
combination of the constituent models multiplied by their
respective coefficients. Note that this 10fCV is an internal
procedure of model selection to build the SuperLearner
ensemble model, and it is separate from the repeated cross-
validation procedure which we described in Section 3.1 and
which is used to evaluate the performance and final results.

3.4 The Machine Learning Algorithms Used
in Our Analysis
Following Dainotti et al. (2021) we analyze the coefficients
assigned by SuperLearner to 12 ML algorithms, and pick those
with a value greater than 0.05. In Figure 2, we show all the ML
algorithms tested, and their coefficients. We pick the six
algorithms above the 0.05 cutoff, which are: Enhanced

Adaptive Regression Through Hinge (EARTH), KSVM,
Cforest, Ranger, Random Forest, and Linear Model. We
provide brief explanations for each of them below.

Enhanced Adaptive Regression Through Hinges (EARTH) is
an algorithm that allows for better modeling of predictor
interaction and non-linearity in the data compared to the
linear model. It is based on the Multivariate Adaptive
Regression Splines method (MARS) Friedman and Roosen
(1995). EARTH works by fitting a sum or product of hinges.
Hinges are part-wise linear fits of the data that are joined such
that the sum-of-squares residual error is minimized with each
added term.

KSVM is an R implementation of the Support Vector
Regression method (SVR). Similar to Support Vector Machine
(SVM) Cortes and Vapnik (1995), SVR uses a kernel function to
send its inputs to a higher-dimensional space where the data is
linearly separable by a hyper-plane. SVR aims to fit this hyper-
plane such that the prediction error is within a pre-specified
threshold. For our purposes, KSVMuses the Gaussian kernel with
the default parameters.

The Random Forest algorithm Breiman (2001); Ho (1995)
seeks to extend decision trees capabilities by simultaneously
generating multiple, independent decision trees. For regression
tasks, Random Forest will return the average of the outputs of
each of the generated decision trees. An advantage of Random
Forest over decision trees is the reduction in the variance.
However, Random Forest often suffers from low interpretability.

The Ranger algorithm is similar to Random Forest with the
difference of extremely randomized trees (ERTs) Geurts et al.
(2006) and quicker implementation.

Similar to Random Forest, the Cforest algorithm Hothorn
et al. (2006) builds conditional inference trees that perform splits
on significance tests instead of information gain.

We use the ordinary least squares (OLS) linear model found in
the SuperLearner package. This model aims to minimize the
mean squared error.

Note that we are using the default hyperparameter settings for
all the algorithms.

3.5 Feature Engineering
Feature engineering is a broad term that incorporates two
techniques: feature selection and feature creation. Feature
selection is a method where the best predictors of a response
variable are chosen from a larger pool of predictors. There exist
multiple methods to perform feature selection. We are using the
Least Absolute Selection and Shrinkage Operator (LASSO)
method. Feature selection is an essential part of any ML study
as it reduces the dimensionality of the data andminimizes the risk

TABLE 1 | Composition of the training and generalization sets, and Redshift properties on the training set.

Type Training set Generalization set Redshift median Redshift minimum Redshift maximum

BLLs 721 450 0.336 3.7 × 10–5 2.82
FSRQ 723 3 1.12 0.097 4.313

Total 1,444 453 0.628 3.7 × 10–5 4.313
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FIGURE 5 | First row: The scatter plot between the observed and predicted MICE values for the Log] predictor, followed by the overlapped histogram distributions
of the same. Second row: The scatter plot between the observed and predictedMICE values for the Log]f] predictor, followed by the overlapped histogram distributions
of the same. Third row: The scatter plot between the observed and predicted MICE values for the Gaia_G_Magnitude predictor, followed by the overlapped histogram
distributions of the same.
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of overfitting. Feature creation is a technique where additional
features are created from various combinations of existing
properties. These combinations can be cross-multiplications,
higher-order terms, or ratios. Feature creation can reveal
hidden patterns in the data that ML algorithms might not be
able to discern and consequently boost the performance.

In machine learning, some of the methods used by
SuperLearner are linear by nature (BayesGLM, Lasso, elastic-
net). Adding quadratic and multiplicative terms allows us to
model some types of non-linear relationships. Interactions
among variables are very important and can boost the
prediction when used. The phrase “interaction among the
variables” means the influence of one variable on the other;

however, not in an additive way, but rather in a multiplicative
way. In our feature engineering procedure, we build these
interactions by cross-products and squares of the initial
variables. It is common that adding O2 predictors aids results
since they may contain information not available in the O1
predictors.

In this study, we create 66 new features, which, as mentioned,
are the cross-products and squares of the existing features of the
4LAC catalog. We denote the existing predictors of the 4LAC
catalog as Order-1 (O1) predictors and the new predictors as
Order-2 (O2). Thus, we expand the set of predictors from the
initial eleven O1 predictors to a combined seventy-eight O1 and
O2 predictors.

FIGURE 6 | These plots are for the O1 predictors case. Top left and right panels: The correlation plots between the observed and predicted redshift from 10fCV in
the 1

z+1 and linear scales, respectively. Bottom left and right panels: The validation set correlation plots in the 1
z+1 and linear scales, respectively.
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For features selection, LASSO Tibshirani (1996) is used. It
works by constraining the ℓ1 norm of the coefficient vector to be
less than or equal to a tuning parameter λ while fitting a linear
model to the data. The predictors that LASSO chooses have a
non-zero coefficient for the largest λ value with the property that
the corresponding prediction error is within one standard
deviation of the minimum prediction error Friedman et al.
(2010); Birnbaum (1962); Hastie and Tibshirani. (1987), Hastie
and Tibshirani. (1990); Friedman et al. (2010). This study
performs LASSO feature selection on a fold-by-fold basis
during external 10fCV. Optimal features are picked using
LASSO for nine of the ten folds, and the predictions on the
10th fold are performed using these selected features. This step is
iterated such that for every combination of nine folds, an
independent set of features is picked. This usage of LASSO is
in contrast to Dainotti et al. (2021), where the best features are
picked for the entire training set. Our updated technique ensures
that during the 10fCV, LASSO only picks the best predictors
based on the training data, and the test set does not affect the
models. This feature selection method is applied to both the O1
and O2 predictor sets.

4 RESULTS

The quality of theMICE imputations depends on the information
density of the entire data set. Hence, to ensure the best possible
imputations we use all 1897 AGNs which remain after the
removal of outliers and non-BLL and non-FSRQ AGNs. The
pattern of the missing entries in our data set is shown in Figure 3,
and they are present in only three predictors, namely, Log], Log]
f], and Gaia_G_Magnitude (see Sec. 2). There are 237 AGNs
which have missing values in both Log] and Log]f], and 343
AGNs have a missing value in Gaia_G_Magnitude. MICE is used
to fill the missing values of these AGNs. In Figure 4 we show the
distributions of Log], Log]f], and Gaia_G_Magnitude with and
without MICE. The quality of the MICE imputations can be

evaluated in part by comparing the original distribution of a
variable and its distribution with imputations. If the imputations
alter the distribution, the results cannot be trusted and would
require additional precautions or measures to deal with the
missing values. However, as can be discerned from the plots
(Figure 4), the MICE imputations are indeed following the
underlying distribution for the three predictors, and hence we
confidently incorporate them into our analysis. We impute 465
data points, 24% of our data set, resulting in a training sample of
1,444 AGNs and a generalization sample of 453 AGNs. The two
sets are detailed in Table. 1.

4.1 Multivariate Imputation by Chained
Equations Reliability Analysis
In the work by Luken et al. (2021), they present an extensive
analysis of the reliability of MICE imputations. However, since
they use a different dataset than ours, a similar investigation
regarding the performance of MICE is essential. Thus, we take
1,432 AGNs from our catalog with no missing entries and
randomly dropped 20% of the entries from each of the three
predictors which have missing entries, namely: Log], Log]f], and
Gaia_G_Magnitude. We then impute these dropped entries using
MICE, as described in Section 3.2. This process is repeated fifteen
times, and each time a different set of random entries are
dropped. Furthermore, as we can see in Figure 5, the observed
vs predicted values for Log], Log]f] and Gaia_G_Magnitude are
concentrated about the y = x line, with little variance. The mean
squared error (MSE), defined as the, of the observed values vs the
MICE imputed values for Log], Log]f], and Gaia_G_Magnitude
were 1.05, 0.196, and 1.43, respectively. Thus, the MSEs are all
small, which provides evidence that the MICE imputed
effectively. Note that if MICE imputes effectively, then the
imputed values and observed values should come from the
same distribution for each of the three variables. To check
this, we performed a Kolmogorov-Smirnov (KS) test on the
observed vs MICE imputed values for each of the three

FIGURE 7 | Here we present the distribution across one hundred iterations of 10fCV of the σNMAD and RMSE for the O1 case. (A): Distribution of σNMAD in linear
scale. Note that σNMAD is denoted as NMAD in the plots. (B): Distribution of RMSE in linear scale.
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variables with missing entries. The p-values of the KS test for
Log], Log]f], and Gaia_G_Magnitude were 0.744, 0.5815, and
0.6539, respectively. Since each of these p-values is above 0.05, we
cannot reject the null-hypothesis; namely, we conclude that the
observed values and the MICE imputed values come from same
distributions for any of the three variables. As shown in Figure 5,
the overlapped histogram of the observed vs MICE imputed
values for Log], Log]f] and Gaia_G_Magnitude are each very
similar, which reinforces the findings of the KS test - namely, that
they are from the same distribution. This provides additional
proof for the accuracy, and reliability of the MICE imputations.

4.2 With O1 Variables
The O1 variable set consists of 12 predictors, including the
categorical variable LabelNo, which distinguishes between
BLLs and FSRQs. LASSO chooses the best predictors from
within this set for each fold in the 10fCV as explained in
Section 3.5.

Using this feature set with the six algorithms mentioned, we
obtain a correlation in the 1/(z + 1) scale of 75.8%, a σ of 0.123, an
RMSE of 0.123, and a σNMAD of 0.118. In the linear redshift scale
(z scale), we obtain a correlation of 73%, an RMSE of 0.466, a σ of
0.458, a bias of 0.092, and a σNMAD of 0.318. In the normalized

FIGURE 8 | These plots are for the O1 predictor case. Top left panel: Distribution of the correlations in linear scale from the 100 iterations of 10fCV. Top right panel:
Distribution of Δz (Dz in the plots) with average bias (red) and sigma lines (blue). Bottom left panel: Distribution of the Δznorm (Normalized Dz in the plots) with the average
bias (red) and sigma values (blue). Bottom right panel: Relative influence of the O1 predictors. The suffix of Sqr implies the square of the respective predictor.
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scale (Δznorm), the RMSE obtained is 0.209, bias is 6 × 10–3, and
σNMAD is equal to 0.195. The correlation plots are shown in
Figure 6, with the left panel showing the correlation in the 1/(z +
1) scale and the right panel showing the correlation in the z scale.
We obtain a low 5% catastrophic outlier percentage in this
scenario. The lines in blue depict the 2σ curves for each plot,
where the σ is calculated in the 1/(z + 1) scale.

In Figure 7, we present the distributions of σNMAD and RMSE
across the one hundred iterations. Note that σNMAD is written as
NMAD in the plots for brevity.

In Figure 8, we present the distributions of various parameters
and the normalized relative influence plot of the 11 predictors -
LabelNo is excluded, as its a categorical variable. The top left
panel shows the variation in the linear correlation obtained from
the one hundred iterations. The top right panel shows the
distribution of Δz along with the σ (blue vertical line) and bias
(red vertical line) values. The bottom left panel shows the
distribution of the Δznorm along with the bias and σ presented
similarly. Finally, the barplot in the bottom right panel shows the
relative influence of the 11 predictors used. LP_β has the highest

FIGURE 9 | These plots are for the O2 predictor case. Top left and right panels: Correlation plots between observed vs cross-validated redshift in the 1
z+1 and linear

scale, respectively. Bottom left and right panels: The validation set correlation plots in the 1
z+1 and linear scale, respectively.
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influence, followed by Log], LogPivot_Energy, and
LogSignificance. Surprisingly, Gaia_G_Magnitude has the least
influence at ≈ 1%, in contrast to Dainotti et al. (2021), where we
found it to be quite significant at ≈ 11% influence. The difference
we obtain from this analysis and the previous one of Dainotti et al.
(2021) lies in the data set and that MICE had not been used.

4.3 With O2 Variables
The O2 variables, 78 in total, are made from cross-products of
the O1 variables. As in the O1 case, LASSO feature selection is
performed on a fold-by-fold basis, after which the
SuperLearner ensemble with the six algorithms previously
mentioned is trained and makes predictions. The cross-
validation and validation correlation plots are presented in
Figure 9.

As shown in the previous section, we have correlation plots in
the 1/(z + 1) scale and the z scale. In the 1/(z + 1) scale, we get a
correlation of 75.6%, RMSE of 0.124, and σNMAD of 0.116. In the z
scale, we obtain a correlation of 73%, RMSE of 0.467, and σNMAD

of 0.308. We obtain the statistical parameters for Δz: an RMSE of
0.467, a σ of 0.458, a bias of 0.093, and a σNMAD of 0.308. For
Δznorm, we obtain an RMSE of 0.21, a bias of 7 × 10–4, and a
σNMAD of 0.193. We have a similar catastrophic outlier percentage
(5%) as the O1 variable case, although the number of AGNs
predicted outside the 2σ cone is seven AGNs more. This
discrepancy can be attributed to the randomness inherent in
our calculations and additional noise introduced by the O2
predictors.

In Figure 10, we show the distributions of σNMAD and RMSE.
Note that there is an outlier during the analysis, which leads to the
unusually high RMSE value seen in the distribution.

Figure 11 shows the distribution plots for various parameters.
The top left panel shows the distribution of the correlations across
the one hundred iterations. There is an outlier in the distribution

of the correlation plot, corresponding to the distributions of
RMSE in Figure 10. This scenario only happens with the O2
variable set and with MICE imputations. Apart from this
fluctuation, most of the correlations lie around 73%. The
histogram distribution plots for Δz (top right) and Δznorm
(bottom left) show a similar spread as in the case of the O1
variable set. We only present predictors with influence greater
than 0.5% in the relative influence plot. In this case, PL_Index
turns out to have the highest influence, over 20%, followed by
LogSignificance, LogPivot_Energy, and LogEnergy_Flux100.

We note that out of the 11 O1 predictors with relative
influences, only 3 have less than 5% influence, and out of the
78 O2 predictors, only 4 have greater than 5% influence. Thus, the
majority of the O2 predictors do not seem to provide much
additional information about the redshift.

In Tables 2 and 3 we provide a comparision between the
results obtained in the two experiments we have here with MICE,
and one without MICE imputations. The latter results have been
taken from Narendra et al. (2022).

5 DISCUSSIONS AND CONCLUSION

In Dainotti et al. (2021), the correlation between the observed
and predicted redshift achieved with a training set of 730
AGNs was 71%, with RMSE of 0.434, σNMAD (Δznorm) of 0.192,
and a catastrophic outlier of 5%. Here, with the use of an
updated 4LAC catalog, O1 predictors, and the MICE
imputation technique, along with additional ML algorithms
in the SuperLearner ensemble, we achieve a correlation of 73%
between the observed and predicted redshift, an RMSE of
0.466, σNMAD (Δznorm) of 0.195 and a catastrophic outlier of
5%. Although the RMSE and σNMAD (Δznorm) are increasing by
7 and 1.5%, respectively, we are able to maintain the

FIGURE 10 | Here we present the distribution of the σNMAD and RMSE for the O2 case. (A): Distribution of σNMAD in linear scale. Note that σNMAD is denoted as
NMAD in the plots. (B): Distribution of RMSE in linear scale.
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catastrophic outliers at 5%, while increasing the correlation by
3%. These results are achieved with a data sample 98% larger
than the one used by Dainotti et al. (2021). Note that this
achievement is not trivial, as a larger data set does not
guarantee favourable results.

With the O2 predictor set, we obtain a similar correlation of
73% between the predicted and observed redshifts. However,
compared to the O1 case, the RMSE goes up by 0.2%–0.467 and
the σNMAD (Δznorm) goes down by 1% to 0.193. The catastrophic
outlier percentage is maintained at 5% in both cases.

The most influential O1 predictors in this study were LP_β,
Log], LogPivot_Energy, LogSignificance, LP_Index, PL_Index,

and LogEnergy_Flux, each of which has a relative influence
greater than 5%. LP_β was also the most influential predictor
in Dainotti et al. (2021), followed by LogPivot_Energy,
LogSignificance, LogEnergy_Flux, and Log]. The main
difference in the relative influences of the predictors in
these studies is that in the O1 case with MICE, LP_Index
and PL_Index are the 5th and 7th most influential predictors,
respectively, while in Dainotti et al. (2021), they were not
influential.

Among the O2 predictors, PL_Index is the most influential,
followed by LogSignificance, LogPivot_Energy, and
LogEnergy_Flux, each of which has a relative influence

FIGURE 11 | These plots are for the O2 predictor case. Top left panel: Distribution of the correlations in linear scale from the 100 iterations of 10fCV. Top right panel:
Distribution of Δz (Dz in the plots) with average bias (red) and sigma lines (blue). Bottom left panel: Distribution of the Δznorm (Normalized Dz in the plots) with the average
bias (red) and sigma values (blue). Bottom right panel: Relative influence of the O2 predictors, above cutoff of 0.1.
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greater than 5%. Note that the only O2 predictors with
influence greater than 5% are those we have just listed and
they are also O1 predictors. When additional variables are
added it is not guaranteed that the most influential variables
will be kept the same. This is true for both parametric and non-
parametric models. The influence is a measure of how much
your improvement in the prediction changes when you remove
one variable in relation to the presence of the other variables.
Thus, these measures depend on the other variables in the
model and are different when O2 variables are added. We can
conclude from these results that the O1 predictors contain
most of the predictive information for redshift, in the case of
the 4LAC catalog. Furthermore, we note that obtaining results
with the O2 set takes more time than with the O1 set due to the
larger list of predictors. However, in other catalogs, such O2
predictors might perform better and be an avenue worth
exploring in the future.

Here, we use MICE on the O1 variables, because this allows
MICE to act on three variables which present missing entries.
In this way, we can control the effectiveness of MICE and the
results. We agree with the referee that imputing the MICE in
the cross products would imply an imputation on variables
that are currently not defined and most importantly would
allow more uncertainty when the cross products would involve
for example two variables with missing entries. If we had used
MICE in the O2 parameters we would have had a large number
of imputation which would be less controllable. From these
results, we can discern that the MICE imputation technique is
a robust method to mitigate the issue of missing entries in a
catalog while maintaining the predictive power of the data.
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TABLE 3 | Comparision of the statistical metrics across the different experiments
performed. These have been calculated for the z scale.

Metric SL with O1 SL with O2 Without MICE

r 0.73 0.73 0.74
RMSE (Δz) 0.466 0.467 0.467
Bias (Δz) 0.091 5 0.093 1 0.095
σNMAD (Δz) 0.318 0.308 0.321
σ (Δz) 0.458 0.458 0.458
Bias (Δznorm) 5.9, ×, 10–4 6.9, ×, 10–4 9.6 × 10–4

σNMAD (Δznorm) 0.195 0.193 0.195
σ (Δznorm) 0.209 0.210 0.208

TABLE 2 | Comparision of the statistical metrics across the different experiments
performed. These have been calculated for the 1/(z + 1) scale.

Metric SL with O1 SL with O2 Without MICE

r 0.758 0.757 0.781
RMSE 0.123 0.124 0.119
Bias −8.2 × 10–5 7.1 × 10–5 4 × 10–4

σNMAD 0.118 0.116 0.113
σ 0.209 0.210 0.119
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Identification of Flux Rope Orientation
via Neural Networks
Thomas Narock1*, Ayris Narock2,3, Luiz F. G. Dos Santos4 and Teresa Nieves-Chinchilla2

1Center for Data, Mathematical, and Computational Sciences, Goucher College, Baltimore, MD, United States, 2NASA Goddard
Space Flight Center, Greenbelt, MD, United States, 3ADNET Systems Inc., Bethesda, MD, United States, 4CIRES, University of
Colorado, Boulder, CO, United States

Geomagnetic disturbance forecasting is based on the identification of solar wind
structures and accurate determination of their magnetic field orientation. For
nowcasting activities, this is currently a tedious and manual process. Focusing on the
main driver of geomagnetic disturbances, the twisted internal magnetic field of
interplanetary coronal mass ejections (ICMEs), we explore a convolutional neural
network’s (CNN) ability to predict the embedded magnetic flux rope’s orientation once
it has been identified from in situ solar wind observations. Our work uses CNNs trained with
magnetic field vectors from analytical flux rope data. The simulated flux ropes span many
possible spacecraft trajectories and flux rope orientations. We train CNNs first with full
duration flux ropes and then again with partial duration flux ropes. The former provides us
with a baseline of how well CNNs can predict flux rope orientation while the latter provides
insights into real-time forecasting by exploring how accuracy is affected by percentage of
flux rope observed. The process of casting the physics problem as a machine learning
problem is discussed as well as the impacts of different factors on prediction accuracy
such as flux rope fluctuations and different neural network topologies. Finally, results from
evaluating the trained network against observed ICMEs from Wind during 1995–2015 are
presented.

Keywords: flux rope, neural network, machine learning, space weather, magnetic field

1 INTRODUCTION

Coronal mass ejections (CMEs) are one of many manifestations of our dynamic Sun. CMEs are
responsible for the transport of large quantities of solar mass into the interplanetary medium at very
high speeds and in various directions. CMEs are commonly referred to as interplanetary coronal
mass ejections (ICMEs) after leaving the solar atmosphere and reaching the interplanetary medium.
ICMEs are the main drivers of geomagnetic activity at Earth as well as at other planets and spacecraft
throughout the heliosphere (Baker and Lanzerotti, 2008; Kilpua et al., 2017a). In situ observations of
ICMEs frequently find them to have a combination of an increase in magnetic field strength, low
proton plasma temperature, βplasma below 1, and monotonic rotation of the magnetic field
components (Burlaga, 1988). These characteristics are commonly referred to as a Magnetic
Cloud (MC) (Burlaga et al., 1981; Klein and Burlaga, 1982). CME eruption theories (Vourlidas,
2014) suggest that a twisting internal magnetic signature—referred to as a flux rope—is always
present. While commonly observed, not all ICMEs show the signatures of an internal structure
characterized by a flux rope, perhaps resulting from changes during interplanetary evolution (Jian
et al., 2006; Manchester et al., 2017). Yet, flux ropes are sufficiently prevalent that they can aid in
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space weather forecasting. The observed magnetic field profile
depends on a flux rope’s orientation and where the spacecraft
traverses the structure. The latitudinal and longitudinal
deflections of CMEs happen in the lower corona and are not
expected to change greatly throughout the interplanetary
medium. If flux rope orientation and the spacecraft’s crossing
trajectory can be determined early enough, this can lead to
advanced forecasting as the remaining portion of the flux
rope’s magnetic field structure can be inferred from physics-
based models. The flux rope’s internal magnetic field structure is
prone to couple with Earth’s upper magnetosphere triggering
magnetic reconnection processes and allowing the injection of
solar magnetic energy into the magnetospheric system.
Orientation determines the magnetic field profile observed at
Earth and, thus, the geo-effectiveness of the flux rope making
early determination of a flux rope’s orientation a vital requisite for
space weather forecasting. Amajor challenge to developing such a
forecasting system is that information about the internal
magnetic structure of ICMEs is often limited to 1D
observations of a single spacecraft crossing the structure. This
leaves a considerable amount of uncertainty about the three-
dimensional structure of the ICME.

Various physics-based flux rope models exist [for example,
Lepping et al. (1990) and Nieves-Chinchilla et al. (2019)] that can
be used to reconstruct the internal ICME magnetic configuration
and provide information on orientation, geometry, and other
magnetic parameters such as the central magnetic field. Recent in
situ observations (Kilpua et al., 2017b; Nieves-Chinchilla et al.,
2018; Nieves-Chinchilla et al., 2019; Rodríguez-García et al.,
2021), and references therein] are continuing to complement
earlier studies (Gosling et al., 1973; Burlaga et al., 1981; Klein and
Burlaga, 1982) and enhance our understanding of ICMEs, MCs,
and flux ropes. Meanwhile, an increase of space- and ground-
based data availability has led to more interest in applications of
machine learning within the space weather community [see
(Camporeale, 2019), and references therein]. Nguyen et al.
(2018) have explored machine learning techniques for
automated identification of ICMEs and dos Santos et al.
(2020) used a deep neural network to create a binary classifier
for flux ropes in the solar wind, determining whether a flux rope
was or was not present in a given interval. Recently, Reiss et al.
(2021) use machine learning to predict the minimum Bz value as
a magnetic cloud was sweeping past a spacecraft.

We aim to assess a neural network’s ability to predict a flux
rope’s orientation after an ICME is identified. This work is an
attempt to understand if a neural network can predict a flux
rope’s orientation having only seen a portion of the event. If the
full magnetic field profile of the flux rope can reliably be
reconstructed when the spacecraft is only partially through the
flux rope this can provide advanced warning of impending
geomagnetic disturbance. Yet, as machine learning is relatively
new to space weather, the accuracy of these forecasts, and more
generally, which neural network topologies to utilize, are unclear.
We begin with a set of exploratory experiments to quantify the
capabilities of neural networks in this regard. The results of these
experiments then serve as a baseline to begin exploring
forecasting.

Here, we extend the binary classifier work of dos Santos
et al. (2020) and explore a neural network’s ability to predict
the orientation, impact parameter, and chirality of an
already identified flux rope. We extend the capabilities
presented in Reiss et al. (2021) by reconstructing the
entire three dimensional magnetic field profile. The neural
network is trained using simulated magnetic field
measurements over a range of spacecraft trajectories and
flux rope orientations. Moreover, we report on the prediction
accuracy of the neural network as a function of percentage of
flux rope observed. To connect this proof of concept to its
potential for real-world use, we also present results from
evaluating the neural network on flux ropes observed by the
Wind spacecraft. In performing these experiments, we
highlight the multiple ways in which this space weather
forecasting problem can be cast as a machine learning
application and the implications those choices have on
prediction accuracy.

In Section 2we present ourmethodology.We describe the flux
rope analytical model and the generation of our synthetic data set.
Section 2 also details our neural network designs and training
process. Section 3 presents our results first from the full duration
synthetic flux ropes, then from partial duration flux ropes, and
ultimately from application to flux ropes observed from theWind
spacecraft. We present a discussion of these results in section 4
along with concluding remarks.

2 METHODOLOGY

The task of predicting a flux rope’s key defining parameters from
magnetic field measurements can be cast as a supervised machine
learning problem. This is an approach in which the goal is to learn
a function that maps an input to an output based on numerous
input-output pairs. There are currently not enough in situ
observed flux ropes (inputs) with known key parameters
(outputs) to train a neural network. Instead, we choose to use
a physics-based flux rope model to produce a synthetic training
dataset.

2.1 Synthetic Data
The circular-cylindrical flux rope model of Nieves-Chinchilla
et al. (2016) (N-C model) is used to simulate the magnetic field
signature of flux ropes at numerous orientations and spacecraft
trajectories. The N-C model takes as input the following
parameters:

H, Chirality of the flux rope; right-handedness is designated
with 1, left-handedness with -1
Y0, Impact parameter; The perpendicular distance from the
center of the flux rope to the crossing of the spacecraft
expressed as a percentage of the flux rope’s radius
ϕ, Longitude orientation angle of the flux rope
θ, Latitude orientation angle of the flux rope
R, Radius of flux rope
Vsw, Bulk velocity of the solar wind
C10, A measure of the force free structure. A value of 1
indicates a force free flux rope
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The output of the N-C model is the magnetic field profile (Bx,
By, Bz components) that would be observed for spacecraft
traversing a flux rope with the given input parameters. An
illustration of this is shown in Figure 1 where panel (i) shows
the N-C model output visualized as a time series and panel (ii)
depicts the same output as hodograms. All flux ropes were
simulated using a solar wind speed (Vsw) of 450 km/s, a radius
(R) of 0.07AU, and with poloidal normalization. The C10

parameter was held constant at 1, which imposes a force free
structure. The model was run for all combinations of longitude
(ϕ) ∈ [5°, 355°], latitude (θ) ∈ [ − 85°, 85°], and impact parameter
(Y0) ∈ [0%, 95%]. This is done in 5° and 5% increments and with
both chirality options, H ∈ { − 1, 1}. We exclude combinations
involving ϕ = 180° as the model is not always defined in this
instance. This results in 98,000 combinations.

The fixed bulk velocity of 450 km/s and fixed radius of 0.07AU
describe a “typical” flux rope observed at Earth based on fittings
in Nieves-Chinchilla et al. (2019). Magnetic field profiles of this
“typical” flux rope have been shown (dos Santos et al., 2020) to
scale with changes in speed and size. In other words, magnetic
field profiles are very similar when orientation is held constant
and speed and radius are varied. The only variation in the profiles

is duration, which is not a factor for us as all flux ropes are
interpolated to 50 points. This relationship allows us to only
simulate a subset of all possible speeds and sizes drastically
reducing the training data set size and minimizing training time.

The output from each of these 98, 000 combinations is then
used to generate 10 exemplars of this event in different percentages
of completion - from 10 to 100% in steps of 10%. For example, first
a 50-point trace through a flux rope defined by the parameter
combination is generated (100% completion, Figure 1(i)). The first
5 points are interpolated to 50 points to create the 10% completion
exemplar. Similarly the first 10 points are used to create the 20%
exemplar, the first 15 points for the 30% exemplar, etc. The final
dataset contains 980, 000 exemplars - amixture of full duration and
partially observed events. These simulated partial flux ropes are
useful to understand how much of the flux rope needs to be
observed before reliable autonomous predictions can bemade. The
ability to predict in the absence of the complete flux rope is very
desirable in the context of space weather forecasting.

2.2 Convolutional Neural Networks
Simply put, a convolution is the application of a filter to an input
that results in an activation. Repeatedly applying the same filter to

FIGURE 1 | A synthetic flux rope example generated using ϕ = 45, θ = 45, Y0 = 0, and H = + 1. (i) The total magnetic field and the magnetic field components. (ii)
Three hodograms of the magnetic field components. The dot represents the starting point of the simulated flux rope crossing. Flux rope classification with 2D CNNs
require three images, which can (iii) be combined for a single set of convolutions or (ii) have convolutions applied separately.
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an input–for example, by sliding a small dimensional filter across
an image - results in a map of activations called a feature map.
The feature map then indicates the locations and strength of a
detected feature in the input. Convolutions are the major building
blocks of convolutional neural networks (CNNs) (LeCun and
Bengio, 1995), which use a training dataset to learn a set of highly
specific filters from the input that lead to themost accurate output
predictions. The innovation of the CNN is in not having to
handcraft the filters, but rather automatically learning the optimal
set of filters during the training process.

The CNN is the basis of the neural network architectures
explored in this work. The training phase consists of showing the
network the input-output pairs of simulated flux rope magnetic field
vectors (input) and the corresponding key parameters used to create
this simulated data trace (output). The key parameters represented
in this training are ϕ, θ, Y0, andH. From repeated exposure to input-
output pairs the network learns the filters that lead to the most
optimal predictions. These neural networks require all inputs to be of
the same size, which does not pose a problem when working with
synthetic data. In situ observations from spacecraft, however, reveal a
diverse set of events ranging from a few hours to multiple days.
These need to be thoughtfully processed for use as input to the CNN.
One could average or interpolate in situ events to ensure all input
magnetic field time series are of the same length. Alternatively, dos
Santos et al. (2020) showed an innovative technique of representing
flux ropes as hodograms. Flux ropes of any duration can be cast as a
set of three consistently sized images (see Figure 1(ii)), which can
then serve as input to a CNN. This technique also leverages a wide
swath of existing literature in the computer vision field (particularly
in the area of handwritten digit classification) that can be helpful in
fine-tuning the CNN architecture. Over the next several sections, we
present a series of experiments evaluating multiple CNN
architectures. Specifically, we compare the predictions from
convolutions applied directly to magnetic field time series to
predictions made from convolutions applied to hodograms of
those magnetic field time series. We do so under two scenarios.
First, we develop a baseline for a CNN’s capability to predict flux
rope orientation by training the architectures with only the 98,000
exemplars of full duration flux ropes. We separately train another
copy of each of the three aforementioned architectures with the
complete set of 980,000 full and partial duration flux ropes to assess
CNN usage in a time-predictive capacity.

2.2.1 CNN Architectures
Representing flux ropes as hodograms was inspired by work in
handwritten digit classification (dos Santos et al., 2020). Yet, flux
ropes provide a more challenging version of this computer vision
problem. The input for handwritten digit classification is always a
single image; however, flux ropes require a set of three images
(hodograms) to capture the entirety of their magnetic field
configurations. An initial research question is then how to feed
three hodograms as input to a CNN. In the approach chosen for
our first architecture, we stack the images (Figure 1(iii)) and do a
single two-dimensional convolution across the resulting tensor. In
our second tested architecture, we apply two-dimensional
convolutions to each of the three hodograms separately
(Figure 1(ii)) and then concatenate the resulting feature maps.

The architecture schematic for the stacked approach is shown in
Figure 2(i). An input layer of dimension [100, 100, 3] passes through
two rounds of 2DConvolution with a 3 × 3 kernel size. The resulting
layer of dimension [100, 100, 64] undergoes a 2 × 2 Max Pooling to
transform to dimensions [50, 50, 64]. This layer is then Flattened and
Fully Connected to each of four output layers. This 2D CNN with
one input ends up with 979,398 trainable parameters.

The architecture for applying two-dimensional convolutions
to each of the three hodograms separately and then concatenating
the resulting feature maps is shown in Figure 2(ii). Each prong of
the initial part of this network involves the same transformations
as in the previously described network, with the exception that
each of the three input layers is of dimension [100, 100, 1].
Additionally, the Flattened layers at the end of these individual
pipelines are then concatenated before being Fully Connected to
the four output layers. This architecture has the advantage that
salient features in specific hodograms can become more apparent
in the feature maps. Yet, this comes at the cost of a more complex
neural network. With 2,936,454 trainable parameters, this CNN
has significantly more weights that need training.

Finally, we tested an architecture that did not rely on hodogram
images. Instead we apply 1D convolutions directly to magnetic field
time series. This approach is depicted in Figure 2(iii) and results in
the smallest CNNwith 216,518 trainable parameters. The input layer
of size [1, 50, 3] has a 1DConvolutionwith kernel size 5 applied twice,
resulting in a layer of dimension [1, 50, 64]. Max Pooling with a
kernel size 2 then creates a layer of dimension [1, 25, 64] before this is
flattened to a vector of size 1,600. This layer is then Fully Connected
to a layer of size 128 and then to each of the four output layers.

Hyperparameters for all of these architectures were found by
doing a simple grid search. Our focus was on comparison of
architectures and we acknowledge there may still be room for
hyperparameter optimization.

2.2.2 CNN Tuning and Training
Neural networks learn byminimizing a loss function, which typically
involves some measure of difference between current predictions
and expected outputs. Angles can challenge neural network
predictions in that loss functions, such as mean squared error
(MSE), completely miss the circular nature of angles. For
example, if a flux rope’s longitudinal value is 0°, then predictions
of 350° and 10° are both off by 10°. Yet, MSE will miss this relation
and penalizes the 350° prediction more than the 10° prediction. To
combat this, we predict (sin(;), cos (;)) with tanh activation to
enforce outputs to be in [ − 1, +1]. We then post-process the CNN’s
predictions with arctan to convert to degrees. This approach is
applied across all three CNN architectures when predicting ϕ and θ.

A challenge also arises in that predicting the real-valued
parameters ϕ, θ, and Y0 is a regression problem while
determining the binary parameter, H, is a classification problem.
We address this by training four separate loss functions in each
CNN. For ϕ and θ we predict the pair (sin(;), cos(;)) and train
using the MSE loss function. Impact parameter is also trained using
MSE while chirality is defined as a two class classification problem
and trained using binary cross entropy.

In our first experiment, the 98,000 full duration synthetic flux
ropes were randomly divided into 60% training, 20% validation,
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and 20% testing sets. This resulted in 58, 800 synthetic flux ropes
used for training, 19,600 used for validation, and 19, 600 used for
testing. The training set was used in a supervised learning fashion
with the Adam optimizer (Kingma et al., 2015) with the validation
set used during the training process to avoid overfitting. All
networks were set to train over 500 epochs, but the 2D CNNs
had early stopping from criteria on the validation set at around 35
to 50 epochs. The 1D CNN had a training time of 12min and both
the one input and three input 2D CNNs had training times
approaching 4–6 h.

The setup of the second experiment, in whichwe train over all full
and partial flux ropes, was similar. A 60/20/20 split was used, with
validation criteria used for early stopping and evaluation on the
testing set. Again, the 1D CNN trained over all 500 epochs while the

2D networks reached early stopping within 50 epochs. The 1DCNN
took just over 2 h to train, while the 2D CNNs completed in 6–10 h.
It should be noted that all percentages of a particular flux rope
configuration were included in an input batch. Also, an important
consideration in this scenario is that the networks will be seeing
multiple inputs that share the same output. All neural networks were
constructed, trained, and tested using Python 3.8.10, Keras 2.4.3
(Chollet, 2015), TensorFlow 2.3.1 (Abadi et al., 2015), Numpy 1.18.5
(Harris et al., 2020), and Scipy 1.7.1 (Virtanen et al., 2020).

2.3 Wind Spacecraft
The final segment of this work is to evaluate the trained CNNs on flux
ropes observed by the Wind spacecraft. This application of the CNNs
on non-synthetic data helps us understand the limitations of the flux

FIGURE 2 | CNN architecture schematics. (i) 2D CNN with one input which uses stacked hodograms; (ii) 2D CNN with three inputs, which performs individual
convolutions over each of the three hodograms, and (iii) CNN architecture for 1D convolutions over time series.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8384425

Narock et al. Flux-Rope Orientation via Neural Networks

37

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


rope analytical model and the transition to actual space weather
forecasting. Nieves-Chinchilla et al. (2018) carried out a
comprehensive study of the internal magnetic field configurations of
ICMEs observed by Wind at 1AU in the period 1995-2015. In this
analysis, the termmagnetic obstacle (MO) is adopted as amore general
term than magnetic cloud in describing the magnetic structure
embedded in an ICME. The authors used the Magnetic Field
Instrument (MFI) (Lepping et al., 1995) and Solar Wind
Experiment (SWE) (Ogilvie et al., 1995) to manually set the
boundaries of the MO through visual inspection. All MO events
were sorted into three broad categories based on the magnetic field
rotation pattern: events without evident rotation (E), those with single
magnetic field rotation (F), and those with more than one magnetic
field rotation (Cx). More recently, Nieves-Chinchilla et al. (2019)
presented an in-depth classification, which further classified the F
types events into F-, Fr, and F+ based on the angular span of the
magnetic field rotation. These events were then manually fit with the
Circular-Cylindrical N-C model by a human expert. Of the events
cataloged and fit, those that were classified as the Fr type tended to be
the ones that could best be fit with the N-C model. Because we
restricted out training set of synthetic data to flux rope cases with aY0>
0, we also restrict ourWind test event cases to this criteria. We use this
subset of 75 Wind Fr type events to evaluate our neural network
predictions on actual flux rope observations. We compare the human-

fit key parameters to the neural network predictions. While we have
high confidence in the human expert’s fit values, we acknowledge that
they are not definitive. Other experts may parameterize the event
slightly differently. Instead of using the human expert as ground-truth,
we are interested in seeing if a neural network, trained on the same
physical model that the human expert used, will arrive at similar flux
ropeorientations. The average correlation coefficient is used to compare
human and neural network fits to the Wind magnetic field profiles.

As noted earlier, the 1D CNN is configured to input vectors of
size 50 and trained on normalized synthetic data, requiring some
pre-processing for use with real-event data. We begin with the 1-
min resolution MFI data for each the 75 Wind events and apply a
5-point moving average smoothing followed by interpolation to
50 points evenly spaced in time.

3 RESULTS

3.1 Full Duration Synthetic Flux Ropes
Results of applying the neural networks trained on full duration
flux ropes to the testing set of full duration flux ropes are shown in
Figure 3. The ϕ, θ, and Y0 panels display histograms of the
difference between the neural network’s predictions and the true
values used to create the simulated instance for longitude,

FIGURE 3 | The parameter prediction error for the synthetic test set of full duration flux rope crossings. The first three columns show histograms of the differences
between predicted and modeled ϕ, θ, and Y0 values. The last column displays the number of correct and incorrect chirality predictions. The 1D CNN predicted all angles
within 10°, all Y0 within 10% and achieved 100% accuracy for H. While the 2D CNNs perform this well in most cases, they exhibit a much wider range in error.
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latitude, and impact parameter, respectively. The H panel shows
the number of correct and incorrect chirality predictions.
Subsequent figures use the same color scheme (2D CNN with
1 input in orange, 2D CNN with 3 inputs in green, and 1D CNN
in purple) for clarity. Table 1 lists the median values of these
difference distributions. The 2D CNNwith a single input channel
has the highest median difference across all three of the real-
valued key parameters, as well as the most skewness. The 1D
CNN shows the least skewness and the lowest median difference
values across the parameters. The 2D CNN with three inputs falls
in between, but with median difference and skewness more
similar to the other 2D network than the 1D. A similar trend
is seen in the H predictions, with the one input 2D network
having the most incorrect classifications and the 1D network
making no incorrect classifications. Taken together, it is evident
that the 1DCNN, which is applied to the time series directly, gives
more accurate predictions across all four output parameters.

While the 1D CNN gives the most accurate predictions, all
three architectures give reasonably useful predictions for the vast
majority of cases. The bulk of the prediction errors are less than
15° for ϕ and θ and under 10% for Y0 for both of the 2D CNNs.
Figure 4 illustrates the prediction errors as a function of Y0. The
2D CNNs using hodograms as input have the most significant ϕ
and θ prediction errors, which occur at large Y0. In contrast, the
1D CNNmore accurately predicts ϕ and θ over the entire range of
simulated Y0. Clearly, the architecture of the neural network plays
a role in prediction accuracy and leads to an important trade off.
The two-dimensional networks, by using hodogram input,
remove time from the training process. This makes little
difference with the synthetic training data but is an advantage
when working with data from time-varying, real ICME events, as
the data can be used with less manipulation in pre-processing.
Yet, this comes at the cost of less accurate predictions at large
spacecraft impact parameters (Y0). The trade off is that the
simpler and more accurate 1D network comes with the added
complexity of determining the most appropriate data
transformations to fit the measured time-series to the
prescribed input array dimensions of the network.

Our CNNs were each designed with four loss functions and
our analysis up to this point has looked at each predicted
parameter individually. We now turn our attention to
evaluating the predictions as a set. To do so, we use the
predicted ϕ, θ, Y0, and H to reconstruct the magnetic field

TABLE 1 | Median of the parameter differences shown in Figure 3.

Median difference

CNN 2D (1) 2D (3) 1D

ϕ(°) 3.65 2.67 0.54
θ(°) 1.86 1.31 0.37
Y0 (%) 2.13 1.93 0.34

FIGURE 4 | Latitude and longitude predictions vs. true values as a function of spacecraft impact parameter when evaluated on synthetic data test set. The 1D CNN
performs similarly well across the entire range of Y0 while the 2D CNNs show a larger discrepancy in parameter predictions at high impact parameters of Y0 > 80%.
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time series with the analytical model and correlate it with the
simulated magnetic field used as input for the CNN. For analysis,
we use the average correlation coefficient, r, defined as:

r � rx + ry + rz
3

(1)

where rx is the Pearson’s correlation between the simulated and
reconstructed bx components, ry is the Pearson’s correlation
between the simulated and reconstructed by components, and
rz is the Pearson’s correlation between the simulated and
reconstructed bz components.

Figure 5 shows the average correlation values for each of the
three CNN architectures. While the bulk of the simulated data
predicted by the 2D CNNs have high average correlation, over
0.75, there is a long tail of predictions with much lower
correlation. The single input 2D CNN even makes some
predictions that lead to negative correlations. As in the
individual key parameters, we see the 1D CNN applied to the
time series outperforming the 2D CNNs. In the case of the 1D
CNN, we find only one correlation value below 0.75. Further
analysis reveals that this event occurred at a simulated ϕ value of
175°. The 1D neural network predicted a ϕ value of 181°.
Although the neural network predictions were fairly accurate
(within 5°, 5%, and correct H), this small deviation in ϕ changed
the spacecraft’s trajectory through the flux rope leading to a
negative correlation in the bz component. Because the 2D CNNs
are impacted by their difficulties making predictions at large
spacecraft impact parameters, we see many of the poor average
correlation coefficients in the 2D CNNs at large spacecraft impact
parameters.

3.2 Partial Duration Synthetic Flux Ropes
In our second experiment, we retrained a second version of each
of the three neural networks, this time using the full set of 980,000
full and partial duration flux ropes. Like the difference
comparisons shown in Figure 3 and Table 1, Table 2
provides summary statistics of ϕ, θ, and Y0 prediction error as
a function of percentage of flux rope observed. All three models
make fairly accurate predictions even when seeing just 10% of the
flux rope and then continue to improve their prediction accuracy

up to a point. After this point, the key parameter accuracy gets
worse as higher percentages of the flux ropes are fed to the
networks. The level of observation giving the lowest median
errors for each CNN is highlighted in yellow, with the next
lowest medians highlighted in green. Additionally, all three
models were able to predict the correct H over 99% of the
time at all percentages of flux rope observed.

It is worth noting that all three networks perform worse at
100% duration when trained with partial duration flux ropes as
compared to these same networks trained only with full duration
flux ropes. The introduction of partial flux ropes into the training
produces more error (see Table 1 and Table 2). We suspect this is
due tomultiple inputs now producing the same output. It remains
for future research to conduct a more in depth analysis into how
to combat this.

As with the networks trained only with full duration flux
ropes, the 1D CNN gives better predictions across all parameters.
We see a familiar pattern emerge in the 2D CNNs; they have
difficulty predicting spacecraft impact parameter and more often
predict chirality incorrectly. This in turn leads to greater
inaccuracies in ϕ and θ predictions. Given that the 1D CNN
out performed the 2D CNNs in both training experiments, we
focus only on the 1D architecture when evaluating network
performance on actual spacecraft measurements.

3.3 Application to Wind Catalog Flux Ropes
To assess the transfer-ability of this technique to real-time use,
we applied the 1D CNN trained on full duration flux ropes to
the 75 selected Wind events described in Section 2.3 with the
data processed in two ways. The first approach, which we label
Full Resolution, is where we simply use the window smoothing
before interpolating the event down to 50 points. The second
approach, called Downsampled, first applies 15 min averaging
before smoothing and interpolation. The idea being that the
Downsampled approach would further reduce fluctuations
found inside Wind flux ropes. Comparing Full Resolution
and Downsampled would help us isolate the impacts of
fluctuations. The difference histograms in Figure 6 show
the result of comparing the fit parameters from Nieves-
Chinchilla et al. (2019) (N-C) with the neural network

FIGURE 5 | Correlation coefficient histograms on full duration, synthetic data test set for each neural network architecture. Each set of parameters {ϕ, θ, Y0, H}
model a spacecraft’s traversal of a flux rope. In these comparisons, the magnetic field tracemodeled by the predicted parameters is correlated with the trace modeled by
true parameters. Again, we see that all three architectures predict highly correlated results in the vast majority of cases but with the 2D CNNs exhibiting a significantly
wider distribution.
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predicted parameters. We note that our neural network was
trained with force free synthetic flux ropes (C10 parameter
equal to 1). The N-C fittings allowed for deviations from a
force free flux rope. This difference likely played a role in the
discrepancies between neural network predictions and the
human expert’s fits.

Most ϕ predictions were within 50° of the hand-fit value but
the maximum error was over 150°. The θ errors tend to be less
than 25° with a maximum around 80°. Most Y0 predictions are
within 30% of the comparison values with a maximum near 80%.
Across all these real-valued key parameters, the predictions made
from the Downsampled input display a less skewed error
distribution with a higher percentage of the predictions having
relatively small error. The network produced similar results
predicting chriality (H) when fed with Full Resolution and
Downsampled input.

We extend this comparison with analysis of average
correlation coefficient. We display correlation between the
interpolated Wind observations and the magnetic field
vectors generated using the N-C fit parameters as well as

the correlation between interpolated Wind observations and
magnetic field vectors generated from neural network
predictions. Figure 7 column 1 shows the distribution of
average correlation between the human-fit model and Wind
data. Column 2 is the distribution of average correlation
between the CNN fit and Wind data. Displayed in column
3 is the difference histogram showing the neural network
correlation minus the hand-fit correlation for each of the
Wind flux rope events. Positive values indicate the neural
network produced a statistically more reliable fit. Panel 7(i)
shows these distributions for all of the 75 events. Panel 7(ii)
shows the distributions when we consider only the events in
which the CNN predicted the same chirality as the human-fit.
We see good agreement in average correlation coefficients
when the predictions are used to reconstruct the magnetic
field time series. The shape of the distributions are similar to
those from the comparison with human expert fits and an
event by event comparison with human expert fits leads to a
difference histogram nearly centered at zero. When we look
at the Downsampled neural network predictions with

TABLE 2 | Median parameter differences by percentage of flux rope observed for the neural network architectures when trained using partial duration crossings. Cells
highlighted in yellow indicate the lowest error for each (CNN, parameter) pair and cells highlighted in green, the next two lowest errors. The overall performance of the 1D
CNN continues to be significantly better than the 2D CNNs. The 2D CNNs make their best predictions when seeing less of the flux rope crossing.

2D (1) 2D (3) 1D

% Observed ϕ θ Y0 ϕ θ Y0 ϕ θ Y0

10 7.67° 5.85° 7.33% 5.49° 3.92° 5.61% 2.10° 1.23° 1.28%
20 6.62° 4.89° 6.62% 4.94° 3.47° 5.15% 1.58° 1.02° 1.08%
30 6.25° 4.58° 6.20% 4.70° 3.28° 4.98% 1.37° 0.90° 0.94%
40 6.29° 4.38° 5.99% 4.60° 3.24° 4.96% 1.23° 0.84° 0.84%
50 5.96° 4.28° 5.87% 4.61° 3.24° 4.95% 1.14° 0.81° 0.79%
60 6.02° 4.22° 5.75% 4.70° 3.31° 4.96% 1.11° 0.80° 0.76%
70 6.17° 4.23° 5.79% 4.74° 3.33° 5.06% 1.04° 0.76° 0.72%

80 6.13° 4.36° 5.89% 4.83° 3.37° 5.10% 1.01° 0.75° 0.71%

90 6.38° 4.45° 6.13% 4.93° 3.41° 5.25% 1.04° 0.76° 0.75%

100 7.07° 4.81° 6.52% 5.17° 3.61° 5.51% 1.10° 0.79° 0.83%

FIGURE 6 | The 1D CNN parameter prediction error for the Wind event test set of full duration flux rope crossings. Two sets of predictions were generated: One
from processing 1 min Wind MFI measurements and the second from processing the Wind MFI measurements down-sampled to the 15 min averages. The human-fit
parameter values from the published ICME catalog were compared against neural network predictions. The overall error magnitude is greater than when tested on
synthetic input but shows the same trend. Predictions improve when the down-sampled input is used.
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chirality prediction matching the chirality of the human
expert (Figure 7(ii)) we see no negative correlations.

We next applied the network trained on full and partial
duration flux ropes to the aforementioned subset of 75 Wind
Fr events. A summary of the results are shown in Table 3 where
we list median differences between network predictions and
hand-fit values as a function of flux rope observed. Also
shown are the percentage of events where predicted chirality
and hand-fit chirality match. The median difference in longitude
ranges from 58° to 89°; in latitude from 31° to 50°; and in impact

parameter from 36 to 53%. The network predicted the chirality
correctly between 52 and 65% of the time.

3.4 Number of Wind Events to Train a
Network
Experimenting with synthetic and real flux ropes raised an
interesting question: How many real flux ropes are needed to
train a neural network and how many suitable flux ropes are
available for such a study? We can not answer this question

FIGURE 7 |Correlation distributions and comparisons for theWind event test set of full duration flux rope crossings. Column 1 shows the correlation score between
the human-fit parameters and theWind measurements. Column 2 shows the correlation between the 1D CNN prediction and theWindmeasurements. The third column
displays the difference between the human-fit correlations and the CNN prediction correlations. (i) Includes all 75 Wind test cases. (ii) Includes cases where the CNN Y0
prediction matched human expert’s chirality only. When the CNN predicts Y0 correctly, the correlation to Wind data is similar to that of the human-expert.
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conclusively. As discussed in a previous section, and elaborated
on below, neural networks trained on synthetic events do not
transfer perfectly to Wind. However, we can perform one
additional experiment to roughly gauge an answer.

We re-used the train-validation-test split of our synthetic flux
ropes mentioned in Section 2.2. We then set up a loop of nine
iterations. In each iteration, we randomly selected a diminishing
subset of the training data, trained a 1D CNN with that subset,
and then evaluated the trained model on the testing set of 19,600
synthetic flux ropes. The subsets were selected at random to
simulate what happens in practice where we cannot dictate the
orientation of flux ropes observed by a spacecraft. The testing
consisted of using the trained CNN to make orientation
predictions for each of the 19,600 test flux ropes, use those
orientation predictions to create the corresponding magnetic
field profiles, and correlate those magnetic field profiles with
the magnetic field profiles of the test flux rope. As an evaluation
metric, we computed the percentage of the test correlations
greater than or equal to 0.75. Within each iteration, the
subsetting-training-prediction-correlation workflow was
repeated three times to investigate how the random sub-
setting might impact the results.

Table 4 lists the results. Over ninety percent of testing events
have an average correlation coefficient above 0.75 as long as the
training set size is over 200 events. Put another way, a 1D CNN
trained with roughly 200 events produces average correlation
coefficients on par with the 2D 3-input CNN (middle panel of 5).
We do note, however, that our experiment is based on training
the network with a specific flux rope model and simulated
(synthetic) flux ropes. The specific flux rope model chosen will
play a role as more complex descriptions of flux ropes (i.e., taking
into account compression/expansion) will have more output
parameters, which in turn will impact accuracy. In addition,
these synthetic flux ropes do not take into account the turbulent
fluctuations found in real flux ropes - a further source of
prediction error. Nevertheless, it is interesting to note that we
may be tantalizingly close to a neural network trained on real
observations. There are 151 Wind events in Nieves-Chinchilla
et al. (2019) that could potentially be used in training. The
HELIO4CAST ICME catalog version 2.1 (Moestl et al., 2020)

has over 1,000 ICMEs identified from multiple spacecraft. It is
unknown how many of these ICMEs have associated flux ropes.
Once identified, assuming there are enough, those flux ropes will
need to be fit by human experts to provide labeled data for
supervised learning. Nevertheless, our experiment provides the
intriguing result that a few hundred more events may be all that is
needed. Existing ICME catalogs may hold enough events that a
concerted effort could lead to training set of real flux ropes in the
coming years.

4 DISCUSSION AND CONCLUSION

Our experiments have demonstrated that convolutional neural
networks are capable of providing extremely reliable
characterizations of flux ropes from synthetic data. A trained
network can use the structure of simulated magnetic field vectors
to learn filters that map to accurate flux rope key parameter
predictions; successfully inferring large scale, 3D information
from single-point measurements.

When trained only on examples of full duration flux ropes, all
three architectures predict key parameters of a flux rope which
correlate well with the input data; however the best performing is
the 1D network that feeds on time series data. Although the 2D
networks that use hodogram style input do not see the same,
perfect accuracy in predicting the chirality as the 1D network, the
difference is statistically minor. The biggest weakness in the
hodogram-input CNNs is when interpreting flux rope traces
generated with a high spacecraft impact parameter. It is
possible that similarities in hodogram shape profile between
low- and high-valued Y0 are activating similar filters in the 2D
networks and leading to poor predictions in these cases.

When we extend the synthetically trained networks to include
both partial and full duration traces through flux ropes, we still
find this approach highly accurate. The CNNs are capable of
making reliable predictions having only seen a fraction of the full
flux rope. Although the overall discrepancy between the true and
predicted values is higher than when done with only full duration
traces, all median differences are well within a tolerable limit. In

TABLE 3 |Wind event summary statistics as a function of percentage of flux rope
observed for the 1D network trained with both full and partial duration flux
ropes. Human-fit parameters are compared to neural network predictions and the
ϕ, θ, and Y0 columns are median differences between the two. TheH column is the
percentage of events where the chirality prediction matches hand-fit value.

% Observed ϕ θ Y0 (%) H (%)

10 89° 50° 36 63
20 66° 42° 39 52
30 69° 32° 53 60
40 64° 37° 39 60
50 70° 33° 37 60
60 69° 37° 51 60
70 73° 31° 44 64
80 73° 34° 53 65
90 73° 33° 47 56
100 58° 42° 44 60

TABLE 4 | Percentage of synthetic flux rope predictions with an average
correlation coefficient of 0.75 or greater as a function of training set size. The
1D CNN was used for training. Each training set size was repeated three time,
each time taking a different random sample. The percentages reported are the
average of the three repetitions. The SD column lists the standard deviation of
the three repetitions.

# Flux ropes in
training

% ≥ 0.75 SD

29,440 99 0.5
14,592 99 0.4
7,168 98 0.05
3,584 97 0.4
1,792 97 1.3
1,024 97 0.6
512 95 0.3
256 93 0.6
128 88 0.88
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these idealized, synthetic, circular-cylindrical flux ropes even
the poorest performing network is able to predict orientation
angles with a median error under 8° after only observing 10% of
a simulated spacecraft crossing. The 1D network here, at only
10% observed, is able to give predictions with lower median
difference than the 2D networks do when trained and tested
with only full flux ropes. All three models show a peak
performance at some point prior to seeing 100% of the flux
rope crossing, perhaps due to some similarity in shape between
low percentage of observation and high percentage. It is
interesting to note that the 2D networks hit their peak
predictive point earlier than the 1D CNN, 2D one input at
50–60% and 2D three input even earlier at 40–50%. This
suggests that research into where the convolutional network
is looking (for example, with the Grad-CAM method (Selvaraju
et al., 2017)) can help us further understand the benefits and
limitations of hodograms and time series as inputs. Future
research will examine where the network is focusing its
attention and if this can be exploited for more accurate
predictions earlier in the forecasting process.

With the success of the 1D CNN in real-time forecasting
from idealized synthetic data, we evaluated this trained 1D
network on partial Wind event data. Overall, the neural
network struggles to reproduce the accuracy achieved on
the synthetic data set. Unlike the synthetic case, we see no
trend towards a peak performance point dependent on the
amount of flux rope observed. When looked at on a case-by-
case basis, there are a few specific events in which the neural
network is able to make accurate predictions after only seeing a
fraction of the flux rope. In general, however, the median
difference in angle and impact parameter prediction falls well
outside any tolerance levels for useful prediction and the
chirality is only correct approximately 60% of the time.
Clearly, the partial-trained CNN cannot be transferred as-is

to real-time application, but insight can be found by examining
the results of the full duration network evaluated with Wind
events.

Applying the 1D CNN trained only on full duration synthetic
flux ropes to in situ Wind events, we again see the individual
parameter predictions show significant deviation from hand fit
values. However, we note lower median differences and higher H
accuracy than when the network trained on both full and partial
events was applied to Wind. Using down-sampled input
improves this even further. Yet, by looking at the average
correlation scores we see that the flux rope analytical model is
robust to small deviations - small changes in longitude in
particular do not lead to significant differences in
reconstructed time series. We also find the neural network
robust to variation in solar wind speed, expansion/
compression, duration, and to some degree, magnetic field
fluctuations. The neural networks were trained on synthetic
data that was all generated with a simulated solar wind
velocity of 450 km/s and simulated flux rope radius of 0.07
AU; yet, are able to offer reasonable predictions for Wind Fr
events having significant differences in solar wind speed,
expansion/compression, duration, and magnetic field
fluctuations.

The neural network gives reliable predictions in a number of
events and exhibits a distribution of average correlations that is
qualitatively similar to those from the human expert. As evident
in the right-most column of Figure 7, the neural network results
in better average correlation in nearly half of the 75 events. When
we consider only cases in which the network prediction for H
matches the human-fit H the correlation to Wind data is even
greater.

Analysis reveals two primary reasons the neural network
performs less accurately on Wind events; incorrect physical
model (Wind flux ropes not fitting the circular cylindrical

FIGURE 8 | Wind MFI measurements for September 18–19, 2004 overlaid with simulated spacecraft flux rope crossings. The left panel shows the crossing
described by the human-fit parameters. The right panel shows the crossings described by the CNN predictions when it is given both the Full and Downsampled input.
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assumptions) and internal physical processes (such as
fluctuations and discontinuities) that alter the expected
magnetic field profile of a smooth flux rope. An example of a
flux rope with magnetic field fluctuations and a discontinuity is
shown in the event with MO beginning on 18 September 2004 in
Figure 8. Down-sampling the Wind magnetic field data from 1-
min to 15-min prior to interpolating to 50 points reduces the
difference between neural network predictions and hand-fit
values. The down-sampling further smooths out the magnetic
field time series removing small-scale fluctuations. However,
down-sampling cannot account for all observed internal
physical processes that lead to a deviation from the expected
smooth flux rope profile. The September 2004 event illustrates
how differences in data processing can have a strong effect on the
resulting prediction. In this particular example, the predictions
made from the Wind data without prior averaging match the
hand fit predictions well, while those from the down-sampled
input clearly lost important information. The choice of 15-min
averaging was arbitrary and is presented here to highlight how
data pre-processing can have both positive and negative impacts
on prediction accuracy. It remains for future research to
systematically address fluctuations and determine an optimal
input resolution.

Of the total 151 Wind Fr events in Nieves-Chinchilla et al.
(2019), only 41% were classified as a flux rope by the neural
network developed in dos Santos et al. (2020) when trained with
no fluctuations. This same network classified 84 and 76% as flux
ropes when trained with synthetic data augmented with 5 and
10% Gaussian fluctuations, respectively. In other words, some of
the Wind events on which we do poorly finding good
parametrization, would not have been considered a flux rope
by the first step of an automated fitting workflow. At present,
magnetic field fluctuations are not fully accounted for in flux rope
analytical models and pre-processing of neural network input
data does not fully address the discrepancy between synthetic and
spacecraft observed flux ropes. Accurately accounting for
fluctuations in measured data appears to be a significant factor
for improving an automated space weather forecasting pipeline.
Early experimentation with 5% Gaussian fluctuations in our
study did not lead to significant improvement. Solar wind and
flux rope turbulence is known to be non-Gaussian. Yet, at present,
a complete understanding of turbulence leads analytical models
lacking in this regard. We choose to not introduce non-realistic
fluctuations and instead will explore physics-based turbulence
enhancements to the analytical model in future research.

The ultimate source of prediction error in any CNN is in the
inputs not matching any of the learned filters. In the case of Wind
events, we notice that the neural network trained with only full
duration flux ropes incorrectly predicts chirality in nearly 20% of
Wind events. This leads to poor correlation coefficients as the
reconstructed time series do not match the Wind observations.
Yet, across all implementations of the CNNs with synthetic data
the CNNs overwhelmingly identify the correct chirality. This
indicates that the convolutional filters the network learned to
predict chirality do not transfer to Wind events; that the filters

learned to focus on a quality in the synthetic data that is not
shared in the real observations. Interestingly, down-sampling has
no effect on chirality predictions. We believe this source of error
is related to the physical model chosen to simulate the flux ropes.
Wind flux ropes show deviations from the circular cylindrical
assumption. This opens the door to tantalizing future evaluations
of physics-based flux rope models using an ensemble of neural
networks, each trained with a different physical model.

Partial duration predictions and real-time forecasting are
not really feasible at this time due in large part to features in
the real data that are not present in the training set, though
the concept of using CNNs to infer 3D geometric parameters
from an in situ measurement have been borne out.
Additionally, the neural networks have helped highlight
the limitations of the physics-based model and even
suggested better fittings of some Wind flux ropes. Future
work will include implementing a single, physics-based loss
function into the CNN to replace the four separate loss
functions in the current design as well as enhancing
analytical flux rope models to produce training data that
includes more realistic turbulence and asymmetry.
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Solar coronal seismology is based on the remote diagnostics of physical conditions in the
corona of the Sun by comparison between model predictions and observations of
magnetohydrodynamic wave activity. Our lack of direct access to the physical systems
of interest makes information incomplete and uncertain so our conclusions are at best
probabilities. Bayesian inference is increasingly being employed in the area, following a
general trend in the space sciences. In this paper, we first justify the use of a Bayesian
probabilistic approach to seismology diagnostics of solar coronal plasmas. Then, we
report on recent results that demonstrate its feasibility and advantage in applications to
coronal loops, prominences and extended regions of the corona.

Keywords: Sun: corona, Sun: magnetic fields, magnetohydrodynamics (MHD), waves, solar coronal seismology,
bayesian statistics

1 INTRODUCTION

The aim of this paper is to give a rationale for the use of Bayesian methods in the study of the solar
corona and to show recent applications in the area of solar coronal seismology. Coronal seismology
aims to infer difficult to measure physical parameters in magnetic and plasma structures, such as
coronal loops and prominence plasmas, by a combination of observations of wave activity and
theoretical models, usually under the MHD approximation (Uchida, 1970; Roberts et al., 1984).
Because of our lack of direct access to the physical systems of interest information is incomplete and
uncertain. As a consequence, solar atmospheric seismology deals with inversion problems that are
probabilistic in nature and our conclusions can only be probabilities at best. A prototypical example
is the determination of the magnetic field strength in coronal loops from the observational
measurement of the kink speed of transverse oscillations (Nakariakov and Ofman, 2001). Only
after assumptions about the loop plasma density and the density contrast one can derive the magnetic
field. Since the values of the density and density contrast have probabilistic distributions, the derived
magnetic field has a probabilistic distribution.

Bayesian analysis is increasingly being used in astrophysics. Figure 1 shows the number of
Bayesian astrophysics papers as a function of year. The first studies (already 50 years ago) dealt with
both technical problems, such as the construction of image restoration algorithms (Richardson,
1972), as well as with procedures for formalising the evaluation of astrophysical hypotheses by
comparison between theoretical predictions and observational data (Sturrock, 1973). It took two
more decades for the Bayesian approach to be adopted in solar physics. Initial solar applications were
focused on statistical analyses of solar neutrino data (Gates et al., 1995), followed by studies on solar
flare prediction (Wheatland, 2004), the analysis of solar global oscillations (Marsh et al., 2008), and
the inversion of magnetic and thermodynamic properties of the solar atmosphere from the analysis
of spectro-polarimetric data (Asensio Ramos et al., 2007). The first study that made use of Bayesian
analysis in coronal seismology was by Arregui and Asensio Ramos (2011), who inferred coronal loop
physical parameters from observed periods and damping times of their transverse oscillations. In the
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last decade, about 25 studies in coronal seismology have made use
of Bayesian techniques. They deal with parameter inference,
model comparison, and model averaging applications to gain
information on the magnetic field and the plasma conditions in
structures in the solar corona and in solar prominences. Here, we
discuss some recent developments in the area.

The layout of the article is the following. Section 2 describes
the basic principles and the tools used to perform parameter
inference and model comparison in the Bayesian framework. In
Section 3, first, results on the inference of physical parameters in
coronal loops and prominence plasmas are described. Then,
examples are shown on the application of model comparison
to the assessment of the damping mechanism(s) of coronal waves.
A summary is presented in Section 4.

2 BASIC PRINCIPLES OF BAYESIAN
INFERENCE AND MODEL COMPARISON

Bayesian analysis considers any inversion problem, in terms of
probabilistic inference, as the task of estimating the degree of
belief on statements about parameter values or model evidence,
conditional on observed data. It uses Bayes’ rule (Bayes and Price,
1763),

p θ|d,M( ) � p d|θ,M( )p θ|M( )
∫p d|θ,M( )p θ|M( )dθ, (1)

which says that our state of knowledge about a set of parameters θ
of a given model M, conditional on the observed data d, is a
combination of what we know independently of the data, the
prior p(θ|M), and the likelihood of obtaining a given data
realisation as a function of the parameter vector, the

likelihood function p(d|θ, M). Their combination gives the
posterior distribution, p(θ|d, M), that encloses all the
information about the set of parameters conditional on the
observed data and the assumed model. The prior and the
likelihood function need to be directly assigned in order to
compute the posterior. Bayes’ rule offers a tool to perform
rational inference based on the combination of conditional
probability distributions. The tool can be applied at three
different levels.

In parameter inference the global posterior is computed for the
full set of N parameters, θ = {θ1, . . ., θi, . . ., θN}, and is then
marginalised to obtain information about the one of interest. This
is achieved by integration of the full posterior with respect to the
remaining parameters,

p θi|d( ) � ∫p θ|d( )dθ1 . . . , dθi−1dθi+1 . . . , dθN. (2)

This is the so-called marginal posterior for model parameter
θi, which contains all the information available in the priors and
the data. The uncertainty of the rest of parameters to the one of
interest is correctly propagated by this procedure. To summarise
the result one can then provide the mean, the mode, the median,
etc. It is common to provide the maximum a posteriori estimate
of the inferred parameter, θMAP

i , the value of θi that makes the
posterior the largest together with credible regions containing a
particular fraction of the mass of the distribution. A simple way of
computing such credible region is to sort the probability values
p(θi|d) in descending order. Then, starting with the largest one,
add successively smaller values of p(θi|d) until the next value
would exceed the desired value of e.g., 68%. At each step, one
needs to keep track of the corresponding θi values. The credible
region is then the range in parameter space that includes all the θi
values corresponding to the p(θi|d) values that were added. The
boundaries of the credible region give the lower and upper errors.
They are the smallest and largest values of θi obtained by this
procedure. The process of marginalisation can also be applied to
the so-called nuisance parameters, those that must be
incorporated in the modelling but are not of immediate interest.

The denominator in Eq. 1 is the so-called marginal likelihood
or evidence,

p d|M( ) � ∫
θ
p θ, d|M( ) dθ � ∫

θ
p d|θ,M( )p θ|M( ) dθ, (3)

an integral of the joint distribution of parameters and data over
the full parameter space that normalises the likelihood function to
turn the result into a probability. It plays a crucial role in model
comparison because it is a measure of relational evidence. The
measure of evidence is relational because it examines a relation
between the predictions by modelM and the observed data d. The
marginal likelihood quantifies the evidence for a model in relation
to the data that it predicts. The general aim of model comparison
is to assess the relative evidence between alternative models in
explaining the same data. Given two models, M1 and M2, this is
achieved with the calculation of the posterior ratio p(M1|d)/p(M2|
d). If the twomodels are equally probable a priori, p(M1) = p(M2),
and the posterior ratio is equal to the ratio of marginal likelihoods
of the two models

FIGURE 1 | Bar plots representing the yearly number of referred articles
employing Bayesian analysis techniques in the field of astrophysics, the
branch of solar physics, and the research area of coronal seismology. At the
time of writing (November 2021), the total number of articles amounts to
4678 in astrophysics, 114 in solar physics, and 25 in coronal seismology.
Source: NASA Astrophysics Data System (ADS), digital library operated by the
Smithsonian Astrophysical Observatory (SAO).
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B12 � 2 log
p M1|d( )
p M2|d( ) � 2 log

p d|M1( )
p d|M2( ) � −B21, (4)

where the logarithmic scale is used to translate Bayes factors into
levels of evidence. The Bayes factors B12 and B21 defined in Eq. 4
measure relative evidence. They quantify the relative plausibility
of each of the two models to explain the same data. To evaluate
the levels of evidence an empirical table, such as the one by Kass
and Raftery (1995), is employed. For values of B12 from 0 to 2, the
evidence in favour of model M1 in front of model M2 is
inconclusive; for values from 2 to 6, positive; for values from 6
to 10, strong; and for values above 10, very strong. A similar
tabulation applies to B21.

After a model comparison procedure has been performed, it
may be the case that the evidence in favour of any of the models
under consideration is not large enough to deem positive
evidence. A convenient solution is then to consider the third
level of Bayesian inference, model averaging. This is a procedure
that combines the posteriors inferred with eachmodel to calculate
a model-averaged posterior,

p θi|d( ) � ∑
k

p θi|d,Mk( )p Mk|d( ), (5)

weighted with the evidence for each model. In this manner,
parameter constraints that account for the uncertainty about
the models are obtained. Such a calculation makes use of all the
available information in the data and models in a fully consistent
manner. The resulting marginal posteriors are the best inference
one can obtain with the available information.

3 RECENT APPLICATIONS TO THE SOLAR
CORONA

After the first application of Bayesian methods to coronal
seismology by Arregui and Asensio Ramos (2011), most of the
initial studies made use of simple forward models for the
prediction of oscillation properties of magnetic structures,
such as periods and damping times, and integration over a
grid of points in low-dimensional parameter and data spaces
(see e.g., Arregui et al., 2013a,b; Asensio Ramos and Arregui,
2013; Arregui and Asensio Ramos, 2014; Arregui and Soler, 2015;
Arregui et al., 2015; Arregui and Goossens, 2019). Other studies
considered the analysis of the time series of displacement
amplitude of oscillations to infer equilibrium properties of
coronal loops (see e.g., Pascoe et al., 2017a,b; Pascoe et al.,
2018; Goddard et al., 2018). A review summarising those
initial applications can be found in Arregui (2018). Additional
developments were possible by the creation and application of
data analysis tools based onMarkov ChainMonte Carlo sampling
of posterior distributions (see e.g., Goddard et al., 2017; Pascoe
et al., 2017c, 2019; Duckenfield et al., 2019; Pascoe et al., 2020b,a).
Details about these methods and their use as diagnostic tools for
coronal seismology can be found in Anfinogentov et al. (2021b,a).
In the following, we discuss some recent results, focusing on the
inference of physical parameters in coronal loops and
prominence plasmas and on the damping of transverse

oscillations in coronal loops and extended regions of the solar
corona.

3.1 Inferring the Magnetic Field Strength
and Plasma Density in Coronal Loops
The first modern application of coronal seismology was presented
by Nakariakov and Ofman (2001). By interpreting the transverse
coronal loop oscillations observed with the Transition Region and
Coronal Explorer (TRACE) as the fundamental kink mode of a
magnetic flux tube in the long wavelength limit, they showed how
the combination of observed period (P) and loop length (L) can
enable to constrain the magnetic field strength. The procedure
starts with the assumption of a simple expression, model M1, for
the phase speed of the kinkmode as a function of the Alfvén speed
in the interior of the loop, vAi � B0/

����
μ0ρi

√
, and the density

contrast, ζ = ρi/ρe,

vph � vAi
2ζ

1 + ζ
( )

1/2

, (6)

with μ0 the magnetic permeability and ρi, e the internal and
external densities. This expression is valid assuming coronal
loops can be modelled as one-dimensional density
enhancements in cylindrical coordinates with the magnetic
field pointing along the axis of the tube and under the long
wavelength approximation. Adopting a given value for the
density contrast, ζ, the observationally estimated phase speed
(vph ~ 2L/P) enables to obtain the Alfvén speed vAi. By further
assuming values of loop density on a given range, a range of
magnetic field strength values is obtained.

In their Bayesian analysis, Arregui et al. (2019) showed that the
problem can be formulated in terms of the inference of a three-
dimensional posterior from one observable with the use of Bayes’
rule as the product of likelihood and prior,

p ρi, ζ , B0{ }|vph,M1( } ~ p vph| ρi, ζ , B0{ },M1( )p ρi, ζ , B0{ }|M1( ).

Considering a particular observed event, a Gaussian likelihood
function and uniform prior distributions for the three unknown
parameters, θ = {ρi, ζ, B0}, over plausible ranges leads to the
marginal posterior distribution for the magnetic field strength
shown in Figure 2A. The result shows that not all values in the
range found by Nakariakov and Ofman (2001) are equally
probable. A well constrained marginal posterior is obtained
which specifies the particular plausibility for each value of the
magnetic field strength in the range. From this, estimates with
asymmetric error bars can be obtained. Regarding the other two
parameters, the density contrast and the loop density, their
distribution does not permit to obtain constrained information
on their most probable values. The marginal posterior for the
magnetic field strength incorporates the uncertainty on these two
parameters and can still be properly inferred, even if the values of
plasma density inside and outside the coronal loops are highly
uncertain.

One advantage of the Bayesian approach is that it offers a self-
consistent way to update the posteriors when additional
information is available. Spectroscopic measurements enable

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8269473

Arregui Bayesian Applications to the Solar Corona

49

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


us to obtain information about physical properties of the coronal
plasma, such as the density. Consider we have some estimate for
the density inside the oscillating loop. This additional
information can be added to the inference in the form of a
Gaussian prior for the density, centred in the measured value.
Figure 2B shows the joint posterior for plasma density and
magnetic field strength for such an inference, with grey-
shaded areas indicating the 68% and 95% credible regions,
respectively. This example shows that the inclusion of
additional information enables us to better constrain our
estimates for the magnetic field strength and plasma density.

Observations show that transverse coronal loop oscillations
are quickly damped, with characteristic damping times of a few
oscillatory periods. Arregui et al. (2019) evaluated the influence of
this observable on the inference of the magnetic field strength.
The simplest available and more commonly accepted model is
damping by resonant absorption due to the inhomogeneity of the
plasma in the cross-field direction (Goossens et al., 2002;
Ruderman and Roberts, 2002). Under the thin tube and thin
boundary approximations, with a non-uniform layer of width l
much shorter than the tube radius R (l≪ R), the damping time is
given by

τd ρi, ζ , B0, l/R( ) � 2
π

ζ + 1
ζ − 1

( )
1
l/R

( )
2L
vph

( ). (7)

The forward predictions of this newmodelM2, given by Eqs 6,
7, are coupled, hence some degree of influence is expected in the
inference of the magnetic field, due to the consideration of wave
damping. Now the problem can be formulated in terms of the
inference of a four-dimensional posterior from three observables
with the use of Bayes’ rule as the product of likelihood and prior,

p ρi, ζ , B0, l/R{ }| vph, τd, L{ },M2( ) ~

p vph, τd, L{ }| ρi, ζ , B0, l/R{ },M2( )p ρi, ζ , B0, l/R{ }|M2( ).

Considering the same observed event as before, a Gaussian
likelihood function and uniform prior distributions for the four
unknown parameters, θ = {ρi, ζ, B0.L}, over plausible ranges leads

to the results displayed in Figure 3. The resulting marginal
posteriors for the magnetic field strength for different
damping times show little differences. The advantage of
including the damping into the inference is that it enables to
infer information on the transverse inhomogeneity length scale of
the density at the boundary of the waveguide. This parameter is
relevant in the context of wave dissipation processes (Arregui,
2015).

3.2 Inferring the Magnetic Field Strength
and Thread Length in Prominences
Bayesian methods are also being applied in prominence
seismology. Estimates of periods and phase speeds of
propagating waves were obtained by Lin et al. (2009) for a
number of threads in a prominence. A fundamental difference
in the solution to the inverse problem, in comparison to the case
with coronal loops, is that the internal prominence density is two
orders of magnitude larger than the external coronal density. This
makes the kink speed independent of the density contrast and
simplifies Eq. 6 to the approximate expression vph ~

�
2

√
vAi. By

using this fact, Lin et al. (2009) were able to provide estimates for
the magnetic field strength in the threads, upon assuming a given
value for their plasma density.

Figure 4A gives ranges of variation for the magnetic field
strength in 10 selected threads as a function of the prominence
density computed by Montes-Solís and Arregui (2019) from data
in Table 1 of Lin et al. (2009). From the Bayesian perspective, as in
the case of coronal loops, all those values within the obtained
ranges are not equally probable. The Bayesian solutions
computed by Montes-Solís and Arregui (2019) in the form of
marginal posteriors for each of the 10 threads are shown in
Figure 4B. For each thread, the magnetic field strength can be
properly inferred (see Table 2 in Montes-Solís and Arregui 2019).
The distributions spread over a range of values from 1 to 20 G and
seem to point to a highly inhomogeneous nature of the studied
prominence area. Montes-Solís and Arregui (2019) continue their
analysis with the computation of the joint two-dimensional

FIGURE 2 | (A) Posterior probability distribution for the magnetic field strength for a loop oscillation event with observed phase speed vph = 1,030 ± 410 km s−1

under modelM1, given by Eq. 6. The inferred median value for the magnetic field strength is B0 � 21+12−9 G, with uncertainties given at the 68% credible interval. (B) Joint
two-dimensional posterior distribution for the internal density of the waveguide and the magnetic field strength obtained for the inference with a Gaussian prior for the
internal density centred at μρi � 1.9 × 10−12 kg m−3 and with σρ i

� 0.5μρmathrm i
. The inference with the more informative prior on density leads to B0 � 13+7−6 G and

ρi � (2.2+0.9−0.9) × 10−12 kg m−3. The outer boundaries of the light grey and dark grey shaded regions indicate the 95% and 68% credible regions, respectively. From
Arregui et al. (2019).
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posterior for magnetic field strength and prominence density
which, in the case of a Gaussian prior for the density, is well
constrained (see Figure 4C).

In contrast to the case of coronal loops, prominence threads do
not occupy the entire length of the magnetic flux tube. We only
observe the cold and dense plasma occupying a fraction of a longer
but unobservable structure. Soler et al. (2010) constructed a model
that provides us with an approximate analytical expression for the
phase speed of kink modes in partially filled tubes

vparph � 2

π
��������
Lp
L 1 − Lp

L( )
√ vtotph (8)

in terms of the phase speed in a totally filled tube, vtotph � �
2

√
vAi,

with Lp the length of the thread and L the length of the flux tube.
Figure 4D shows results for the inference of the magnetic field
strength performed for different models for the density along the
thread considering: a fully filled tube, a partially filled tube with a
uniform prior distribution for Lp/L, and a partially filled tube with
a Gaussian prior distribution for Lp/L. The results indicate the
importance of having an approximate idea about the ratio Lp/L in
order to obtain an accurate inference.

Even in the case of a fully filled tube, Lp = L, as in the case with
coronal loops, the inferred posterior for the magnetic field
strength is dependent on the amount of information we have
on the value of plasma density. Figure 5 shows marginal
posteriors for the magnetic field strength corresponding to
thread # 5 in Table 2 of Montes-Solís and Arregui (2019).

They were calculated with three different priors for the
density. One considers a uniform prior. The other two
Gaussian distributions centred at two different density values.
The results indicate that the obtained posteriors clearly differ.

One of the reasons why prominence seismology is in a less
developed stage than coronal loop seismology is because there are
fewer observations of transverse oscillations in these structures, but
also because of the complexity in their modelling. As in prominence
threads we only observe the cold and dense part of a longer but
unobservable structure, the length of the flux tube cannot be directly
estimated. However, using seismology diagnostics with multiple
periods one can obtain posterior probability distributions for the
ratio of the length of the thread to the length of the flux tube, Lp/L.
Also, a number of observations show that threads oscillate and flow
simultaneously. This affects the oscillation period which changes in
time. By measuring the period at two different moments and using
theoretical developments by Soler and Goossens (2011) a number of
parameters, such as the flow speed, the length of the thread and the
length of the flux tube can be inferred. Applications of these
principles can be found in the study by Montes-Solís and
Arregui (2019).

3.3 Assessing Damping Mechanisms for
Coronal Loop Oscillations
The damping of magnetohydrodynamic waves has been a matter
of interest since the first imaging observations of transverse
coronal loop oscillations (Aschwanden et al., 1999; Nakariakov

FIGURE 3 |Marginal posterior distributions for magnetic field strength, density contrast, and transverse inhomogeneity length scale for the inversion of the problem
with forwardmodel given by Eqs 6, 7, a transverse oscillation with vph = 1,030 ± 410 km s−1 and different values for the damping time: no damping (solid line), τd = 500 s
(dotted line), τd = 800 s (dashed line), and τd = 1,200 s (dash-dotted line) with an associated uncertainty of 50 s in all cases. The inferred medians with errors at the 68%
credible interval are B0 � 21+12−9 G for the undamped case, B0 � 20+11−8 G for τd = 500 s, B0 � 19+11−8 G for τd = 800 s, andB0 � 18+11−9 G for τd = 1,200 s. A fixed value
for the loop length L = 1.9 × 1010 cm was considered in all computations. Adapted from Arregui et al. (2019).
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et al., 1999). Of particular interest in explaining the observations
are the mechanisms based on the cross-field inhomogeneity of the
waveguides, such as phase mixing and resonant absorption
(Heyvaerts and Priest, 1983; Goossens et al., 2002; Ruderman
and Roberts, 2002; Goossens et al., 2006), or those involving
lateral or foot-point leakage of wave energy (Spruit, 1982;
Roberts, 2000; De Pontieu et al., 2001; Cally, 2003).

Attempts to discriminate between alternative mechanisms were
initially focused on the computation of the damping time scales
predicted by each mechanism for plausible values of the unknown
relevant physical parameters. This approach enables for instance to
discard viscous or resistive processes because of the too long timescales
they predict. Ofman and Aschwanden (2002) proposed a method
based on the comparison between theoretically predicted and fitted
power-law indexes between periods and damping times to assess the
plausibility of alternative damping mechanisms. This suggestion is
based on the assumption that each mechanism is characterised by a
particular power-law index, a premise that was shown to be
questionable by Arregui et al. (2008). For instance, resonant

absorption is able to generate data realisations leading to different
scaling laws with different power-law indexes.

A Bayesian approach to comparing the relative plausibility
among several proposed damping mechanisms for coronal loop
oscillations was followed by Montes-Solís and Arregui (2017).
They considered the mechanisms of resonant absorption in the
Alfvén continuum (Goossens et al., 2002), phase mixing of Alfvén
waves (Heyvaerts and Priest, 1983), and wave leakage of the
principal leaky mode (Cally, 2003).

For resonant damping, the theoretically predicted damping
time τd over the period P, under the thin tube and thin boundary
approximations, reads (Goossens et al., 2002; Ruderman and
Roberts, 2002)

τd
P

� 2
π

R

l

ζ + 1
ζ − 1

, (9)

with l the thickness of the non-uniform layer at the boundary of
the loop and ζ = ρi/ρe the density contrast between the internal
and external densities. Plausible ranges of variation for the

FIGURE 4 | (A) Curves obtained for each thread observed by Lin et al. (2009). (B) Posterior distributions of magnetic field strength (B) for each considered thread
obtained with Bayesian methods. (C)Global posterior computed for the fifth thread, considering a Gaussian prior of the internal density (ρi) centred in a value equal to ρp =
5 × 10−11 kg m−3 and given an uncertainty of 50%. (D)Comparison of posterior distributions of the magnetic field strength in a totally filled tube (purple line), partially filled
tube (magenta line), and partially filled tube considering a Gaussian prior for the proportion of thread length centred in Lp/L = 0.5 with 50% of uncertainty (dashed
magenta line). From Montes-Solís and Arregui (2019).
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unknown parameters are ζ ∈ (1, 10] and l/R ∈ (0, 2]. They are
capable of producing the observed fast damping.

For phase mixing, an analytical expression for the damping
ratio was derived by Roberts (2000).

τd
P

� 3
π2]

( )
1/3

w2/3 P−1/3. (10)

Here ] = 4 × 103 km2 s−1 is the coronal kinematic shear
viscosity coefficient and w the transverse inhomogeneity length
scale. Considering values of the unknown parameter in the range
w ∈ [0.5, 6], the required observed damping times scales can be
well reproduced.

The third considered mechanism, wave leakage, consist of the
presence of a wave that radiates part of its energy to the
background medium while oscillating with the kink mode
frequency. An analytical expression for the damping ratio was
derived by Cally (2003),

τd
P

� 4
π4

R

L
( )

−2
, (11)

with R and L the radius and length of the loop, respectively. A
plausible range for their ratio is R/L ∈ [10−4, 0.3], which leads to
predicted damping ratio values as low as 0.5 or as high as 105.

In Montes-Solís and Arregui (2017), the three damping
mechanisms were compared by considering how well they are
able to reproduce the observed period and damping timescales,
taking into account the observations and their associated
uncertainty. Figure 6 shows the results from the computation
of Bayes factors for the one-to-one comparison between damping
mechanisms in the plane of observables damping time vs
oscillation period. The subscripts 0, 1, and 2, are used to
identify resonant absorption, phase mixing, and wave leakage,
respectively. The first apparent result is that the evidence
distribution in the plane of observables in favour of any of the

models in comparison to another depends on the combination of
observed periods and damping times. For instance, in the
comparison between resonant absorption and phase mixing,
Figure 6A shows strong and very strong evidence for resonant
damping in the upper-left corner of the plane of observables. For
low damping ratios, at the lower-right corner, the evidence
supports the phase-mixing model. In the area in between,
differently coloured bands denote different levels of evidence.
Figure 6B shows the comparison between resonant absorption
and wave leakage. In most of the observable plane, there is a lack
of evidence supporting either of the two mechanisms. Only for
the lowest damping ratio values there is evidence in favour of
resonant damping. Finally, Figure 6C shows the results from the
comparison between phase mixing and wave leakage. For
combinations of period and damping time leading to large
damping ratios, the evidence in favour of wave leakage is
larger. For low damping ratios, the evidence strongly supports
the mechanism of phase mixing.

The results discussed so far were obtained by application of
Bayesian model comparison methods to synthetic hypothetical
data in the plane of observables of period and damping time.
Montes-Solís and Arregui (2017) also considered the
computation of Bayes factors for a selection of 89 loop
oscillation events listed in the databases by Verwichte et al.
(2013) and Goddard et al. (2016). The results are displayed in
Figure 7. The colours indicate the level of evidence, based on the
magnitude of the corresponding Bayes factor. It is clear that the
events in blue colour, which correspond to evidence that is not
worth a bare mention, dominate in all three panels. In the
comparison between resonant absorption and phase mixing
(left panel), in approximately 78% of the events the evidence
is not strong enough to favour one model or the other. The
evidence is positive for resonant absorption in 8% of the events
and for phase mixing in about 14% of the events. In the middle
panel, the comparison between resonant absorption and wave
leakage is shown. The evidence is not large enough to support any
of the twomechanisms. The panel in the right shows the evidence
assessment between phase mixing and wave leakage. In this case,
the evidence is inconclusive for 79% of the events. There is
positive evidence in favour of wave leakage in 3% of the
events, those corresponding to oscillations with very strong
damping. For the remaining 18%, the evidence is positive in
favour of phase mixing.

The results presented by Montes-Solís and Arregui (2017) do
not allow us to identify a uniquemechanism as responsible for the
quick damping of coronal loop oscillations. However, the method
makes use of all the available information in the models, observed
data with their uncertainty, and prior information in a consistent
manner.

3.4 Evidence for Resonant Damping of
Coronal Waves With Foot-point Wave
Power Asymmetry
Waves propagating in extended regions of the solar corona offer
another opportunity to test our models for the damping of waves
and oscillations. Their existence was first demonstrated by

FIGURE 5 | Posterior distributions of the magnetic field strength (B) in a
fully filled magnetic thread considering a Gaussian prior for the internal density
(ρi) with mean μρp � 5 × 10−11 kg m−3 (pink), a Gaussian prior with mean
μρp � 2 × 10−10 kg m−3 (blue), and a uniform prior (black dashed line).
Uncertainties in Gaussian priors are considered to be of 50%. From Montes-
Solís and Arregui (2019).
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Tomczyk et al. (2007) and, although first interpreted as Alfvén
waves, theoretical arguments by Goossens et al. (2012) showed
that an interpretation in terms of kink waves damped by resonant
absorption offers a more accurate description. The observed
waves show signatures of in situ wave damping in the form of
a discrepancy between the outward and the inward wave power.
This led Verth et al. (2010) to produce a theoretical model
connecting the average power ratio for inward and outward
propagating waves with their damping rate. This expression is

〈P f( )〉ratio � R0 exp
2L

vphξE
f( ), (12)

with R0 = Pout(f)/Pin(f) the ratio of powers generated at the two
foot-points. The exponential factor contains wave propagation
and damping properties: the wave travel time along the full wave
path of length L, 2L/vph, the frequency f and the damping ratio, ξE.
In the absence of damping, ξE → ∞ and 〈P(f)〉ratio = R0, thus the
average power ratio equals the ratio of powers at the two foot-
points.

The model by Verth et al. (2010) predicts an exponential
dependence of the average power ratio with frequency. A least
squares fit to a set of data from the Coronal Multi-channel
Polarimeter (CoMP) performed by these authors shows a good

qualitative agreement and enabled them to infer a value for the
damping ratio ξE. However, one must bear in mind that a fitting
procedure consists of adopting amodelM and obtaining the set of
so-called best fit parameters θ. As explained above, Bayesian
inference aims at obtaining a solution in terms of a probability
distribution of the parameters conditional on the model and on
the data, p(θ|M, D). There is no room for absolute statements
concerning model evidence because the evidence in favour of a
model is always relative to the evidence in favour of another.

Montes-Solís and Arregui (2020) performed a Bayesian
analysis to quantify the evidence in favour of resonant
damping using CoMP. Instead of considering an alternative
damping mechanism the focus was on trying to quantify the
evidence in favour of resonant damping in front of the other
possible source of discrepancy between the inward and outward
power ratio in the corona, namely, an asymmetry in the wave
power ratio at the foot-points, i.e., R0 ≠ 1 in Eq. 12. We note that if
Pout(f) > Pin(f), foot-point driving asymmetry will increase the
contribution of resonant damping. Conversely, for Pout(f) < Pin(f),
the asymmetry will decrease the contribution of resonant
damping to the average power ratio.

In their analysis, Montes-Solís and Arregui (2020) first
consider the inference of the two parameters of interest, ξE

FIGURE 6 | Bayes factors in the one-to-one comparison between resonant absorption, phase mixing, and wave leakage mechanisms as a function of the
observables period and damping time with uncertainties of 10% for each. The dashed lines indicate τd =P. The different levels of evidence are indicated in the colour bars.
Not Worth a bare mention (NWM, yellow), Positive (PE, green/red), Strong (SE, blue/purple), Very strong (VSE, white/grey). Adapted from Montes-Solís and Arregui
(2017).

FIGURE 7 | Representation of the Bayes factors computed for the 89 events selected from Verwichte et al. (2013) and Goddard et al. (2016). The different panels
correspond to the three one-to-one comparisons between resonant absorption, phase mixing, and wave leakage, here represented with the subscripts 0, 1, and 2
respectively. Adapted from Montes-Solís and Arregui (2017).
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and R0, from a set of CoMP data points for average power ratio as
a function of frequency in the range 0.05–4 mHz. The resulting
marginal posteriors are shown in Figure 8. The set of CoMP
observations is equally well explained by a reduced model, MR,
with parameter distribution p(ξE|MR, D) that considers resonant
damping as the sole contributor to the average power ratio and by
the larger model, MA, with parameter distributions p(ξE|MA, D)
and p(R0|MA, D), which additionally considers foot-point
asymmetry. The full posterior for R0 is within the region
below one. This means that Pout < Pin and there is asymmetry
in the power generated at both foot-points. The corresponding
inference for ξE is shifted towards the region corresponding to
stronger damping (smaller values of ξE) to counterbalance the
decreasing factor due to the asymmetry at the foot-points.

Observations can therefore be equally well explained by two
models, with or without foot-point asymmetry. To quantify the
relative merit of the two explanations, Montes-Solís and Arregui
(2020) perform model comparison using the Bayes factor

BRA � p D|MR( )
p D|MA( ). (13)

The Bayes factor is computed in the two-dimensional plane of
synthetic data D, covering the full ranges in frequency and
average power ratio of CoMP observations,
D � (f, 〈P(f)〉ratio). To this end, Eq. 12 is used to generate
theoretical predictions over a grid of points in f and 〈P(f)〉ratio.

Figure 9 shows the distribution of Bayes factor values over
the two-dimensional synthetic data space. It is clear that the
evidence distribution is inhomogeneous and three different
regions, can be identified. They are delimited by the
boundaries where the marginal likelihoods are equal and
therefore the Bayes factor is zero. In the central region,
within the solid boundary lines, model MR is in principle
more plausible than model MA, because the marginal
likelihood for this model is larger. The level of relative
plausibility depends on the Bayes factor value, BRA. In the
white area, the evidence in favour of MR is inconclusive and
then varies from positive to very strong in the blue to green
areas. Above and below the solid lines, model MA is more
plausible, because the marginal likelihood for this model is

larger. However, based on the numerical value for the Bayes
factor BAR, the evidence is inconclusive in the white areas and
varies from positive to very strong as we move further towards
the upper and lower areas in the plane of observables.

Superimposed over the distribution of Bayes factors in
Figure 9 are observed CoMP data with assumed error bars.
We can see that in most of the cases, data fall over regions
where the marginal likelihood for model MR is larger. A fraction
of them are located over areas where the evidence in favour of
model MR is conclusive. Interestingly, some of them fall into the
two regions where the marginal likelihood for modelMA is larger.
In some cases, they are over areas where the evidence supports
model MA in front of model MR.

FIGURE 8 | (A)Marginal posterior distributions for ξE conditional on dataD andmodelsMR (red) andMA (green). (B)Marginal posterior distribution forR0 conditional
on data D and model MA. The data D consist of the collective use of the CoMP data set analysed by Verth et al. (2010). The posterior summaries are ξ̂

MAP
E � 4.3+0.7−0.6 for

p(ξE|MR, D), ξ̂
MAP
E � 1.9+0.3−0.2 for p(ξE|MA, d), and R̂

MAP
0 � 0.5 ± 0.02 for p(R0|MA, D), with uncertainty given at the 68% credible interval. The posteriors are computed by

Markov Chain Monte Carlo (MCMC) sampling using the Python emcee package (Foreman-Mackey et al., 2013). Adapted from Montes-Solís and Arregui (2020).

FIGURE 9 | Filled contour with the distribution of Bayes factors, BRA and
BAR, over the two-dimensional data space D. Solid lines connect points with
p(D|MR) � p(D|MA) (Bayes factor zero). The computations are performed
over a grid of points (Nf = 80,N〈P(f )〉ratio = 155) over the ranges f ∈ [0.05, 4]
and 〈P(f)〉ratio ∈ [0.25, 4.1]. The priors are p(ξE) ~ G(1.9,0.3) for MR and
p(ξE) ~ G(4.3, 0.6); p(R0) ~ G(0.5, 0.02) for MA. Triangles represent CoMP
data. Following Kass and Raftery (1995), the evidence in favour of a model i in
front of an alternative j is inconclusive for values of 2log(Bij) from 0 to 2; positive
from 2 to 6; strong from 6 to 10; and very strong for values above 10. Adapted
from Montes-Solís and Arregui (2020).
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These results indicate that CoMP measurements of integrated
average power ratio for propagating coronal waves cannot
exclude an explanation in terms of asymmetry in the wave
power generated at the foot-points. Some observations are
equally or even better explained by larger models with foot-
point wave power asymmetry than by the reduced models with
identical power at the two foot-points and resonant damping as
the only contributor to the observed average power ratio.

3.5 Evidence for a Nonlinear Damping
Model for Waves in the Corona
Recent observational and theoretical studies have shown that the
damping of transverse loop oscillations depends on the oscillation
amplitude (Goddard et al., 2016; Magyar and Van Doorsselaere,
2016). The increase in the number and quality of observations has
led to the creation of catalogs with a large number of events
(Anfinogentov et al., 2015; Goddard et al., 2016; Nechaeva et al.,
2019; Tiwari et al., 2021). When the damping time over the period is
plotted against the oscillation amplitude, the data are scattered
forming a cloud with a triangular shape (see e.g., Figure 6 in
Nechaeva et al., 2019). In general, larger amplitudes correspond
to smaller damping ratio values and vice versa. In a recent study,
Arregui (2021) considered the mechanisms of linear resonant
absorption, in the formulation given by Ruderman and Roberts
(2002) and Goossens et al. (2002) and of nonlinear damping, in the
formulation given by Van Doorsselaere et al. (2021). Their analytical
developments provide us with two analytical expressions for the
damping ratio in cylindrically symmetric waveguides.

For linear resonant absorption, modelMRA, the damping ratio
is given by

τd
P
‖MRA

� F ζ + 1
ζ − 1

R

l
, (14)

with ζ = ρi/ρe the ratio of internal to external density, l/R the
length of the non-uniform layer at the boundary of the waveguide
with radius R, and F � 2/π for a sinusoidal variation of density
over the non-uniform layer. The predictions from the damping
modelMRA given by Eq. 14 for the observable damping ratio are
determined by the parameter vector θRA = {ζ, l/R}.

For the nonlinear damping of standing kink waves, due to the
energy transfer to small scales in the radial and azimuthal
directions, the damping ratio is given by

FIGURE 10 | Surface and filled contour representations of the Bayes factors BNLRA (left panel) and BRANL (right panel) in the synthetic data spaceD � (η, τd/P). The
Bayes factors were computed using the marginal likelihood calculations for each model. Adapted from Arregui (2021).

FIGURE 11 | Scatter plot of the 101 loop oscillation events in the
Nechaeva et al. (2019) catalog with information about both the oscillation
amplitude and the damping ratio. In the Bayesian evidence analysis by Arregui
(2021), colour filled circles represent cases with conclusive evidence.
Edge coloured circles represent cases with either p(D|MNL)>p(D|MRA) or
vice versa, yet inconclusive evidence. Red is for MNL and blue for MRA.
Adapted from Arregui (2021).
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τd
P
‖MNL

� 40
��
π

√ 1
2πa

1 + ζ
����������

ζ2 − 2ζ + 97
√ , (15)

with a = η/R the ratio of the displacement η to the loop radius.
The predictions from the dampingmodelMNL given by Eq. 15 for
the observable damping ratio, for known oscillation amplitude,
are determined by the parameter vector θNL = {R, ζ}.

Theoretical predictions from these two models can be
confronted by computing the marginal likelihood of the data
in the plane of observables defined by the damping ratio and the
oscillation amplitude, D � {η, τd/P}. The ratio of marginal
likelihoods leads to the Bayes factor distributions over D-space
shown in Figure 10. The two panels show that there is a clear
separation between the regions over synthetic data space over
which evidence in favour of one or the other model dominates.
The evidence supports the nonlinear damping model in a
particular region corresponding to combinations with small
amplitude and large damping ratio values in the upper-left
region of the plane and extending towards the lower-right
region corresponding to combinations with smaller damping
ratio and larger oscillation amplitude values in a broader
range. On the other hand, the evidence supports resonant
damping in two regions. The first one extends towards the
right-hand side of the domain. The second consists of a small
region corresponding to combinations of very small amplitude
and strong damping. Overall, the observed data fall within the
regions with the largest Bayes factor values for the nonlinear
damping model.

The analysis using synthetic data over prescribed ranges for
the observable amplitude and damping ratio offers a birds-eye
view of the distribution of the evidence. The application to
observed data offers a better informed result on the level of
evidence for or against each damping model. The catalog by
Nechaeva et al. (2019) contains 223 loop oscillating loops
observed with SDO/AIA in the period 2010–2018. In 101
cases, they contain information about the damping and the
oscillation amplitude. Arregui (2021) applied a Bayesian
evidence analysis to these data to assess the strength of the
evidence for nonlinear damping relative to that for resonant
absorption.

Figure 11 displays the results obtained for all 101 cases,
regardless of the conclusive or inconclusive nature of the
evidence. The red colour indicates evidence in favour of
nonlinear damping. The full red dots indicate positive
evidence. The edge coloured circles are cases with marginal
likelihood for nonlinear damping larger than the marginal
likelihood for resonant damping, but inconclusive evidence
because the Bayes factor is below 2. The blue colour indicates
evidence in favour of resonant damping. The full blue dots
indicate positive evidence. The edge coloured circles are cases
with marginal likelihood for resonant damping larger than the
marginal likelihood for nonlinear damping, but inconclusive
evidence because the Bayes factor is below 2. The marginal
likelihood in favour of nonlinear damping is larger in the

majority of cases. The events with conclusive evidence for
nonlinear damping largely outnumber those in favour of linear
resonant absorption. The evidence for the nonlinear damping
model relative to linear resonant absorption is therefore
appreciable to a reasonable degree of Bayesian certainty.

4 SUMMARY

Bayesian analysis tools are increasingly being used in seismology
of the solar corona. In parameter inference, they led to the
inference of relevant information on the structure of coronal
loops or prominence plasmas, such as the magnetic field strength
or the plasma density. Model comparison techniques have been
used to assess the damping mechanism operating in coronal loop
oscillations. In a comparison between a particular linear and a
particular nonlinear damping mechanism, the latter seems to be
more plausible in explaining observations. Note that we might
have left out important alternative physical processes that could
be more plausible instead. This could be assessed by performing
additional one-to-one comparisons. Because of our inability to
directly measure the physical conditions in the structures of
interest, the Bayesian approach offers the best solution to
inference problems under uncertain and incomplete
information. It uses principled ways to combine the
information from data, theoretical models and previous
knowledge. The grow in the number of dedicated computing
tools to sample multidimensional posterior and marginal
likelihood spaces will enable us to apply these methods to
additional phenomena related to the structure, dynamics and
heating of the solar atmosphere.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

Funding provided under project PGC2018-102108-B-I00 from
Ministerio de Ciencia, Innovación y Universidades (Spain) and
FEDER funds.

ACKNOWLEDGMENTS

I am grateful to Andrés Asensio Ramos, Marcel Goossens, and
María Montes-Solís for years of fruitful collaboration.
Calculations and figures were implemented with numpy
(Harris et al., 2020) and matplotlib (Hunter, 2007). This
research has made use of NASA’s Astrophysics Data System
Bibliographic Services.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 82694711

Arregui Bayesian Applications to the Solar Corona

57

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


REFERENCES

Anfinogentov, S. A., Antolin, P., Inglis, A. R., Kolotkov, D., Kupriyanova, E. G.,
McLaughlin, J. A., et al. (2021a). Novel Data Analysis Techniques in Coronal
Seismology. arXiv e-prints. arXiv:2112.13577.

Anfinogentov, S. A., Nakariakov, V. M., and Nisticò, G. (2015). Decayless Low-
Amplitude Kink Oscillations: a Common Phenomenon in the Solar corona?
Astron. Astrophysics 583, A136. doi:10.1051/0004-6361/201526195

Anfinogentov, S. A., Nakariakov, V. M., Pascoe, D. J., and Goddard, C. R. (2021b).
Solar Bayesian Analysis Toolkit-A New Markov Chain Monte Carlo IDL Code
for Bayesian Parameter Inference. ApJS 252, 11. doi:10.3847/1538-4365/abc5c1

Arregui, I., and Asensio Ramos, A. (2011). Bayesian Magnetohydrodynamic
Seismology of Coronal Loops. Astrophysical J. 740, 44. doi:10.1088/0004-
637x/740/1/44

Arregui, I., and Asensio Ramos, A. (2014). Determination of the Cross-Field
Density Structuring in Coronal Waveguides Using the Damping of Transverse
Waves. Astron. Astrophysics 565, A78. doi:10.1051/0004-6361/201423536

Arregui, I., Asensio Ramos, A., and Díaz, A. J. (2013a). Bayesian Analysis of
Multiple Harmonic Oscillations in the Solar Corona. Astrophysical J. 765, L23.
doi:10.1088/2041-8205/765/1/l23

Arregui, I., Asensio Ramos, A., and Pascoe, D. J. (2013b). Determination of
Transverse Density Structuring from Propagating Magnetohydrodynamic
Waves in the Solar Atmosphere. Astrophysical J. 769, L34. doi:10.1088/2041-
8205/769/2/l34

Arregui, I., Ballester, J. L., and Goossens, M. (2008). On the Scaling of the Damping
Time for Resonantly Damped Oscillations in Coronal Loops. Astrophysical J.
676, L77–L80. doi:10.1086/587098

Arregui, I. (2018). Bayesian Coronal Seismology. Adv. Space Res. 61, 655–672.
doi:10.1016/j.asr.2017.09.031

Arregui, I. (2021). Bayesian Evidence for a Nonlinear Damping Model for Coronal
Loop Oscillations. ApJL 915, L25. doi:10.3847/2041-8213/ac0d53

Arregui, I., and Goossens, M. (2019). No Unique Solution to the Seismological
Problem of Standing Kink Magnetohydrodynamic Waves. Astron. Astrophysics
622, A44. doi:10.1051/0004-6361/201833813

Arregui, I., Montes-Solís, M., and Asensio Ramos, A. (2019). Inference of Magnetic
Field Strength and Density from Damped Transverse Coronal Waves. Astron.
Astrophysics 625, A35. doi:10.1051/0004-6361/201834324

Arregui, I., Soler, R., and Asensio Ramos, A. (2015). Model Comparison for the
Density Structure across Solar Coronal Waveguides. Astrophysical J. 811, 104.
doi:10.1088/0004-637X/811/2/104

Arregui, I., and Soler, R. (2015). Model Comparison for the Density Structure along
Solar Prominence Threads. Astron. Astrophysics 578, A130. doi:10.1051/0004-
6361/201525720

Arregui, I. (2015). Wave Heating of the Solar Atmosphere. Phil. Trans. R. Soc. A.
373, 20140261. doi:10.1098/rsta.2014.0261

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., and Alexander, D. (1999). Coronal
Loop Oscillations Observed with theTransition Region and Coronal Explorer.
Astrophysical J. 520, 880–894. doi:10.1086/307502

Asensio Ramos, A., and Arregui, I. (2013). Coronal Loop Physical Parameters from
the Analysis of Multiple Observed Transverse Oscillations. Astron. Astrophysics
554, A7. doi:10.1051/0004-6361/201321428

Asensio Ramos, A., Martínez González, M. J., and Rubiño-Martín, J. A. (2007).
Bayesian Inversion of Stokes Profiles. Astron. Astrophysics 476, 959–970. doi:10.
1051/0004-6361:20078107

Bayes, M., and Price, M. (1763). An Essay towards Solving a Problem in the
Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr.
Price, in a Letter to John Canton, A. M. F. R. S. R. Soc. Lond. Philos. Trans. Ser.
53, 370–418.

Cally, P. S. (2003). Coronal Leaky Tube Waves and Oscillations Observed with
Trace. Solar Phys. 217, 95–108. doi:10.1023/A:1027326916984

De Pontieu, B., Martens, P. C. H., and Hudson, H. S. (2001). Chromospheric
Damping of Alfven Waves. Astrophysical J. 558, 859–871. doi:10.1086/322408

Duckenfield, T. J., Goddard, C. R., Pascoe, D. J., and Nakariakov, V. M. (2019).
Observational Signatures of the Third Harmonic in a Decaying Kink Oscillation
of a Coronal Loop. Astron. Astrophysics 632, A64. doi:10.1051/0004-6361/
201936822

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). Emcee: The
MCMC Hammer. Publications Astronomical Soc. Pac. 125, 306–312. doi:10.
1086/670067

Gates, E., Krauss, L. M., andWhite, M. (1995). Treating Solar Model Uncertainties:
A Consistent Statistical Analysis of Solar Neutrino Models and Data. Phys. Rev.
D 51, 2631–2643. doi:10.1103/PhysRevD.51.2631

Goddard, C. R., Antolin, P., and Pascoe, D. J. (2018). Evolution of the Transverse
Density Structure of Oscillating Coronal Loops Inferred by Forward Modeling
of EUV Intensity. Astrophysical J. 863, 167. doi:10.3847/1538-4357/aad3cc

Goddard, C. R., Nisticò, G., Nakariakov, V. M., and Zimovets, I. V. (2016). A
Statistical Study of Decaying Kink Oscillations Detected Using SDO/AIA.
Astron. Astrophysics 585, A137. doi:10.1051/0004-6361/201527341

Goddard, C. R., Pascoe, D. J., Anfinogentov, S., and Nakariakov, V. M. (2017). A
Statistical Study of the Inferred Transverse Density Profile of Coronal Loop
Threads Observed with Sdo/aia. Astron. Astrophysics 605, A65. doi:10.1051/
0004-6361/201731023

Goossens, M., Andries, J., and Arregui, I. (2006). Damping of
Magnetohydrodynamic Waves by Resonant Absorption in the Solar
Atmosphere. Phil. Trans. R. Soc. A. 364, 433–446. doi:10.1098/rsta.2005.1708

Goossens, M., Andries, J., and Aschwanden, M. J. (2002). Coronal Loop
Oscillations. Astron. Astrophysics 394, L39–L42. doi:10.1051/0004-6361:
20021378

Goossens, M., Andries, J., Soler, R., Van Doorsselaere, T., Arregui, I., and Terradas,
J. (2012). Surface Alfvén Waves in Solar Flux Tubes. Astrophysical J. 753, 111.
doi:10.1088/0004-637X/753/2/111

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array Programming with NumPy. Nature 585,
357–362. doi:10.1038/s41586-020-2649-2

Heyvaerts, J., and Priest, E. R. (1983). Coronal Heating by Phase-Mixed Shear
Alfven Waves. Astron. Astrophys. 117, 220.

Hunter, J. D. (2007). Matplotlib: A 2d Graphics Environment. Comput. Sci. Eng. 9,
90–95. doi:10.1109/MCSE.2007.55

Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. J. Am. Stat. Assoc. 90, 773–795.
doi:10.1080/01621459.1995.10476572

Lin, Y., Soler, R., Engvold, O., Ballester, J. L., Langangen, Ø., Oliver, R., et al. (2009).
Swaying Threads of a Solar Filament. Astrophysical J. 704, 870–876. doi:10.
1088/0004-637x/704/1/870

Magyar, N., and Van Doorsselaere, T. (2016). Damping of Nonlinear Standing
Kink Oscillations: a Numerical Study. Astron. Astrophysics 595, A81. doi:10.
1051/0004-6361/201629010

Marsh, M. S., Ireland, J., and Kucera, T. (2008). Bayesian Analysis of Solar
Oscillations. Astrophysical J. 681, 672–679. doi:10.1086/588751

Montes-Solís, M., and Arregui, I. (2017). Comparison of DampingMechanisms for
Transverse Waves in Solar Coronal Loops. Astrophysical J. 846, 89. doi:10.3847/
1538-4357/aa84b7

Montes-Solís, M., and Arregui, I. (2019). Inferring Physical Parameters in Solar
Prominence Threads. Astron. Astrophysics 622, A88. doi:10.1051/0004-6361/
201834406

Montes-Solís, M., and Arregui, I. (2020). Quantifying the Evidence for Resonant
Damping of Coronal Waves with Foot-point Wave Power Asymmetry. Astron.
Astrophysics 640, L17. doi:10.1051/0004-6361/201937237

Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., and Davila, J. M. (1999).
TRACE Observation of Damped Coronal Loop Oscillations: Implications for
Coronal Heating. Science 285, 862–864. doi:10.1126/science.285.5429.862

Nakariakov, V. M., and Ofman, L. (2001). Determination of the Coronal Magnetic
Field by Coronal Loop Oscillations. Astron. Astrophysics 372, L53–L56. doi:10.
1051/0004-6361:20010607

Nechaeva, A., Zimovets, I. V., Nakariakov, V. M., and Goddard, C. R. (2019).
Catalog of Decaying Kink Oscillations of Coronal Loops in the 24th Solar Cycle.
ApJS 241, 31. doi:10.3847/1538-4365/ab0e86

Ofman, L., and Aschwanden, M. J. (2002). Damping Time Scaling of Coronal Loop
Oscillations Deduced from [ITAL]Transition Region and Coronal Explorer
[/ITAL] Observations. Astrophys. J. Lett. 576, L153–L156. doi:10.1086/343886

Pascoe, D. J., Anfinogentov, S. A., Goddard, C. R., and Nakariakov, V. M. (2018).
Spatiotemporal Analysis of Coronal Loops Using Seismology of Damped Kink
Oscillations and Forward Modeling of EUV Intensity Profiles. Astrophysical J.
860, 31. doi:10.3847/1538-4357/aac2bc

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 82694712

Arregui Bayesian Applications to the Solar Corona

58

https://doi.org/10.1051/0004-6361/201526195
https://doi.org/10.3847/1538-4365/abc5c1
https://doi.org/10.1088/0004-637x/740/1/44
https://doi.org/10.1088/0004-637x/740/1/44
https://doi.org/10.1051/0004-6361/201423536
https://doi.org/10.1088/2041-8205/765/1/l23
https://doi.org/10.1088/2041-8205/769/2/l34
https://doi.org/10.1088/2041-8205/769/2/l34
https://doi.org/10.1086/587098
https://doi.org/10.1016/j.asr.2017.09.031
https://doi.org/10.3847/2041-8213/ac0d53
https://doi.org/10.1051/0004-6361/201833813
https://doi.org/10.1051/0004-6361/201834324
https://doi.org/10.1088/0004-637X/811/2/104
https://doi.org/10.1051/0004-6361/201525720
https://doi.org/10.1051/0004-6361/201525720
https://doi.org/10.1098/rsta.2014.0261
https://doi.org/10.1086/307502
https://doi.org/10.1051/0004-6361/201321428
https://doi.org/10.1051/0004-6361:20078107
https://doi.org/10.1051/0004-6361:20078107
https://doi.org/10.1023/A:1027326916984
https://doi.org/10.1086/322408
https://doi.org/10.1051/0004-6361/201936822
https://doi.org/10.1051/0004-6361/201936822
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1103/PhysRevD.51.2631
https://doi.org/10.3847/1538-4357/aad3cc
https://doi.org/10.1051/0004-6361/201527341
https://doi.org/10.1051/0004-6361/201731023
https://doi.org/10.1051/0004-6361/201731023
https://doi.org/10.1098/rsta.2005.1708
https://doi.org/10.1051/0004-6361:20021378
https://doi.org/10.1051/0004-6361:20021378
https://doi.org/10.1088/0004-637X/753/2/111
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1088/0004-637x/704/1/870
https://doi.org/10.1088/0004-637x/704/1/870
https://doi.org/10.1051/0004-6361/201629010
https://doi.org/10.1051/0004-6361/201629010
https://doi.org/10.1086/588751
https://doi.org/10.3847/1538-4357/aa84b7
https://doi.org/10.3847/1538-4357/aa84b7
https://doi.org/10.1051/0004-6361/201834406
https://doi.org/10.1051/0004-6361/201834406
https://doi.org/10.1051/0004-6361/201937237
https://doi.org/10.1126/science.285.5429.862
https://doi.org/10.1051/0004-6361:20010607
https://doi.org/10.1051/0004-6361:20010607
https://doi.org/10.3847/1538-4365/ab0e86
https://doi.org/10.1086/343886
https://doi.org/10.3847/1538-4357/aac2bc
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Pascoe, D. J., Anfinogentov, S., Nisticò, G., Goddard, C. R., and Nakariakov, V. M.
(2017a). Coronal Loop Seismology Using Damping of Standing Kink
Oscillations by Mode Coupling. Astron. Astrophysics 600, A78. doi:10.1051/
0004-6361/201629702

Pascoe, D. J., Goddard, C. R., Anfinogentov, S., and Nakariakov, V. M. (2017b).
Coronal Loop Density Profile Estimated by Forward Modelling of EUV
Intensity. Astron. Astrophysics 600, L7. doi:10.1051/0004-6361/201730458

Pascoe, D. J., Goddard, C. R., and Van Doorsselaere, T. (2020a). Oscillation and
Evolution of Coronal Loops in a Dynamical Solar corona. Front. Astron. Space
Sci. 7, 61. doi:10.3389/fspas.2020.00061

Pascoe, D. J., Hood, A. W., and Van Doorsselaere, T. (2019). Coronal Loop
Seismology Using Standing Kink Oscillations with a Lookup Table. Front.
Astron. Space Sci. 6, 22. doi:10.3389/fspas.2019.00022

Pascoe, D. J., Russell, A. J. B., Anfinogentov, S. A., Simões, P. J. A., Goddard, C. R.,
Nakariakov, V. M., et al. (2017c). Seismology of Contracting and Expanding
Coronal Loops Using Damping of Kink Oscillations byMode Coupling. Astron.
Astrophysics 607, A8. doi:10.1051/0004-6361/201730915

Pascoe, D. J., Smyrli, A., and Van Doorsselaere, T. (2020b). Tracking and
Seismological Analysis of Multiple Coronal Loops in an Active Region.
Astrophysical J. 898, 126. doi:10.3847/1538-4357/aba0a6

Richardson,W. H. (1972). Bayesian-Based Iterative Method of Image Restoration*.
J. Opt. Soc. Am. 62, 55. doi:10.1364/josa.62.000055

Roberts, B., Edwin, P. M., and Benz, A. O. (1984). On Coronal Oscillations.
Astrophysical J. 279, 857. doi:10.1086/161956

Roberts, B. (2000). Waves and Oscillations in the corona - (Invited Review). Solar
Phys. 193, 139–152. doi:10.1023/a:1005237109398

Ruderman, M. S., and Roberts, B. (2002). The Damping of Coronal Loop
Oscillations. Astrophysical J. 577, 475–486. doi:10.1086/342130

Soler, R., Arregui, I., Oliver, R., and Ballester, J. L. (2010). Seismology of Standing
Kink Oscillations of Solar Prominence fine Structures. Astrophysical J. 722,
1778–1792. doi:10.1088/0004-637x/722/2/1778

Soler, R., and Goossens, M. (2011). Kink Oscillations of Flowing Threads in Solar
Prominences. Astron. Astrophysics 531, A167. doi:10.1051/0004-6361/201116536

Spruit, H. C. (1982). Propagation Speeds and Acoustic Damping of Waves in
Magnetic Flux Tubes. Sol. Phys. 75, 3–17. doi:10.1007/BF00153456

Sturrock, P. A. (1973). Evaluation of Astrophysical Hypotheses. Astrophysical J.
182, 569–580. doi:10.1086/152165

Tiwari, A. K., Morton, R. J., and McLaughlin, J. A. (2021). A Statistical Study of
Propagating MHD Kink Waves in the Quiescent Corona. Astrophysical J. 919,
74. doi:10.3847/1538-4357/ac10c4

Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., et al.
(2007). Alfve´n Waves in the Solar Corona. Science 317, 1192–1196. doi:10.
1126/science.1143304

Uchida, Y. (1970). Diagnosis of Coronal Magnetic Structure by Flare-Associated
Hydromagnetic Disturbances. Pub. Astron. Soc. Jpn. 22, 341.

Van Doorsselaere, T., Goossens, M., Magyar, N., Ruderman, M. S., and
Ismayilli, R. (2021). Nonlinear Damping of Standing Kink Waves
Computed with Elsässer Variables. Astrophysical J. 910, 58. doi:10.3847/
1538-4357/abe630

Verth, G., Terradas, J., and Goossens, M. (2010). Observational Evidence of
Resonantly Damped Propagating Kink Waves in the Solar Corona.
Astrophysical J. 718, L102–L105. doi:10.1088/2041-8205/718/2/L102

Verwichte, E., Van Doorsselaere, T., White, R. S., and Antolin, P. (2013). Statistical
Seismology of Transverse Waves in the Solar corona. Astron. Astrophysics 552,
A138. doi:10.1051/0004-6361/201220456

Wheatland, M. S. (2004). A Bayesian Approach to Solar Flare Prediction.
Astrophysical J. 609, 1134–1139. doi:10.1086/421261

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Arregui. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 82694713

Arregui Bayesian Applications to the Solar Corona

59

https://doi.org/10.1051/0004-6361/201629702
https://doi.org/10.1051/0004-6361/201629702
https://doi.org/10.1051/0004-6361/201730458
https://doi.org/10.3389/fspas.2020.00061
https://doi.org/10.3389/fspas.2019.00022
https://doi.org/10.1051/0004-6361/201730915
https://doi.org/10.3847/1538-4357/aba0a6
https://doi.org/10.1364/josa.62.000055
https://doi.org/10.1086/161956
https://doi.org/10.1023/a:1005237109398
https://doi.org/10.1086/342130
https://doi.org/10.1088/0004-637x/722/2/1778
https://doi.org/10.1051/0004-6361/201116536
https://doi.org/10.1007/BF00153456
https://doi.org/10.1086/152165
https://doi.org/10.3847/1538-4357/ac10c4
https://doi.org/10.1126/science.1143304
https://doi.org/10.1126/science.1143304
https://doi.org/10.3847/1538-4357/abe630
https://doi.org/10.3847/1538-4357/abe630
https://doi.org/10.1088/2041-8205/718/2/L102
https://doi.org/10.1051/0004-6361/201220456
https://doi.org/10.1086/421261
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Identification and Classification of
Relativistic Electron Precipitation at
Earth Using SupervisedDeep Learning
Luisa Capannolo*, Wen Li and Sheng Huang

Center for Space Physics, Boston University, Boston, MA, United States

We show an application of supervised deep learning in space sciences. We focus on the
relativistic electron precipitation into Earth’s atmosphere that occurs when
magnetospheric processes (wave-particle interactions or current sheet scattering,
CSS) violate the first adiabatic invariant of trapped radiation belt electrons leading to
electron loss. Electron precipitation is a key mechanism of radiation belt loss and can lead
to several space weather effects due to its interaction with the Earth’s atmosphere.
However, the detailed properties and drivers of electron precipitation are currently not fully
understood yet. Here, we aim to build a deep learning model that identifies relativistic
precipitation events and their associated driver (waves or CSS). We use a list of
precipitation events visually categorized into wave-driven events (REPs, showing
spatially isolated precipitation) and CSS-driven events (CSSs, showing an energy-
dependent precipitation pattern). We elaborate the ensemble of events to obtain a
dataset of randomly stacked events made of a fixed window of data points that
includes the precipitation interval. We assign a label to each data point: 0 is for no-
events, 1 is for REPs and 2 is for CSSs. Only the data points during the precipitation are
labeled as 1 or 2. By adopting a long short-term memory (LSTM) deep learning
architecture, we developed a model that acceptably identifies the events and
appropriately categorizes them into REPs or CSSs. The advantage of using deep
learning for this task is meaningful given that classifying precipitation events by its
drivers is rather time-expensive and typically must involve a human. After post-
processing, this model is helpful to obtain statistically large datasets of REP and CSS
events that will reveal the location and properties of the precipitation driven by these two
processes at all L shells and MLT sectors as well as their relative role, thus is useful to
improve radiation belt models. Additionally, the datasets of REPs and CSSs can provide a
quantification of the energy input into the atmosphere due to relativistic electron
precipitation, thus offering valuable information to space weather and atmospheric
communities.

Keywords: electron precipitation, wave-particle interactions, current sheet scattering, space sciences, supervised
classification, LSTM, deep learning, radiation belts
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1 INTRODUCTION

The radiation belt environment is highly dynamic and it is
governed by acceleration, transport and loss processes (e.g., Li
and Hudson, 2019; Reeves et al., 2003). One of the loss
mechanisms is electron precipitation (EP), which occurs when
the conservation of the first adiabatic invariant is violated (e.g.,
Schulz and Lanzerotti, 1974; Horne and Thorne, 1998): electrons
are no longer trapped by the Earth’s magnetic field and fall into
the upper atmosphere. Not only electron depletion is important
in the radiation belt evolution in time and flux, but electron
precipitation is also known to drive many atmospheric effects
related to space weather. Multiple studies have indeed associated
conductivity variations and atmospheric chemistry changes
(potentially leading to ozone reduction) with electron
precipitation (Robinson et al., 1987; Fytterer et al., 2015;
Mironova et al., 2015; Tyssøy et al., 2016; Khazanov et al.,
2018; Meraner and Shmidt, 2018; Yu et al., 2018; Duderstadt
et al., 2021; Sinnhuber et al., 2021).

It is well understood that electron precipitation can occur as a
result of interactions between plasma waves existing in the
magnetosphere and the trapped electron population in the
radiation belts (e.g., Millan and Thorne, 2007; Thorne, 2010).
Electrons can also be lost if the magnetic field line around which
they gyrate is stretched away from Earth or undergoes a
significant geometry variation such that the curvature radius
of the field line is comparable to the gyroradius of the
electrons (e.g., Büchner and Zelenyi, 1989; Dubyagin et al.,
2021; Sergeev et al., 1983, 1993). This process is called field
line curvature scattering or current sheet scattering (CSS). Under
these conditions, the field line no longer traps the electrons, and
these electrons can precipitate into the atmosphere. The location
where precipitation occurs (called isotropic boundary, IB)
depends on electron energy (Capannolo et al., 2022; Yahnin
et al., 2016; 2017). This phenomenon has also been widely
studied for protons (Ganushkina et al., 2005; Gilson et al.,
2012; Liang et al., 2014; Dubyagin et al., 2018).

A comprehensive understanding of which mechanism (waves
or CSS) dominates the electron precipitation and thus the energy
input into the Earth’s atmosphere is still under active research.
Given the Earth’s magnetic field geometry, one would expect that
on the dayside and at low L shells CSS does not contribute much,
but more quantitative studies are still needed. Overall, while
wave-driven precipitation can occur at all MLT (magnetic
local time) sectors, CSS-driven precipitation is indeed
primarily observed over 20–04 MLT (Yahnin et al., 2016;
2017), and overlaps with precipitation driven by waves (for
the most part, electromagnetic ion cyclotron waves, EMIC) in
the midnight sector (Capannolo et al., 2022).

These studies use data from the constellation of satellites called
POES (Polar Orbiting Environmental Satellites) and MetOp
(Meteorological Operational), described in Section 2. An
example of a wave-driven (REP, relativistic electron
precipitation) event is shown in Figure 1A, together with an
example of a CSS-driven (CSS) event (Figure 1B). REP events
show enhancements in the relativistic (>700 keV) precipitating
electron flux (solid red line) and the precipitation is rather

isolated (gray region) in space (L shell) with little/no
precipitation around the main event. This region generally
matches the location where the wave-particle interaction is
efficient to violate the first adiabatic invariant. CSS events,
instead, show an energy-dependent precipitation with higher
energy electrons precipitating at lower L shells than lower
energy electrons (Figure 1B; green, black, and blue solid
lines). This is a direct result from the fact that the electron
gyroradius depends on electron energy: higher energy
electrons have a larger gyroradius, thus are lost by a stretched
magnetic field line at distances closer to Earth (smaller L shells)
than lower energy electrons. Given such a distinct pattern of
precipitation, we can distinguish the precipitation drivers.

So far, existing analyses aiming to distinguish the precipitation
drivers have either focused on a limited time span (Yahnin et al.,
2016; 2017) or on a limited MLT sector (Capannolo et al., 2022).
Identifying precipitation events and visually inspecting their
precipitation patterns to categorize their driver (waves or CSS)
is a rather time-expensive task. Algorithms that find relativistic
electron precipitation events (based on count rate or flux
thresholds) exist in literature (e.g., Shekhar et al., 2017;
Gasque et al., 2021; Capannolo et al., 2022), but they do not
include the distinction between wave-driven precipitation and
CSS-driven precipitation, which is a much more complex task to
perform using algorithms. The goal of this work is to take

FIGURE 1 | Examples of (A) a wave-driven (REP) precipitation event and
(B) a CSS-driven (CSS) precipitation event. Electron flux observed by POES
n19 (A) and MetOp m02 (B) satellites is color-coded by energy channel (as
indicated in panel (B)), and shown as a function of time and satellite
trajectory expressed in L and MLT. Dashed (solid) lines are relative to the 90°

(0°) telescope, indicating the trapped (precipitating) electrons. The
precipitation events are highlighted by the gray rectangles.
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advantage of deep learning techniques not only to find
precipitation events, but also to categorize them into wave-
driven (REP) and CSS-driven (CSS) events. We use the dataset
of precipitation events analyzed in Capannolo et al. (2022), which
were visually classified between wave-driven (REPs) and CSS-
driven (CSSs) precipitation events (details in Capannolo et al.,
2022). This work is an example of an application of supervised
deep learning classification in space sciences that is able to
provide a large dataset of precipitation events classified by
driver (waves or CSS) after an initial manual classification of
events.

2 SATELLITE DATA DESCRIPTION

We use data from the POES and MetOp network of sun-
synchronous satellites in polar orbits at ~800–850 km of
altitude (Evans and Greer, 2004). The Medium Energy
Proton and Electron Detector (MEPED) provides electron
(and proton) flux in three integral channels with cutoff
energies of >30 keV (E1), >100 keV (E2), and >300 keV (E3)
(Rodger et al., 2010). The P6 proton channel is designed to
measure >6.9 MeV protons, however, it is also sensitive to
electrons at >700 keV (Yando et al., 2011) in absence of high
energy protons. Thus, we use the P6 channel as a fourth virtual
electron channel, E4 (Green, 2013). Additionally, each satellite
is equipped with two telescopes: one oriented along zenith (0°

telescope) and one perpendicular to it (90° telescope), both with
full field-of-view angle of 30°. At mid-to-high latitudes, the 0°

telescope provides measurements of electrons precipitating
deep into the loss cone and the 90° telescope provides
observations of trapped electrons. Strong precipitation
typically occurs when the flux observed by the 0° telescope
approaches the flux observed by the 90° telescope, indicating
that a large percentage of trapped electrons are precipitating.
Precipitation events are marked in gray in Figures 1–3, and

highlighted in brown (REP) and blue (CSS) in Figure 4. The
resolution of the electron flux is 2 s, and the constellation of
satellite covers a rather broad L-shell range and MLT sectors.
Typical observations of POES/MetOp are shown in the
Supplementary Figure S1. Each panel shows ¼ orbit of a
POES/MetOp satellites (one pass through the radiation belts)
and highlights the significant variability of flux during the
satellite trajectory.

3 METHODS

In this section, we describe how we prepared the dataset of
precipitation events in order to obtain a well-performing
model. We also describe the model architecture and how it
was decided, as well as how we trained the deep learning model.

3.1 Dataset Preparation
Capannolo et al. (2022) analyzed relativistic electron
precipitation events observed by POES/MetOp from 2012 to
2020 over 22–02 MLT and classified these events between
those driven by waves (called REP events in this work) from
those driven by CSS (CSSs hereafter) using their characteristic
precipitation profile (Figure 1). Note that this dataset was
obtained after careful event classification: only events that
clearly belonged to either category (REP or CSS) were
considered, while ambiguous precipitation events were
carefully discarded. More details on the classification are
provided in Capannolo et al. (2022). In this work, we use this
dataset of precipitation events classified over 22–02 MLT with
additional preprocessing to improve the model performance as
explained below.

Our goal is to build a dataset of precipitation events randomly
stacked one after the other. We consider all four POES/MetOp
electron channels and the two look directions (0° and 90°) for a
total of eight inputs at a given time. The model output (or target)

FIGURE 2 | Portion of the training dataset: (A) class of each data point and b) electron flux for different energies. Dashed and solid lines in panel (B) indicate the 90°

and 0° telescope observations, respectively, as in Figure 1. Precipitation events are highlighted in gray in panel (B) and their relative class is shown in panel (A), where
class 0 indicates “no event”, class 1 indicates “REP event” and class 2 indicates “CSS event”.
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is the data point class (or label, used interchangeably hereafter): 0
is for no-event, 1 is for REP, and 2 is for CSS. Given one event, the
data points are labeled as 1 or 2 during the precipitation (gray
regions of Figure 1) and the adjacent data points (to the left and
right of the event) are labeled with 0. Fluxes ≤0 for all channels are

set to 0.01 (100) s−1cm−2sr−1 for the 0° (90°) telescope
measurements (negative values in POES/MetOp data indicate
unreliable fluxmeasurements). We apply the natural logarithm to
the fluxes and normalize the whole dataset using the
normalization parameters of the train dataset.

FIGURE 3 | Three different portions of the test dataset in a similar format as Figure 2. Panels (A), (C) and (E) show the original class of each event in the dashed
gray line and the class of each event predicted by the model in solid black. Panels (B), (D) and (F) show the electron flux in a similar format as Figure 2B, where each
event (originally identified) is highlighted in gray.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org March 2022 | Volume 9 | Article 8589904

Capannolo et al. Classification of Relativistic Electron Precipitation

63

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


As shown in Supplementary Figure S1, each pass through the
radiation belts highlights a significant flux variability observed by
POES/MetOp, while the precipitation events are rather short-
lived (<30–60 s). As a result, if we use the full day of data when a
given REP/CSS event occurs, we will obtain a label of mostly
zeroes (no-event) and only a few data points at 1 or 2 (indicating
the REP/CSS). This would make the full dataset of stacked events
extremely imbalanced, where only a few percent of the labels are
non-zero. With such dataset, the deep learning model is unable to
perform well and it identifies only the no-events correctly. In
order to overcome this obstacle, we consider a much shorter
window of data for each event: given one event, we label the data
points during precipitation with 1 or 2, but label with 0 only the
data points adjacent to the left and right of the event such that
the total number of data points is 50. In this way, we have

windows of 50-point-long for each event which we stack one
after the other in a random order. Additionally, we ensure that
no other nearby events were occurring within the 50-point-long
window such that in this window there is only one type of non-
zero label (either 1 or 2). Note that if two events of different
classes are adjacent to each other, we rule out both. Instead, if
two REP events are adjacent to each other within the 50-point-
long window, we widen the label of one to include both to ensure
that in each 50-point-long window, there is only one continuous
non-zero label. For the CSS events, we also manually extended
the boundary of the precipitation events to include the full
energy dispersion observed by POES/MetOp because we do not
limit ourselves to the E4 precipitation alone (as done in
Capannolo et al., 2022). This ensures that the full
precipitation pattern (from low to high electron energy) is

FIGURE 4 | Identification and classification of precipitation events on 6 days of POES/MetOp data. Each panel shows the electron flux color-coded in energy
(legend in panel (A)) as a function of L, MLT, and time. Dashed (solid) lines indicate observations of trapped (precipitating) electrons from the 90° (0°) telescope. REP
events identified by the model are highlighted in brown, while CSS events identified by the model are marked in blue.
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identified as a CSS event and used to train the model. Using the
boundaries as in Capannolo et al. (2022) worsens the model
performance because the full extent of the energy-dependent
pattern is not correctly learned by the model. We show a portion
of the dataset in Figure 2: panel A) indicates the label and panel
B) shows the electron flux for all energy channels and look
directions, where the precipitation events are highlighted
in gray.

In order to augment our dataset and provide the model with
a wider variety of precipitation patterns, we also mirror each
precipitation event about its main axis. This does not
introduce data redundancy since each precipitation event
(either mirrored or not) carries a meaningful information.
In other words, a REP/CSS event can be directly observed by a
POES/MetOp satellite following its actual trajectory (e.g., from
low to high L shells), but the precipitation pattern would still
be observed (though symmetrically) if the same POES/MetOp
satellite was travelling along its opposite orbit (e.g., from high
to low L shells) through the precipitation region at the same
time. Note that this is possible since we are only interested in
the profile of the precipitation (i.e., flux evolution as a function
of dataset index) and not its temporal evolution. By using this
methodology, we obtain a dataset of 460 REPs and 348 CSSs for
a total dataset length of 40,400 data points. Although only
~20% of the data points are labeled with 1 or 2 (making this
dataset still imbalanced with respect to the 0 class), the REP
and CSS classes are approximately balanced (~10% data points
are REPs and ~8% data points are CSSs) and the model is able
to identify correctly no-events, REPs and CSSs as we show in
the following sub-sections.

3.2 Model Structure and Training
We adapt a long short-term memory (LSTM; Hochreiter and
Schmidhuber, 1997) architecture (a type of artificial recurrent
neural network, RNN; Rumelhart et al., 1986) for the deep
learning model because it retains input information at much
earlier time steps, making it more efficiently than RNNs for
problems that treat time series. As a matter of fact, the problem of
our work is a time series classification. Although the time variable
is not explicitly used, it is instead intrinsically represented by the
shape of the precipitation. It is indeed the evolution of the
precipitation pattern (isolated vs energy-dependent) that
differentiates between the two drivers of precipitation, as
mentioned in Section 1.

The input format required by LSTM is a tensor, which is
composed of a stack of snapshots of the dataset identified by a
sliding window with stride one and length 7. The label in each
snapshot is assigned as the most probable one (i.e., if the majority
of data points have label of 0, the label assigned to that snapshot is
also 0) and is one-hot encoded. The length of seven is set after
trying different sliding window lengths and choosing the one that
provided the best model performance.

The metrics we use are those of a standard classification
problem and we focus on the F1 score (calculated as the
weighted average of the precision and recall; it expresses how
many events the classifier identifies correctly quantifying also
how many are missed or mislabeled), the AUC (area under the

ROC (Receiver Operating Characteristic) recall vs false-positive-
rate curve) and the AUPRC (area under the precision vs. recall
curve). We perform a k-fold cross validation with k = 10: the
whole dataset is split into 10 portions of which one is used as a test
set and the remaining nine are used as training set. We also
consider a validation set that is 15% of the training set in each
k-fold. The k-fold cross validation consists in training the model
on k different datasets (described above) and estimating the
model performance for each of the k iterations. The final
model performance is the average of the k performances and
the final model weights are obtained by training the model on the
whole dataset (with the exception of 15% of the dataset used for
testing purposes). During training, we use early stopping (with
patience of 10 epochs) on the AUC calculated for the validation
dataset.

4 MODEL PERFORMANCE

We tried different model configurations, all made of a LSTM
layer followed by a fully connected (i.e., dense) layer, ending
with a dense layer of three neurons that outputs one predicted
class. There are two dropout layers (with 0.5 dropout rate)
after the LSTM layer and after the first dense layer. We
validated each model configuration using the k-fold cross-
validation (mentioned above) and we selected the model
configuration with the highest F1 score, AUC and AUPRC.
Out of all the configurations we tried (64 LSTM cells + 256
dense cells; 128 LSTM cells + 128 dense cells; 128 LSTM cells +
256 dense cells; 64 bidirectional LSTM cells + 256 dense cells;
64 bidirectional LSTM cells + 64 bidirectional LSTM cells +
128 dense cells) the model with the best performance is the one
with a layer of 64 bidirectional LSTM cells followed by a fully
connected layer of 256 cells (total number of free parameters is
71,171). The metrics resulting from the k-fold cross-validation
for this model are: F1~0.948, AUC~0.995, and AUPRC~0.990.
Note that the performance among the different model
configurations is similar and differs only on the second or
third decimal figure. Supplementary Table S1 shows the
performance scores (F1, AUC, AUPRC) resulting from the
k-fold cross-validation for each architecture tested. As an
example, Supplementary Figure S2 (panels a–e) shows the
metrics as a function of epoch for the k = 3 fold. Panel f) shows
the confusion matrix averaged from all the confusion matrices
of each k-fold: the highest values are focused along the
diagonal, indicating that the model performs well in
assigning the correct class to each snapshot.

To highlight that the model appropriately identifies and
classifies precipitation events, we show in Figure 3 three
examples of how the model performs on three portions of
the test dataset. Panels A), C), and E) present the model (solid)
and original (dashed) labels and panels B), D), F) show the
electron fluxes in a similar format as Figure 2. The
precipitation events (originally assigned) are highlighted in
gray and their associated class is reported in the panels A), C),
E). Not only the model identifies all precipitation events, but
each event is categorized in the class originally assigned. Note
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that the indices where the labels are non-zero only indicate
that nearby that region the probability of finding an event is
higher than the probability of a no-event, but these indices do
not necessarily represent the exact precipitation event
boundaries (as the original class does). Nevertheless, the
labels predicted by the model are in good agreement with
the original location and class of the events highlighted in gray.
The model labels seem to be shifted to the left by a few data
points compared to the original classes, due to the fact that we
assign a class to each snapshot of length 7 (described in Section
3.1). In other words, the very first snapshot is classified with
the most probable label in the first seven data points. As the
sliding window progresses with stride 1, each label is
associated with the following seven data points resulting in
anticipating the snapshot classification.

4.1 Model Application on Several Days of
POES/MetOp Data: Preliminary Results
As we showed in Section 3.1, the dataset used for training has
been significantly shrunk to only 50 data points for each
precipitation event observed by POES/MetOp. In this section,
we explore the model performance on longer time periods (full
day of POES/MetOp data, the significant flux variability of which
is shown in Supplementary Figure S1 to test its generalization
ability.

We apply the model to several POES/MetOp days and show
the results in Figure 4 and Supplementary Figure S3. Each
panel in these figures is from a different date and none of the
events shown belong to the dataset prepared in Section 3.1
(they are all out-of-sample). Here, we are only considering
events occurring in the outer radiation belt, thus we filter out
any events occurring at L < 2.5 or L > 8.5 (L is expressed using
the International Geomagnetic Reference Field, IGRF, model
in POES/MetOp data). The panels on the left column of
Figure 4 show REP events (highlighted in brown), whereas
the events on the right column are CSSs (highlighted in blue).
This classification is accurate because the classified REPs
indeed show isolated E4 precipitation, while the classified
CSSs display an energy-dependent precipitation. During
REP events (Figures 2–4), although the low-energy
electrons (E1, E2 and E3 channels) appear to precipitate as
well, their flux is likely the result of proton contamination,
which is known to affect the electron measurements onboard
POES/MetOp satellites (e.g., Evans and Greer, 2004; Yando
et al., 2011; Capannolo et al. 2019, 2021). Note again that the
location where these events are identified by the model differs
from the exact event location by a few data points. This is not a
major concern as this shift appears to be systematic and can be
corrected in the post-processing by shifting the predicted
model class by a few data points.

On the contrary, Supplementary Figure S3 shows examples
when the model does not perform very well and identifies two
adjacent precipitation events belonging to different classes
(panels a and b), mislabeled events (panel c) or false positive
events (panel d). The cases in panel a) only last one data point
and could be potentially disregarded since the model does not

identify a long enough non-zero label. The event in panel d)
shows a precipitating E4 flux that is higher than the others,
which could indicate a potential issue in the recorded POES/
MetOp data. Events in panels b) and c) instead must be
appropriately ruled out or inspected further (e.g., what is the
probability of each class? Is the probability of the CSS class
comparable to that of the REP?). Handling false positives is
beyond the scope of this work and we are aware that post-
processing on the model output is needed before using these
results for scientific research. The post-processing should rule
out events lasting only one data point, adjacent events belonging
to different non-zero classes, and events in the South Atlantic
Anomaly, as well as improving the L shell calculation for each
event (using Tsyganenko models such as the T89 (Tsyganenko,
1989) or T05 (Tsyganenko and Sitnov, 2005)) used to consider
events occurring only in the outer radiation belt.

5 CONCLUSIONS AND DISCUSSION

In this work, we showed an example of an application of
supervised deep learning to space sciences. Understanding
when, where and why relativistic electrons precipitate into the
Earth’s atmosphere has a longstanding relevance for a variety of
reasons (from improving our knowledge on plasma dynamics to
study the space weather impacts of electron precipitation). In this
work, we focused specifically on relativistic electron precipitation.
Our goal was to classify the relativistic electron precipitation
events depending on their spatial precipitation pattern, which in
turn corresponds to their magnetospheric driver (waves or
current sheet scattering). We used data from the POES/MetOp
constellation of low-Earth-orbit satellites. Our task was
supervised because we used the list of events studied by
Capannolo et al. (2022), which were visually classified. Note
that these events were classified only in a limited MLT sector
(22–02); however, their MLT value was not used as input in the
model, and in fact, our model is able to identify precipitation
events at any MLT.

The dataset preparation was key to obtain a satisfying model
performance. By considering only a short time window around
each event instead of the full day of POES/MetOp data, using
non-zero labels to indicate REPs (class of 1) or CSSs (class of 2)
and labels at 0 to indicate the no-event, and including electron
fluxes observed at different energies and look directions, we were
able to obtain an appropriate dataset to use for training. We
found that the LSTM architecture is suitable for identifying
precipitation events and classifying them by precipitation
pattern given its ability to consider the data history (in our
case the precipitation pattern profile evolution along the
satellite trajectory).

Our model is composed of one layer of 64 bidirectional LSTM
cells, one layer of 256 fully connected neurons, and one layer of
three dense cells. The inputs are the electron fluxes at different
energies and look directions, and the output is the class of each
data point. We obtained the model metrics (F1~0.948,
AUC~0.995, and AUPRC~0.990) by conducting a k-fold
cross-validation (k = 10). Our model is able to learn the
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dataset properties correctly. The model is not only able to identify
the electron precipitation events, but it also appropriately
classifies them by their drivers.

Since the dataset used for training and testing purposes has
been specifically designed to obtain a good model
performance, it shows less variability than that typically
observed by POES/MetOp over an entire orbit.
Nevertheless, our model is still able to identify and classify
the precipitation events when applied to a full day of data
(Figure 4), though some false positives might still be identified
(Supplementary Figure S3). Post-processing of these results is
needed before being able to use the model outputs for scientific
research; however, this is beyond the scope of this paper and
left for future investigation. Once the post-processing routine
is developed, this model could be easily used as a tool to
produce lists of relativistic electron precipitation events in a
very short amount of time, overcoming the complex task of
developing deterministic algorithms based on flux thresholds
to delineate the precipitation patterns and the time-expensive
task of visually classifying these events by driver. In this way,
we would be able to extend the study conducted in Capannolo
et al. (2022) to the whole MLT range and statistically
investigate on where the CSS effects should be considered
for radiation belt and precipitation modeling, as well as
compare them with the precipitation driven by waves. Such
event dataset would also potentially open additional avenues of
machine learning applications to space sciences; for example,
from a space weather point of view, we could investigate if the
electron precipitation events can be predicted by using solar
images, solar wind data and/or geomagnetic indices.
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Overshoot Structure Near the Earth’s
SubsolarMagnetopause Generated by
Magnetopause Motions
Xiaojian Song1, Pingbing Zuo2*, Zhenning Shen2, Xueshang Feng2, Xiaojun Xu3, Yi Wang2,
Chaowei Jiang2 and Xi Luo1

1Shandong Institute of Advanced Technology, Jinan, China, 2Laboratory for Space Weather Storms, Institute of Space Science
and Applied Technology, Harbin Institute of Technology, Shenzhen, China, 3State Key Laboratory of Lunar and Planetary
Sciences, Macau University of Science and Technology, Macao, China

For magnetopause crossing events, the observed magnetospheric magnetic fields in the
vicinity of the subsolar magnetopause frequently present an overshoot structure; that is,
in small vicinity of the magnetopause, the closer to the magnetopause, the stronger the
magnetospheric magnetic field is. In this investigation, an automatic identification
algorithm is developed to rapidly and effectively search the magnetopause crossing
events using THEMIS data from 2007 to 2021. Nearly 59% of magnetopause crossing
events identified near the subsolar region appear an overshoot structure. The statistical
result shows that, for overshoot cases, the normalized change rate of magnetospheric
magnetic field near the magnetopause is linearly related to the normalized
magnetopause velocity, which means that the overshoot structure may be caused by
the redistribution of the magnetospheric magnetic field due to the rapid magnetopause
motion.

Keywords: magnetopause motion, magnetospheric magnetic field, overshoot, solar wind, spacecraft data analysis

1 INTRODUCTION

The magnetospheric magnetic field (MMF) originates from the Earth’s main field, current systems
inside the magnetosphere, for example, ring current, tail current, ionospheric current, field-aligned
current [ [1], and references therein], Chapman–Ferraro current on the boundary [2], and the
interconnection due to partial penetration of the interplanetary magnetic field into the
magnetosphere [3, 4]. The MMF is totally confined in the magnetosphere when ignoring the
magnetic reconnection process around the magnetopause. The motion and deformation of the
magnetopause will lead to the redistribution of the MMF [4, 5]. The position of the magnetopause is
determined by the pressure balance on both sides. As the dynamic pressure of the solar wind varies
dramatically, the position of the magnetopause is extremely unstable with the subsolar point
distributing from 5 to 22 RE [6, 7], where RE is the radius of the Earth. According to the
statistical results of the work of Paschmann et al. [8], the maximum normal velocity of the
magnetopause is 367 km/s and the mean value is 51 km/s. This result is consistent with previous
investigations [9–12]. The period of fluctuation of the magnetopause is mostly less than 200 s [13,
14], which arises or grows due to the boundary-inherent Kelvin–Helmholtz instability, or external
sources, for example, solar wind pressure pulses or waves and disturbances in the foreshock region
[15, 16]. On the other hand, the magnetopause is not always a smooth surface. Some local distortions,
driven by flux transfer events, Kelvin–Helmholtz waves, and magnetosheath jets, may appear on it
[17, 18].
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For spacecraft located near the magnetopause, a number of
magnetopause crossing events (MCEs) are expected to be
detected as the location of the magnetopause is very volatile
along with the change of the solar wind conditions, especially
when the dynamic pressure pulse structures imping on the
magnetosphere. In this study, we analyze the MCEs detected
by THEMIS when THEMIS’s apogee was located near the
subsolar point. It is found that a large fraction of cases
interestingly appear an overshoot structure as observed in the
bow shock region [19, 20]; that is, from the magnetosphere to the
magnetosheath, the magnetic field intensity increases quickly
right before the magnetopause ramp, so the MMF adjacent to
the magnetopause is stronger than that further away from the
magnetopause. This structure is not rarely observed, but it still
has not been paid much attention yet in the community of
magnetopause research. To further understand this
phenomenon, we carry out a statistical research on the
relationship between the change rate of MMF near the
magnetopause and the instantaneous speed of the
magnetopause motion, based on an overshoot-type MCE
database constructed from nearly 15 years’ THEMIS
observations at the subsolar region. It is found that the
normalized change rate of MMF during the overshoot interval
depends linearly on the normalized magnetopause motion speed
in the statistical sense.

In Section 2, we give a brief introduction to the THEMISMCE
dataset constructed by an automatic MCE identification
algorithm, and then, some typical MCEs are shown to present
the interesting overshoot structure in Section 3. A statistical
analysis about the dependence of the variation of MMF near the
subsolar magnetopause and the magnetopause motion is given in
Section 4. In the last section, a brief summary and discussion
are given.

2 MCE HUNTING ALGORITHM

The five THEMIS probes were placed in highly elliptical
equatorial orbits on 17 February 2007 [6, 21]. Right after the
launch, all probes were lined up in the same orbit with a 15.4 RE
apogee. Around 2008, the orbits began to separate, with the
apogee of THB, THC, THD&E, and THA being 30 RE, 20 RE,
12 RE, and 10 RE, respectively. Since 2011, THB&C became
ARTEMIS and orbited the moon, the remaining three Earth-
orbiting probes had an apogee of approximately 12 RE. The
apogee rotated slowly around Earth to cover the dayside,
dawnside, nightside, and duskside of the magnetosphere. In
this study, the ion data from the electrostatic analyzer [22]
and magnetic field measurements provided by the fluxgate
magnetometer [23], both with the time resolution of ~ 3 s, are
used to identify MCEs.

Manual identification of MCEs can be a labor intensive task,
since for the spacecraft located near the magnetopause, a number
of MCEs are expected to be detected as the location of the
magnetopause is dynamically controlled by the change of the
solar wind conditions and inherent waves. Especially in a long-
term survey, with hundreds or thousands of potential MCEs,

manual identification becomes impractical [24]. On the other
hand, manual identification is bound to be biased in some way.
An observation classified as a MCE by one observer will not
necessarily be classified as such by another observer [12]. To
improve the identification efficiency, some automatic MCE
identification routines were developed. MCEs have been
automatically identified [7, 13, 24] in terms of the distinct
difference between the disturbance level of the magnetic field
in the magnetosphere and in the magnetosheath. However, some
structures, such as current sheet in the magnetosheath, may also
exhibit a large difference in the disturbance of the magnetic field
with respect to the background magnetosheath. These structures
may be mistaken for MCEs under this simple criterion. Suvorova
[25] established two criteria for GOES and LANL to identify
geosynchronous MCEs. For GOES (without particle data), their
criterion is the correlation between the magnetic field observed by
GOES and upstream monitor and the deviation of the observed
magnetic field from the MMF. For LANL (without magnetic field
data), their criterion is the difference of the ratio of density and
temperature of high-energy ions in the magnetosheath and in the
magnetosphere. These two criteria can only be used in
geosynchronous MCE identification. Jelinek et al. [26] used
the ratio of the parameters (magnetic field intensity and
plasma density) observed by THEMIS and ACE at the same
time to determine the most probable magnetopause locations in a
statistical sense but failed to give the accurate magnetopause
crossing time.

In this study, we develop a new algorithm to automatically
identify MCEs and accurately determine the boundary layer
between the magnetosheath and the magnetosphere using the
in situ plasma and magnetic field data. The automatic
identification of MCEs is designed in a four-step manner.

1) STEP 1: recognization of the region in which the probe is
located (magnetosphere or magnetosheath).

In STEP 1, ion spectral energy flux density is used to
distinguish the region in which the probe is located, but
when the probe is located in the inner magnetosphere, the
quality of the particle data measured by ESA is not good and
missing data often occur. On the other hand, Park et al. [7]
mentioned that the position of the subsolar magnetopause
ranges from 5 to 22 RE. Here, the probe is regarded to be
located in the magnetosphere, if the radial distance of the probe
from the Earth, R, is less than 5 RE.

Figure 1 shows the ion spectral energy flux measured by THD
in the magnetosphere (left) and in the magnetosheath (right). The
two energy spectral curves are distinctly different: in the
magnetosheath, the flux of middle energy is high and the
fluxes of low and high energy are low; contrarily, the high
energy flux in the magnetosphere is high. To describe the
characteristics of the energy spectral curve, some parameters
are defined. emax is the logarithmic value of energy (unit is eV)
corresponding to the maximum flux of ion spectral flux density
(see Figure 1). eleft and eright are the logarithmic value of energies
on both sides of emax corresponding to the flux one-tenth lower
than the maximum flux.
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The probe is considered to be located in the magnetosphere, if
the following conditions are satisfied:

• R ≤ 5 RE ⋃ emax ∉ [2, 3.5]

If the following condition is satisfied, the probe is considered
to be located in the magnetosheath:

• R > 5 RE
• emax ∈ (2, 3.5)⋂ eright − emax > 0.5⋂ emax − eleft > 0.5⋂ eright
− eleft > 1

2) STEP 2: finding the candidate crossing time interval.

Based on the result of the region recognized in STEP 1, the
candidate crossing time intervals, [tsp,app, tsh,app], are searched,

where tsp,app denotes the start time (magnetospheric side) of
crossing and tsh,app denotes the end time (magnetosheath side)
of crossing. To avoid possible misjudgment, some more
restrictions on the selection of MCEs are needed:

• Probe stays in the magnetosphere or magnetosheath region
at least for 1 minute

• MCE completes in less than 1 minute

Note that these time constraints are mainly used to avoid
possible misjudgment in STEP 1. It does not mean that the final
result must meet the constraints in this step, as the next step
slightly adjusts the start and end times of crossing to get the
accurate one.

3) STEP 3: obtaining the accurate crossing time interval.
The third step is used to get the accurate crossing time based

on the difference of the strength and disturbance level of Bz (the Z
component of the magnetic field) in the magnetosphere and in
the magnetosheath. As shown in Figure 2, the accurate start time
of crossing is searched from tsp,app − 60 to tsh,app + 60 point by
point, which satisfies the following conditions:

• Bz [ti] − Bz [ti+1] > 3σ(Bz,sp) (green asterisks in Figure 2)
• min(Bz[ti: ti+5]) < Bz,max − 0.25(Bz,max − Bz,min) (upper
blue dashed horizontal line)

The end time of crossing is the first time point that satisfies the
following:

• Bz [ti] < Bz,max − 0.75(Bz,max − Bz,min) (lower blue dashed
horizontal line)

Here, Bz [ti] is the Z component of the magnetic field in the
GSM coordinate system at time ti; σ(Bz,sp) is the standard
deviation of Bz observed within 1 minute just inside the
magnetopause; Bz, max is the maximum value of Bz observed
within 1 min from the magnetopause crossing time; and Bz, min

is its minimum value.

FIGURE 1 | (A,B) Ion spectral energy flux densities observed by THD in the magnetosphere andmagnetosheath, respectively. The observation times are marked in
the title of each subfigure. The red asterisks denote the maximum flux, and the green asterisks indicate the point at which the flux is one-tenth lower than the
maximum flux.

FIGURE 2 | Schematic picture to show how to get the accurate
magnetopause crossing time in STEP 3. The solid (dashed) vertical lines
denote the crossing time interval obtained in STEP 2 (STEP 3).
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4) STEP 4: confirming the crossing time interval.

The last step is to confirm the crossing time interval based on
the criteria of Ivchenko et al. [13]:

• MCE should be completed within 30 s
• The standard deviation of magnetic field in the
magnetospheric side is required to be less than 40% of
that in the magnetosheath side

• The northward component of the MMF is required to
exceed 10 nT

• The northward component of the MMF is required to be at
least a factor of 1.3 greater than the corresponding
magnetosheath component

According to the used criteria, our method is more suitable to
identify MCEs when the magnetic field in the magnetosheath is
southward. It can also obtain a good result when the magnetic field
in the magnetosheath is northward, but it requires that Bz in the
magnetosphere is 1.3 times bigger than that in the magnetosheath.
Exactly speaking, this method may lose some cases, especially when
the magnetic field strengths on the magnetospheric and
magnetosheath sides are nearly equal to each other. These cases
usually cannot give a clear magnetopause crossing time even by

FIGURE 3 | Typical subsolar MCEs with an overshoot structure
observed by THD between 03:24 UT and 03:36 UT on 26 October 2017. The
parameters from top to bottom are ion spectral energy flux density, the three
components of the magnetic field, the magnetic field strength, the bulk
velocity of ion, various pressure (the red line means the total of magnetic and
thermal pressure), and the position of THD. The time intervals marked by two
vertical dashed lines are the magnetopause crossing time identified by our
MCE automatic identification algorithm. The change rate of MMF is calculated
by data measured during the time interval marked by oblique stripes.

FIGURE 4 | Typical subsolar MCEs without an overshoot structure
observed by THA between 19:16 UT and 19:28 UT on 18 August 2008. The
format is the same as in Figure 3.

FIGURE 5 | Typical subsolar MCEs with overshoot structure observed
by THE between 17:28 UT and 17:40 UT on 18 October 2009. The format is
the same as in Figure 3.
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manual inspection. So, it is rational to omit them. Our procedure has
been applied to the observations of five THEMIS probes between
2007 and 2021 to search for MCEs. As we focus on the MCEs near
the subsolar region, the MCEs observed only within 30o between the
Sun–Earth line are suitable for further research. As the position of
the magnetopause and the magnetic field just inside the
magnetopause can be affected by the dipole tilt angle [27, 28],
the constraint that the MCEs should be within 20o from the equator
in the sum of the latitude of the magnetopause and the dipole tilt
angle is added to the selection criteria. Eventually, 10,462 events of
magnetopause crossing have been successfully identified by our
method, which constructs an MCE database for further statistical
study on the large-scale magnetopause structures and some
important scientific problems related to small-scale structures of
themagnetopause. In this study, we focus on the variation features of
the MMF just inside the subsolar magnetopause.

3 OVERSHOOT STRUCTURE ADJACENT
TO THE MAGNETOPAUSE

Figures 3–5 show six typical subsolar MCEs identified by our
automatic identification algorithm. The parameters in each figure
from top to bottom are ion spectral energy flux density, three
components of the magnetic field, magnetic field intensity, bulk
velocity of ions, and position of the probe. As the inspected time
interval is short and the velocity of the probe is very small relative
to the speed of the magnetopause, the probes are regarded as
being located at fixed points during the inspected interval.

Figure 3 presents two consecutive MCEs detected by THD
between 03:24 UT and 03:36 UT on 26 October 2017. At the
beginning of this time interval, THD was located in the
magnetosphere where the high-energy ions and strong magnetic
fields were dominated. Around 03:28:14 UT, an abrupt decrease in
the magnetic field strength and increase in the particle flux were
observed, indicating that the magnetopause was moving inward and
crossed THD. The crossing direction, Dir, is defined as 1 when the
probe crosses the magnetopause from the magnetosphere to the
magnetosheath and equal to -1 when the probe crosses in the
opposite direction. The regions between two vertical dotted lines
are procedure-given ramps of the magnetopause crossing, which
denote the sharpest field change between themagnetosphere and the
magnetosheath. It can be seen that, from the magnetosphere to the
magnetosheath, the magnetic field in the vicinity of the ramp first
increased gradually from a relatively stable state and then decreased
sharply, which resembles a magnetic overshoot structure that is
frequently observed at planetary bow shocks. The MMF strength
observed by THDwithin 30 s adjacent to themagnetopause crossing
time increased quickly and arrived at its peak just inside the
magnetopause, B0 = 83.71 nT. The variation of MMF can be
fitted by a straight line. The slope of the fitted line, SB, is
0.73 nT/s, and the mean absolute deviation from the observation,
MD, is 0.33 nT. At 03:28:14 UT, the magnetopause was located at
(9.1, -3.8, 2.5) RE in the GSM coordinate system, and the
magnetopause standoff distance, R0, is 10.19 RE. Subsequently,
the magnetopause moved outward and crossed THD again at 03:
31:23 UT. After the second MCE, MMF decreased quickly from its

peak value (B0 is 69.15 nT). The change ofMMF can also be fitted by
a straight line with SB = −0.28 nT/s and MD = 0.38 nT.

Figure 4 shows the observations of THA between 19:16 UT
and 19:28 UT on 18 August 2008 when THA was located at (9.6,
-0.01, -3.5) RE. THAwas located in the magnetosheath at the start
time, and it crossed the magnetopause at 19:20:26 UT.
Subsequently, the magnetopause moved inward and crossed
THA at 19:23:56 UT. It can be seen from case 3 that, unlike
case 2, the MMF increased gradually, and it can also be fitted by a
straight line with SB = 0.82 nT/s and MD = 0.87 nT. On the other
hand, in case 4, unlike case 1, theMMF changed irregularly (MD =
1.56 nT), although the overall trend was decreasing.

Figure 5 presents two consecutive MCEs detected by THE
during the interval between 17:28 UT and 17:40 UT on 18
October 2009. During this time interval, THE was located at
(10.9, -3.4, 1.0) RE. At the beginning of this time interval, THE
was located in the magnetosphere, and it crossed the
magnetopause around 17:33:22 UT. The magnetic field just
inside the magnetopause increased linearly with SB = 0.15 nT/s
and MD = 0.09 nT. The magnetopause moved outward and
crossed THE again at 17:34:10 UT. After the second MCE, the
MMF adjacent to the magnetopause also showed an overshoot
structure with SB = −0.27 nT/s and MD = 0.44 nT. For the two
events, although the MMF had some oscillations in 17:28–17:32
and 17:35–17:40, which were possibly triggered by magnetopause
motion or other small structures appearing on the magnetopause,
the overshoot can be easily identified.

Thousands of MCEs have been detected by the five THEMIS
probes. After visual inspection of the variations of MMFs just inside
themagnetopause, it is found that, like case 1, case 2, case 5, and case
6, an overshoot structure, that is, from the magnetosphere to the
magnetosheath, the magnetic field adjacent to the magnetopause
plane increases quickly in a short interval from a relatively stable
MMF state and then decreases sharply at the crossing ramp, is very
common. Here, the criteria to judge an overshoot structure are as
follows: MD is smaller than 1 nT and SB*Dir > 0. Totally, we got
6,170 (~ 59%) cases with overshoot in all 10,462 MCEs for further
analysis.

4 RELATIONSHIP BETWEEN OVERSHOOT
AND THE MAGNETOPAUSE MOTION

A statistical research on the relationship between the magnetic
field intensity at the point fixed on the magnetopause, B0, and the
subsolar magnetopause standoff distance, R0, was carried out by
Shue et al. [29]. In their work, a simple equation was obtained to
fit their dependence based on 614 subsolar MCEs with plateau
magnetic fields in the magnetospheric side:

B0 ∝RD
0 , (1)

where the power law exponent, D, is used in contrast to the
expected -3 for the pure dipole magnetic field. Is this equation still
valid under an overshoot structure? Overshoot structure means
that the magnetosphere is not in a steady state; this situation is
most likely caused by the motion of magnetopause. So, we will
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conduct a statistical research on the relationship between
overshoot and the magnetopause motion in the following.

The normal speed of the magnetopause, Vmp, can be obtained
by the de Hoffmann–Teller velocity [30], VHT, and the
magnetopause normal direction is obtained by constrained
minimum variance analysis [31], nmvabc. The ratio of the
middle and the smallest eigenvalue obtained in the
constrained minimum variance analysis procedure, λ2/λ3,
marks the quality of the normal, and the larger the λ2/λ3, the
more reliable the normal, and the threshold is often taken as 2
[32]. The angle between the magnetopause normal calculated by
constrained minimum variance analysis and by Shue et al. [33],
Φ, is also recorded to indicate the degree of magnetopause
deformation from the normally smoothed magnetopause. The
larger the Φ, the greater the deformation. On the other hand, the
correlation coefficient of two electric fields calculated by E1 = −
v × B and EHT = − VHT × B (v, B are the ion bulk velocity and
magnetic field observed by the probe adjacent to the
magnetopause, respectively), HTcc, denotes the quality of the
de Hoffmann–Teller frame, and it ranges from 0 to 1. The
larger the HTcc, the more reliable the de Hoffmann–Teller
frame. The reliability of the magnetopause normal velocity
depends on the reliability of the normal direction, nmvabc, and
de Hoffmann–Teller velocity, VHT. Three criteria with limits on
λ2/λ3, HTcc, and Φ are used to select cases with reliable normal
velocity, which are shown in Table 1. λ2/λ3 > 5 guarantees the
reliability of the calculated normal direction, HTcc > 0.8 ensures
that the calculated de Hoffmann–Teller frame is reliable, andΦ <
20o denotes that the magnetopause is not greatly deformed.
Among the identified MCEs with overshoot, 1,641 cases meet
these requirements, and the corresponding normal velocities are
calculated.

The interplanetary magnetic field direction may have a great
influence on the state of the magnetosphere, but the uncertainty
of the traveling time of solar wind from bow shock to the
magnetopause is large, and the magnetic field direction may
change when they travel to the magnetosheath. Figures 3 and 4
clearly show the existence of the turbulent fluctuations of the
magnetic field and velocity in the magnetosheath. To date, a
number of distinct case studies and a few statistical explorations
at different parts of the magnetosheath show that the turbulence
feature is highly related to the background and upstream
conditions [34]. Magnetosheath turbulence will disconnect the
Bz components of the magnetic field in the solar wind and near
magnetopause. Pulinets et al. [35] show that the sign of the Bz
near the magnetopause subsolar point does not coincide with the
sign of interplanetary magnetic field Bz in ~ 30% cases, but it is
the magnetosheath magnetic field that directly influences the
state of the magnetosphere. So, the averaged Bz within 30 s just

outside the magnetopause is used to study the direction effect. We
select and divide these events into two groups: 923 cases with
northward magnetosheath magnetic field (Bzsh > 2 nT) and 587
cases of southward magnetosheath magnetic field (Bzsh < − 2 nT).
The parameter Bzsh = ±2 nT is chosen based on two principles: 1)
enough samples (> 500) to provide meaningful statistical results,
and 2) the data set in different groups should be distinguished
significantly. The distribution of MCEs in the (x,

������
y2 + z2

√
) plane

are plotted in Figure 6. There is no obvious regional aggregation
and no obvious difference under southward and northward
magnetosheath magnetic field.

Figure 7 shows the statistical results based on these events. In
Figure 7A, log10(B0) is plotted against log10 (R0) for the northward
magnetosheath magnetic field. Figure 7B shows the relation
between SB/B0 and Vmp/R0 for the northward magnetosheath
magnetic field. Figure 7C and Figure 7D are drawn in the same
format as Figure 7A and Figure 7B, respectively, except for the
southwardmagnetosheathmagnetic field. These data can be fitted by
straight lines, and the fitting parameters are integrated into Table 2.
It can be seen that log10(B0) and log10 (R0) have a good linear
relationship in Figures 7A,C, and their correlation coefficients, cc,
are -0.89 and -0.87, respectively. An F test is performed to evaluate
the confidence level of a fit [36]. The critical F value tabulated with
95% confidence and 921 (585) degrees of freedom is 3.86 (3.86). The
calculated F values from the data are 3,483 and 1,797, which are
much larger than the critical F value. This demonstrates the
rationality of Eq. 1. The normalized change rate of MMF, SB/B0,
and the normalized speed of the magnetopause, Vmp/R0, shown in
Figures 7C,D, all have a clear linear relationship with cc equal to
-0.68 and -0.71, respectively, and the calculated F value (806 and 588)
is also much larger than the critical F value.

5 SUMMARY AND DISCUSSION

In this study, the variation of the MMF just inside the subsolar
magnetopause is studied, andwe find thatmore than half of theMCEs
show an overshoot structure. It is also found that the normalized
change rate of the magnetic field intensity just inside the subsolar
magnetopause is linearly related to the normalized velocity of the
magnetopause in cases showing an overshoot structure.

It is reasonable to consider that the overshoot may be a certain
kind of the magnetopause current layer itself. Generally, the
magnetopause is made up of the magnetopause current (it may
be composed of several current layers). Some other structures will be
distributed on both sides, such as the depletion layer, magnetosheath
boundary layer, and low latitude boundary layer. However,
according to previous studies, no evidence indicated that these
current sheets and structures can result in the formation of the
overshoot magnetic structure near the magnetopause. In addition,
some kinds of waves and local indentations may appear on the
magnetopause, which have been reported in few case studies. These
structures may be common (although few reported), but so far, there
is no statistical study on this issue. Although they are possibly
responsible for the formation of the overshoot in a statistical sense, it
is difficult to explain the linear relationship between the variation of
magnetic field and the magnetopause motion for this kind of

TABLE 1 | Criteria for selecting cases with reliable normal velocity.

No. Criterion

1 λ2/λ3 > 5
2 Φ < 20o

3 HTcc > 0.8
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overshoot. To study the wave propagation and the indentation at the
magnetopause surface, multiple spacecraft data analyses are needed,
and it is more suitable for a case study. For a single spacecraft, it is
impossible to distinguish whether themagnetic field variation comes
from spatial or temporal effect.

The fitting result between log10(B0) and log10 (R0) shows that the
magnetic field strength just inside the magnetopause with the

northward magnetosheath magnetic field is usually larger than
that with the southward magnetosheath magnetic field. This
result is consistent with the results of the work of Shue et al. [29]
and Wang et al. [37]. The fitting result between SB/B0 and Vmp/R0
shows that the magnetic field strength just inside the magnetopause
with the northward magnetosheath magnetic field may be slightly
more compressed than that with the southward magnetosheath

FIGURE 6 | Distribution of the location of magnetopause crossing events in the (x,
������
y2 + z2

√
) plane. Black (red) color means the case is selected under the

northward (southward) magnetosheath magnetic field.

FIGURE 7 | Statistical results based on MCEs with an overshoot structure. (A) Here, log10(B0) is plotted against log10 (R0) for Bzsh > 2nT. (B) The relation of SB/B0

and Vmp/R0 for Bzsh > 2nT. (C) and (D) Plotted in the same format as in (A) and (B), respectively, except for Bzsh < − 2nT. These data are fitted by straight lines shown by
red color.
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magnetic field with the same inward magnetopause velocity, as the
slope in Figure 7B is a little smaller than that in Figure 7D. This
effect may be caused by the magnetic erosion under the southward
magnetosheath magnetic field [38].

Considering the aforementioned information, we think the
temporal change due to magnetosphere compression or
decompression is very likely to be responsible for the gradual
magnetic increase (overshoot under magnetopause inward
motion) or decrease (overshoot under magnetopause outward
motion). Here, we give a brief explanation to the overshoot
structure. When the magnetopause moves inward or outward
rapidly, the MMF will change dramatically resulting from the
quick change of position and intensity of the magnetopause
current system. One probe at a fixed position in the
magnetosphere near the subsolar magnetopause will experience a
very rapid increasing or decreasing magnetic field due to the
reconfiguration of MMF, in response to the sudden compression
or decompression of the magnetosphere. Therefore, the overshoot
structure is expected to be formed. Likewise, when the
magnetopause is stable or the motion of magnetopause is
relatively slow, the variations of MMF at a fixed point can be
negligible. In addition, sometimes when the magnetopause moves
slowly, the influence of other processes (e.g., plasma wave and other
current systems) may result in the irregular variation of MMF near
the magnetopause.
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Understanding Large-Scale Structure
in Global Ionospheric Maps With
Visual and Statistical Analyses
Olga Verkhoglyadova*, Xing Meng and Jacob Kosberg

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States

We applied two different techniques to identify high-density structures in global maps of
height-integrated electron density of the Earth’s ionosphere. We discuss benefits and
limitations of these approaches to structure identification. We suggest that they are
complementary and can aid our understanding of the properties of the global
ionosphere. We stress out importance of a consistent definition of large-scale
ionospheric structures.

Keywords: ionosphere, machine learning, statistics, electron density, geomagnetic activity

INTRODUCTION

Global ionospheric state of the Earth’s upper atmosphere is frequently characterized by the
total electron content (TEC) that is vertically integrated electron density. TEC distribution
over the globe features prominent daytime equatorial ionization anomalies (EIAs), see for
instance (Schunk and Nagy, 2009). Observations and follow-up modeling provide evidence of
multiple regions with elevated TEC (Maruayama et al., 2016; Astafyeva et al., 2016; Astafyeva
et al., 2017) that also include EIAs, i.e., high density regions (HDRs). Physical mechanisms
responsible for HDR formations are not well understood. However, knowledge of HDRs, their
occurrence, morphology, and evolution are important for space weather forecasting. We
suggest that a robust methodology needs to be developed to identify TEC structures,
i.e., HDRs, and create an extensive database of the structure occurrences. Such a database
should contain information on locations of HDRs, TEC magnitude, time and local time of
occurrences, and ancillary information on geomagnetic and solar activity. The data will be
crucial for identifying physical mechanisms, testing physical hypotheses and validating
modeling results.

To illustrate two different approaches to HDR identification, we use a timeseries of global
ionospheric maps (GIMs), a gridded 2D data product for TEC that is commonly used to visualize
global ionospheric state. We used two techniques, a mixture method approach and a computer
vision approach, that can be utilized to address the following questions. How many anomalies
and how many HDRs are present in a GIM? How does the number of the HDRs and their
intensities depend on solar and geomagnetic activity? We used the GIM dataset (binned 1° by 1°

for every 15 min, https://sideshow.jpl.nasa.gov/pub/iono_daily/gim_for_research/jpli/)
produced by Jet Propulsion Laboratory, California Institute of Technology for over 20 years
to demonstrate these two approaches. We would like to note that there are several GIM data
products available (see the reviews by Hernandez-Pajares et al. (2017); Roma-Dollase et al.
(2018)). We chose JPL GIM in this study as a representative GIM dataset with 15-min temporal
resolution. Figure 1 shows an example of JPL GIM with two EIAs over the South America and
several other HDRs. Below we will briefly discuss our approaches. We focus on large-scale
(thousands of km) structuring of the ionosphere.
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MIXTURE METHOD

An unsupervised Gaussian Mixture (GM) method, as
implemented by scikit-learn (Pedregosa et al., 2011) is utilized
to identify unique TEC sub-populations or HDRs (https://scikit-
learn.org/stable/modules/mixture.html#mixture). This approach
is informative and can be used to understand hierarchical layering
of Gaussian clusters. We assume TEC data points arise from a
mixture of a finite number of Gaussian distributions whose
parameters are unknown. Due to the topology of GIMs, we
had to extend scikit’s GM implementation to account for

periodic boundaries, i.e., a high-density region that “wraps
around” the zero meridian will not be counted as two
regions. For each possible number of expected clusters
(one to ten, but no higher, to reduce computational
requirements and match the order of magnitude of the
Computer Vision Method), we compute GM parameters
and identify the associated Bayesian Information Criteria
(BIC) of each fit. The optimal cluster count was then
selected by choosing the knee of the emerging plot of
cluster count vs. BIC. This method is sometimes called the
Elbow method in statistical clustering. Figures 2A,B show
examples of identifications of 2 and 5 clusters,
correspondingly. Here, horizontal axes correspond to
geographic latitude and longitude. The vertical axis shows
the cluster number. This approach is based on statistical
properties of the TEC distribution and is sensitive to
visually small changes in background density. Note that
the GM method designates the background as one of the
clusters. Thus, upon visual inspection there is one HDR on
Figure 2A. However, it is difficult to determine visually
which cluster or clusters correspond to the background
density in Figure 2B. For our purpose of understanding
large-scale structure, we appreciate that this method
accounts for information contained in the data which has
physical significance, whether or not that information is
visually discernible. For this reason, we believe the
following method based on image processing to be
complementary.

FIGURE 1 | Example of GIM on 4 March, 2014. TEC is shown in TEC
units (TECU), where 1 TECU = 1016 electrons/m2. Horizontal and vertical axes
correspond to geographic longitude and latitude, correspondingly.

FIGURE 2 | Results of GM method application to HDR identification for a GIM on 27 October, 2002 (A) and on 19 July, 2001 (B). Corresponding results for the
image processing approach are shown in (C,D). For 27 October, 2002, the GM method identifies 3 HDRs (A), while the image processing approach identifies 3 HDRs
(C). For 19 July, 2001, the GM method identifies 5 HDRs (B), while the image processing approach identifies 6 HDRs (D).
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COMPUTER VISION METHOD

Large scale TEC dynamics was analyzed by Dmitriev (2018) by
applying visual analysis to individual GIMs. This technique
allowed to consider detailed dynamics and provided insight into
corresponding physical processes. We advocate building upon such
visual approaches and develop ways for automated classification of
large-scale TEC features that will be applicable for large datasets.
Alternatively, the image processing library OpenCV for Python
together with edge-enhancing technique was applied to identify
HDRs in a selected GIM dataset with visual inspection. This is an
improvement upon our image classification approach
(Verkhoglyadova et al., 2021). First, for each TEC map,
represented by gridded TEC values, we round the float TEC values
to integer numbers and linearly scale the TEC values to numbers
between 0 and 255. The TEC map is thus converted to a gray-scale
image. Second, we apply the Laplacian operator often used to detect
edges in an image, to the gray-scale TEC image brightness over the 2D
map. Third, going back to the original TEC map, we neglect regions
with TEC values smaller than the half of the TEC global maximum
and regions with the Laplacian values greater than a threshold chosen
after visual testing of a variety of values for the limited number of TEC
maps, and then apply the Dilate, Erode, and medianBlur methods
from OpenCV. Finally, HDRs on the TEC map are identified and
counted by OpenCV’s connectedComponents operator. A minimum
absolute-value threshold for an “edge sharpness” in an image can be
applied in order to focus on regions with significantly higher TEC
than the surrounding area. Wide range of thresholds were tested and
classification results were qualitatively compared to find an optimal
value.We found out that our approach works successfully when there
are visually identified sharp edges to a TEC brightening. We are fairly
confident in selection of an HDR as relatively bright TEC region (by
the TEC magnitude) compared to neighboring regions. Since success
of the automated classification relies partially on sharpness of themain
features of a TEC map, visual inspection is necessary to correctly
identify HDRs. Figures 2C,D show examples of identifications of 3
and 6 HDRs on a latitude by longitude map, correspondingly.
Introducing an additional procedure of image sharpening allowed
to separate two EIAs and identify faint HDRs even if they are not well
separated. However, there is a bias in adapting this algorithm to
accommodate for visual perception. The identification results are not
evident for everyone but for an expert in ionospheric physics and
GIMs. Additional complication is encountered when neighboring
bright regions are not well separated.We suggest that development of
a quantitative criterion of a degree of separation based on statistical
properties of TECdistribution is necessary to determine efficiency and
applicability of the method.

DISCUSSION

The unexpected result of the study is a realization that different
approaches to GIM classification and TEC feature extraction
result in different HDR counts and provide different information,
each with their own utility for identifying large-scale structure.
The GM method is an advanced mixture method that identifies
TEC clusters as sub-populations in a GIM by assuming Gaussian

distribution of TEC within the clusters. Background TEC is also
selected as a separate cluster. GM is a robust method that utilizes
optimization tools to select the most common clustering result
and account for periodic boundaries. However, it does not always
identify visually bright structures inside an extended but less
bright structure as separate clusters. Instead, the image
classification approach allows for a threshold on TEC value to
select the most intense HDRs and ignore the background. The
results were validated by visual inspection. However, the latter
approach is biased towards sharpening edges of bright features in
a map and does not have a selection criterion based on strict
statistical properties of TEC distribution. Inter-comparison
between these two methods showed different clustering results
for several GIMs. Thus, the algorithm based on visual perception
of bright regions and the algorithm based on statistical properties
of TEC sub-populations in a GIM can produce different
outcomes. These results raise an important question of how to
robustly define HDRs in GIMs and calls for further investigation.
How physical is the definition of distinct HDRs and EIAs? Shall
we rely on strict statistics-based approaches or the ones tailored to
human eye? How to determine if bright TEC regions are well
separated? It is likely that a realistic view of global ionosphere
includes HDRs of varying density embedded into backgrounds of
varying density that change with solar cycle phases in long term
and eruptive solar events in short-term. Depending on the
purpose of specific studies, HDRs could be identified using a
universal criterion to allow for cross comparison among different
background TECs, or using different criteria to make the HDRs
outstanding in individual TEC maps. Sharp gradients between
different large-scale ionospheric features may not typically occur.
Addressing these questions and further research will provide
important insights into large -scale ionospheric structure and are
crucial for space weather forecast.
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During periods of rapidly changing geomagnetic conditions electric fields form within
the Earth’s surface and induce currents known as geomagnetically induced currents
(GICs), which interact with unprotected electrical systems our society relies on. In
this study, we train multi-variate Long-Short Term Memory neural networks to predict
magnitude of north-south component of the geomagnetic field (|BN|) at multiple ground
magnetometer stations across Alaska provided by the SuperMAG database with a future
goal of predicting geomagnetic field disturbances. Each neural network is driven by
solar wind and interplanetary magnetic field inputs from the NASA OMNI database
spanning from 2000–2015 and is fine tuned for each station to maximize the effectiveness
in predicting |BN|. The neural networks are then compared against multivariate linear
regression models driven with the same inputs at each station using Heidke skill scores
with thresholds at the 50, 75, 85, and 99 percentiles for |BN|. The neural network models
show significant increases over the linear regression models for |BN| thresholds. We also
calculate the Heidke skill scores for d|BN|/dt by deriving d|BN|/dt from |BN| predictions.
However, neural network models do not show clear outperformance compared to the
linear regression models. To retain the sign information and thus predict BN instead of
|BN|, a secondary so-called polarity model is utilized. The polarity model is run in tandem
with the neural networks predicting geomagnetic field in a coupled model approach and
results in a high correlation between predicted and observed values for all stations. We
find this model a promising starting point for a machine learned geomagnetic field model
to be expanded upon through increased output time history and fast turnaround times.

Keywords: space weather, GIC, geomagnetic storms, ground geomagnetic field, machine learning, neural
networks, LSTM

INTRODUCTION

Geomagnetically induced currents (GICs) are produced when the solar wind interacts with
the Earth’s magnetic field, driving disturbances that map to the Earth’s surface (Oliveira and
Ngwira, 2017). Electrically conductive materials, like the Earth’s crust, in the presence of these
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disturbances experience electric fields proportional to that of the
changing geomagnetic field which are known as geomagnetically
induced electric fields (Pirjola, 2000) and drive currents, GICs,
as a response. These GICs, if strong enough, can disrupt and
damage sensitive electrical devices on the ground that are not
designed to handle these currents. GICs have been known to
cause power outages, transformer damage, andpipeline corrosion
on the ground which impacts our technology and fossil fuel
dependent economy; such an event was the cause for a 9 h
power grid blackout in Quebec, Canada on 13 March 1989,
where strong GICs overloaded and damaged a transformer of the
Hydro-Quebec electric company.

In response to the damage done by these events the science
community has put focus on the prediction of GICs. While
GICs can happen in any part of the globe, there is a higher
occurrence of these events in higher magnetic latitude regions.
Large geomagnetic field disturbances are often observed in these
regions due to geomagnetic field lines at the surface connected
to dynamic regions of the magnetosphere (e.g., polar cusps and
the magnetotail). During times of high geomagnetic activity,
strong geomagnetic field disturbances may propagate lower into
middle magnetic latitudes, leading to a majority of GIC studies
being focused on high and mid magnetic latitudes (Pirjola, 2005;
Pulkkinen et al., 2005; Pirjol et al., 2007; Fiori et al., 2014;
Blake et al., 2016). Some studies have also shown geomagnetic
field disturbances in the low magnetic latitudes formed from
oblique pressure shocks (Carter et al., 2015; Zhang et al., 2016;
Oliveira et al., 2018). The widespread nature of geomagnetic field
disturbances in response to fluctuating solar wind parameters can
also be seen in Supplementary Movie S1 of the supplemental
material, where a global response to a geomagnetic storm
is observed, with the strongest field fluctuations located at
high magnetic latitudes in the midnight sector, reaffirming the
focus on high latitude GICs.

Various mechanisms are known to cause large geomagnetic
field disturbances on the ground.The study byCarter et al. (2015)
has shown interplanetary shocks being a viable creation
mechanism for large geomagnetic field disturbances at high
magnetic latitudes and themagnetic equator. Recent studies from
Heyns et al. (2021) and Rogers et al. (2020) analyzed GICs as a
function of geomagnetic pulsations, indicating that ULF waves
can drive GICs for extended periods at high and mid latitudes.
The studies by Rodger et al. (2017) and Dimmock et al. (2019)
identified extreme geomagnetic storm activity and sudden
geomagnetic storm commencement as drivers of GICs in the
New Zealand and Fennoscandia regions. However, the studies by
Ngwira et al. (2015) and Dimmock et al. (2020) have shown the
timing of GICs in relation to geomagnetic storm activity can vary
based on location. Local dB/dt is a function of ionospheric and
magnetospheric currents, generally associated with geomagnetic
storm activity and local conductivity gradients within the Earth’s
crust.

To understand these localized peaks, high resolution physics-
based models have been utilized to determine these fluctuations
(Welling, 2019), however these models, while important in the
progress of our understanding, are computationally expensive
and time consuming, which make them inefficient for real-time

predictions of GICs. The need for efficient and computationally
inexpensive models has led to the utilization of machine learned
neural networks, such as the ones done by Wintoft et al. (2015),
Lotz and Cilliers (2015), and Keesee et al. (2020), to capture
these disturbances from upstream drivers, mainly the solar wind
parameters.

Machine learned algorithms are efficient due to their fast
computation times after training and range in complexity
defined by the user, allowing for versatile solutions. The bulk
of computational requirements needed for most neural networks
are during training, with the finished models being significantly
lightweight at runtime. The lightweight models this study
aims to produce are focused on the Alaska region, which is a
high magnetic latitude area susceptible to pipeline corrosion
from GICs (Gummow and Eng, 2002; Pirjola et al., 2003;
Khanal et al., 2019; Liu et al., 2019). The models produced for
this region make use of real-time magnetometer data that
are available locally, allowing for an enhancement in model
performance.

The first step in forecasting GICs in Alaska starts with
a geomagnetic field prediction model utilizing 16 years of
SuperMAG geomagnetic field observations across Alaska and
NASA OMNIweb solar wind and interplanetary magnetic field
(IMF) conditions. The data is used as input to three different
model types: a multi-variate LSTM model, a multi-variate linear
regression (MLR) model, and a coupled set of LSTM models.
In the following section the data sources and different model
types will be explained. Sections 3, 4 will cover the model
results and a discussion on the effectiveness of these models,
their shortcomings, and routes of improvement, followed by a
summary of the work presented.

DATA AND MODELS

SuperMAG and OMNIweb Data
The study presented utilizes the SuperMAG magnetometer
database and the NASA OMNIweb solar wind database from
01/01/2000 to 12/31/2015. The data selected from OMNIweb
database provides solar wind plasma and interplanetary
magnetic field (IMF) propagated from solar wind monitors
at Lagrangian point 1 to a subsolar bow shock location. The
data provided from OMNIweb are solar wind density, flow
speed, dynamic pressure, temperature, IMF magnitude, and
IMF BZ in geocentric solar magnetic (GSM) coordinates
with a 1 min resolution. The parameters were selected from
a combination of known indicators of geomagnetic storms
and substorms utilized in similar studies such as Lotz and
Cilliers (2015) and Keesee et al. (2020). The use of derived
parameters (i.e., parameters calculated from other data values,
such as dynamic pressure) was limited to avoid data redundancy
within the neural network which can result in poor performance
within these models. Due to a non-continuous data coverage,
a linear interpolation was applied to fill in gaps of 10 min or
less, increasing the coverage from 70 to 80% during the 16 years
segment.
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The SuperMAG database hosted by Johns Hopkins University
(Gjerloev, 2012) collects data from world wide magnetometer
stations and provides baseline removed geomagnetic field data
with a consistent coordinate system. From SuperMAG we
selected four Alaska stations at geographic coordinates: Fort
Yukon (FYU) at 66.56° N 214.87° E, College (CMO) at 64.87° N
212.15° E, Poker Flat (PKR) at 65.12° N 212.57° E, and
Kaktovik (KAV) at 70.14° N 216.35° E; and utilized the north-
south component of the observed field with 1 min resolution.
Geomagnetic field information from SuperMAG is in their local
magnetic coordinate system where the Z-component is kept
static and the other two components are rotated to maximize
North-South and minimize East-West with respect to a slowly
varying declination angle. The magnetic field datasets utilized
have had standard yearly and daily baseline removal as detailed
by Gjerloev (Gjerloev, 2012). The data from CMO was used as
an initial testing set to determine the best performing model
configuration, and then the configuration was re-applied to the
other three stations. The stations were chosen for their locations,
which are roughly on a magnetic meridional line, making them
perpendicular to the typical auroral oval in Alaska. This property
of the stations chosen makes them suitable for ionospheric
current predictions above Alaska.

LSTM Model
A basic recurrent neural network (RNN) takes incoming data,
computes the output, and sends the output as an input parameter
to be used with the next incoming dataset (Brownlee, 2017). This
means that each output is directly reliant on the previous known
output and the newest data, making RNN able to predict time
dependent sequences where the features act on a small time scale.
The downside to RNN is that features acting on a long time scale
are not properly accounted for, since the newest information is
always the most relevant in the prediction process. These neural
networks also rely on continuous datasets, treating a known gap
in data as a standard time step in progression. Further, these
networks are prone to vanishing or exploding error gradients
during trainings which can result in excessive computation for
minimal gains in performance.

For datasets where the input features have long or variable
time scale implications RNN are not suitable, as the network will
forget the information. To combat this, advanced RNNs, such
as LSTM, are developed and utilized to retain information on
a longer time scale (Hochreiter and Schmidhuber, 1997). LSTM
achieves this through the use of two internal features known
as gates and the cell state. Within the LSTM kernel three gates
are utilized, these gates determine which information is added
and removed from the cell state, and determine which parts of
the incoming data are relevant to the current prediction. Unlike
the standard RNN, where the output prediction is fed to the
next iteration, the cell state is passed to the next LSTM kernel,
and is used in unison with the incoming dataset to make a
prediction. Due to the activation of the gates, a cell state may not
be updated every sequence, allowing it to retain information from
previous datasets. This model type has been successfully applied
for predicting magnetometer data (Keesee et al., 2020).

Linear Regression
Linear regression is a widely used approach for many empirical
models (Verbeek, 2017). This study developed a MLR model for
each station for comparison against the state-of-the-art machine
learning models. The MLR models developed utilize the same
inputs and outputs as the LSTM and are applied with the same
16 years of SuperMAG and OMNIweb data to fit the following
equation:

|B (t) | = ∑
i

30

∑
n=1

αinxi (t − n) +C (1)

where xi(t− n) is an input variable from n minutes prior, C is
an offset variable, and αin is a scaling factor for variable xi(t− n).
This model type is applied to each station and compared to their
respective LSTM models. We chose MLR for comparison due to
its ease of implementation and wide use for empirical studies.

MODEL DEVELOPMENT AND RESULTS

Geomagnetic Field Prediction Model Using
CMO Dataset
The initial phase of models produced was aimed at determining
the length of time history of each feature to provide to the LSTM
model. Four models were trained off a smaller 2009–2014 dataset
utilizing 1-, 30-, 60-, and 120- min time histories as input for
predicting |BN| at the next minute and tested for performance
against the 2015 test set. Each model takes the same basic inputs
of IMF magnitude, its Z-component in GSM coordinates, solar
wind density, speed, flow (ram) pressure, temperature, and
magnetic local time (MLT) of the station. The MLT has been
converted into sin (MLT) and cos (MLT) to maintain a cyclic
dependence of this variable, which is important for preserving
nighttime and daytime dependencies and transitions. While the
LSTM kernel is adept at remembering via the implemented cell
state, the previous 1-, 30-, 60-, and 120 min of each variable
were used as input in a 2D array of shape [m x n], where m
is the number of features and n is the amount of time history,
as seen in Figure 1. For consistency, each model utilized a
single LSTM layer with 32 hidden neurons, a rectified linear
unit (ReLU) activation layer, a 68.75-25-6.25 training-validation-
testing set split, adaptivemoment estimation (ADAM) optimizer,
a learning rate of 0.001, mean squared error loss, cube root
normalization, 360 batches during training before updating
weights, and a single unit dense layer to pass the final output. One
may think to stack multiple LSTM networks to achieve better
performance, however, in testing, the use of 2 or more LSTM
layers degraded performance rather than enhancing it. Finally,
each of the models was trained for up to 100 epochs, however
the training implemented early stopping, occurring at around 20
epochs on average, based on the validation loss statistic and saved
only the best model during the training to avoid overfitting the
model to the dataset. From this testing we are able to determine
the best amount of time history to train with, aiming to supply
immediate information to LSTM with the known previous solar
wind data. One minute time history was chosen as a starting
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FIGURE 1 | Subfigure (A) showcases the setup of the LSTM |BN| model utilized in the study. The inputs are structured in a 2D array where each column is one feature
of the solar wind and IMF inputs detailed in Section 2.2 while the rows refer to each of the features at a previous time point from t−1 to t−n, where n is the amount of
time history selected. The input array is provided directly to the LSTM model which sends the output to a single dense layer to provide the final output. In subfigure
(B) the polarity model is displayed in a similar manner to the LSTM model of subfigure (A). The input array is a 1D array sent to an LSTM model which sends the final
prediction to a single dense layer. The output of the polarity model is decoded and multiplied against the LSTM |BN| model to obtain the coupled output.

choice because it is the standard LSTM setup. The other 30-,
60-, and 120-min time histories are selected in consideration of
variable propagation of solar wind and IMF information from the
subsolar bow shock to geomagnetic activity (Connor et al., 2014;
Maggiolo et al., 2017). Figures 2A–G compares geomagnetic
field predictions of the four LSTM models described for the
07-Sep-2015 geomagnetic storm. Figures 2A–E show IMF in
GSM coordinates, solar wind speed, density (black) and flow
pressure (red), temperature, and AE (black) and SYM/H (red)
geomagnetic indices. Figure 2F shows the magnitude of north-
south component of the geomagnetic field (|BN|) as observed
from CMO (black) and predicted by the LSTM models using
different time histories as input (dashed lines). Figure 2G
shows the time derivative of the north-south geomagnetic field
component (d|BN|/dt) observed from CMO (black) and the value
derived from the LSTM |BN| models (dashed lines) with gaps
in predictions occurring where one or more input variables are
missing due to a gap larger than 10 min. Figures 2H–K show
other modeling experiments and are discussed later in the paper.
In Figure 2F we can see that the performance between the
four models for the event are quite close in |BN| predictions.
The 1 min time history model shows a drop in |BN| around
the 1600 UT mark whereas the other 3 models show a drop
occurring an hour later. When looking at the d|BN|/dt values we
find the 30 min model shows the most activity, though vastly
underestimated, where the other 3 models predict closer to 0.

Individual time history model performance is also seen in
Figures 3A–D, where the predicted and observed value for the
CMO station across the year of 2015 are plotted for correlation.

In Figure 3 the dashed red line indicates a perfect correlation
between the prediction and observed values and the solid red
line shows the line of best fit. The legend in the upper right
corner shows the equation for the line of best fit and the Pearson
correlation (r) between the predicted and observed data. In these
plots we find the Pearson correlation (r) between the 4 models
is relatively similar with small increases corresponding with time
history supplied to the model. Looking at these values we see an
11% increase in correlation from the 1 min to the 30 min model.
As the input data increases we find an 8% increase when doubling
the time history from 30 to 60 min and a 2% increase when
increasing time history from 60 to 120 min. Looking at the
lines of best fit (solid red) we can see a slow shift towards the
perfect correlation (dashed red) line as input data increases,
from 1 min time history to 120 min. The 30-min time history
model was selected as the suitable model due to a reduction in
model complexity with nearly similar results as themore complex
120-min model. Further, we find the 30-min time history more
suitable for our long term application of GIC predictions due to
its performance in event time d|BN|/dt fluctuations as indicated
by Figure 2G.

In Figures 2H,I the 30-min time history model was selected
and trained for |BN| with (red line) and without (green line)
previous known geomagnetic field time derivative (d|BN|/dt)
history as an input parameter. This is also found in Figures 3E,F,
which show an increase in Pearson correlation between the
predicted and observed CMO geomagnetic field values when
d|BN|/dt is included from 0.50 to 0.87. The use of d|BN|/dt as
in input variable is spurred by the standard LSTM setup where
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FIGURE 2 | Storm time test predictions of different LSTM configurations for the 07-Sep-2015 storm. Subplots (A–E) show the IMF, solar wind, and geomagnetic
indices conditions with the model predictions in the subplots beneath. Subplots (F,G) show the results of predictions utilizing different time histories of input. From
these we see the 1-min time history model consistently predicts values less than that of the other 3 models. Subplots (H,I) show the results of predicting for |BN|
utilizing the 30-min time history both with and without d|BN|/dt as an input parameter. Likewise, subplots (J,K) utilize the 30-min time history model to predict BN

with and without dBN/dt information added as input. From these plots we find that LSTM has an affinity for predicting |BN| with d|BN|/dt information included in the
input parameters.

previous observations variables are passed as a standard input
for the upcoming prediction. In the case of our model, passing
|BN| at t-1 information creates a feed forward network where
the model passes a value with high correlation to |BN| at t-1
as the prediction. The use of d|BN|/dt removes this outcome
while providing the model with general information regarding

the strength of fluctuations. We acknowledge concern that by
using d|BN|/dt as input, the LSTM models may act as a first-order
Taylor series expansion (i.e., |BN| (t) = |BN| (t-1) + d|BN|/dt (t-
1)*dt. However, our approach differentiates from this expansion
by not utilizing |BN| at t-1 as input. Additionally, it uses 30 min of
time history of d|BN|/dt and SW/IMF parameters as input. One
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FIGURE 3 | Storm time density plots using 2015 as a test set showing the performance of the models shown in Figure 2. The dashed red line indicates a perfect
1:1 correlation between predicted and observed values. The solid red line is a line of best fit correlation between the predicted values and the observed values.
Subplots (A–D) show density plots of predicted vs observed values for 2015 CMO when utilizing 1−, 30−, 60−, and 120-minutes of time history. Subplots (E–H)
utilize the selected 30-minute time history model and compare predicting |BN| with and without d|BN|/dt information and predicting BN with and without dBN/dt
information. We can see in subplots (G) and (H) that LSTM predicting BN provided significantly poor predictions with a correlation of 0 regardless of utilizing previous
dBN/dt information as an input to the model. However, when predicting |BN| as seen in subplots (E) and (F) LSTM performs well, with a significant 74% increase in
Pearson correlation when including previous d|BN|/dt information as an input parameter to the model.
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may find concern that the LSTM model will find high correlation
between prediction |BN| (t) and the input feature d|BN|/dt (t-1),
however in testing our model does not show such behavior,
suggesting the LSTM model learns more complex behaviors than
the first order Taylor series expansion.

Lastly, Figures 2J,K show the results of two 30-min time
history models trained with (red line) and without (green line)
dBN/dt input predicting BN. Both of these models performed
poorly, predicting a nearly straight line at 0 nT, with density plots
in Figures 3G,H indicating no correlation between the predicted
and observed values for CMO in 2015 while predicting BN.
From the eight models tested we find that the 30-min model
with d|BN|/dt input and |BN| output retains the best performance
regarding predictions during storm time while limiting the
complexity of the model. The model configuration is then
utilized across all 4 stations with the 2000–2015 training
set.

Geomagnetic Field Prediction Across the
Alaska Chain
The magnetometer chain of FYU, CMO, PKR, and KAV
were chosen to create a perpendicular line prediction of the
geomagnetic field with respect to the auroral oval. For each
of the stations the 30-min time history was chosen for the
performance found in Section 3.1. The models employ the same
early stopping mechanism described in 3.1 to avoid overfitting
of the data. While the models in Section 3.1 were trained from
a smaller limited dataset (i.e., 2009–2015), the models trained
for each station utilized data from January 2000 to December
2015 for training with 68.75% of the data as the training set,
25% as the validation set, and 6.25% as the test set. Like the
models in Section 3.1, the year of 2015 was separated and
used as a testing set of the models due to its high prevalence
of geomagnetic activity throughout the year. Further, for each
station an additional MLR model was made with the same
2000–2015 dataset, utilizing the same input variables and cube
root normalization as the LSTM. In some cases the MLR models
predicted negative values of |BN|, which would imply an un-
physical value of BN. The negative values were removed from
the MLR predictions dataset as they are un-physical quantities
for |BN|.

In Figure 4 the results of the models are plotted for the 07-
Sep-2015 geomagnetic storm and subplots Figures 4A–E follow
the same format as Figures 2A–E. In Figures 4F,G we see the
predictions for the LSTM model (red) and MLR model (green)
compared to the observed values (black) for the FYU station
with Figure 4F showing the |BN| predictions and Figure 4G
showing d|BN|/dt predictions. Likewise, Figures 4H–M show
the |BN| and d|BN|/dt prediction results for PKR, CMO, and
KAV, respectively. From these figures we see that the MLR
models underestimate |BN| more than the LSTM models. When
considering the d|BN|/dt plots we find that the LSTM shows
more frequent strong fluctuations, with the caveat they are not
always predicted at the correct time. In Figure 5 the LSTM and
MLR model predictions are plotted against the observed station

values for the year of 2015 in the same format as Figure 3
to test for correlation. The LSTM models in Figures 5A,C,E,G
show high Pearson correlation coefficients of 0.80–0.86, while the
MLR models in Figures 5B,D,F,H show much lower correlation
coefficients of 0.68–0.73. Looking at the average of the Pearson
correlation values, LSTM shows a 18.2% increase in performance
over the MLR models.

Polarity and Coupled Model
One of the problems with the LSTM model is its affinity towards
predicting |BN| over BN. This means that to obtain the best
results we train off the magnitude, thus losing sign information
in the process. This lost feature, which we are calling polarity,
is a necessary component of the ionospheric current modeling,
since ionospheric current directions (i.e., eastward or westward
electrojets) can be inferred by the sign of BN. Initially, LSTM
seemed to favor predicting when all values in the observation set
were positive. To resolve this problem,we appliedmultiple scaling
methods to the dataset when predicting BN. These methods
comprised of scaling the data between 0 and 1, −1 and 1, and
linearly shifting the BN data above 0 by adding the minimum
BN value to each data point. We developed the LSTM models
for predicting the scaled BN values and reversed the scaling back
to the original scale for the finalized prediction. However, these
scaling approaches did not show any significant improvement
when compared to the predictions of the original cube root
normalized dataset. Therefore, a different approach to polarity
utilizing a secondary model was developed. To create this model,
the polarity was encoded into a 1 for positive values and 0 for
negative values, then this observed polarity was trained for using
a LSTM kernel looking at the previous minute of MLT, |BN|,
and d|BN|/dt information. With the polarity retained through
a secondary model we are able to decode the polarity and
multiply it through the geomagnetic field model trained for
predicting |BN| and retain BN in a coupled model technique.
Figure 1 summarizes the setup of the polarity and coupled
models.

Figure 6 shows the results of the coupled model approach
applied to all stations for the 09-07-2015 test storm. In
the left column we can see the predicted values follow the
observed data values, with one false positive prediction around
18 UT for the CMO station. As seen in the right column
of Figure 6, the Pearson correlation between predicted and
observed geomagnetic field increased for all stations from an
average 0.84 to 0.88. This indicates improved performance of a
coupled model than the LSTM in Figure 5 while preserving the
critical sign information needed for ionospheric current analysis.
Further, BN fluctuations observed in Figure 6 show persistence
of negative enhancements for the 09-07-2015 storm which the
coupled model properly captures with minimal unexpected
sign flips. For KAV we can see around 14 UT and 17 UT the
coupled model properly flips positive for the short positive
durations seen in the observed data during a predominately
negative enhancement. This makes the coupled model approach
a promising modeling method for our study.
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FIGURE 4 | Storm time predictions utilizing LSTM (red) and MLR (green) models showing their ability to predict the 07-Sep-2015 event for each of the 4 individual
stations across Alaska. Subplots (A–E) show IMF and solar wind properties for the event while subplots (F–M) show the observed and predicted |BN| and d|BN|/dt
for the four selected stations. Here we can see that for all stations the LSTM model performs better at matching |BN|.

DISCUSSION

Skill Scores and Model Performance
Heidke skill scores (HSS) are a widely accepted method of
determining machine learned model performance by testing
multiple thresholds to understand model sensitivity and
variability at discerning the desired output variable. These scores
can be see in Table 1 ranging from 0 (randomprediction) to

1 (perfect prediction) and have been split between scores for
|BN| and d|BN|/dt sensitivity. The scores are calculated based on
whether the predicted and observed values cross the threshold
at the same time, with thresholds for d|BN|/dt selected based
off of Pulkkinen et al. (Pulkkinen et al., 2013) and thresholds
for |BN| selected from the 50, 75, 85, and 99 percentile of the
|BN| values over 2000–2014 for the 4 stations. We can see from
Figure 5 and Table 1 that the LSTM models show a 18.2%
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FIGURE 5 | LSTM and MLR density plots using the 2015 test set for all 4 stations. Subplots (A, C, E, G) show prediction results for the LSTM models of each
station while subplots (B, D, F, H) show prediction results for the MLR models of each station. Further, we can see that the lines of best fit (solid red) between the
LSTM predictions and observed data are much closer to the perfect prediction lines (dashed red) than those of the MLR predictions and the observed data with a
18.2% increase in the average Pearson correlation values.
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FIGURE 6 | Coupled model storm predictions. In the left column the coupled models ability to predict BN for the 07-Sep-2015 storm is plotted against the observed
data for each station. In the right column the density plot for each station is shown for the 2015 dataset. The predictions of the coupled models provide better
Pearson correlation coefficients than the original LSTM |BN| while following the storm time fluctuations, indicating the Polarity model is providing the necessary
information to the |BN| prediction.
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increase in Pearson correlation over the MLR models with the
LSTM models achieving HSS above 0.5 for 87.5% of the selected
|BN| thresholds for both storm time and 2015 while MLR scored
above 0.5 for 18.75% for the same thresholds. When focused on
the 2015 HSS of the 99 percentile |BN| threshold we can see the
LSTM models outperform the MLR models in all cases, showing
a 152.2, 66.6, 95.8, and 215.8% increase for FYU, KAV, PKR,
and CMO stations, respectively. Likewise, when focusing the 99
percentile |BN| threshold storm HSS we find a 176.9, 16.1, 510,
and 828.6% increase for FYU, KAV, PKR, and CMO, respectively.
The HSS results for the d|BN|/dt thresholds show mixed results
between the LSTM and MLR models. For the 2015 d|BN|/dt
HSS, LSTM models generally perform better than the MLR by
showing higher HSS for 10 out of 16 thresholds, while for the
storm time d|BN|/dt scores the MLR models perform better
by showing higher HSS for 10 out of 16 thresholds. However,
our storm time performance testing is limited for only a single
geomagnetic storm. For better understanding of storm time
model performance, a more comprehensive testing is required
with a large number of geomagnetic storms.

The neural networks created are adequate at predicting the
overall strength of the field, as indicated by high correlation
and good HSS scores for |BN|, but not the variability of the

field. This can also be seen in Figures 4G,I,K, and m where the
d|BN|/dt of the LSTM models can be seen to exceed that of the
observed values at times predating or postdating the observed
fluctuations. Additionally, the d|BN|/dt scores for the LSTM
models is less than 0.5, regardless of looking at storm time or the
full 2015 test year. The poor d|BN|/dt scores of LSTM models are
understandable since the models were made to predict |BN| and
then derive d|BN|/dt frompredicted |BN|. Further, we see a pattern
where the scores for d|BN|/dt are decreasing as the threshold
increases, which is a pattern found in other recent machine
learning studies of geomagnetic fields (Camporeale et al., 2020;
Smith et al., 2021), implying it is a common challenge for data-
driven models.

Despite the low performance in d|BN|/dt, the performance in
predicting |BN| is promising, especially when coupled with the
secondary polarity model. The polarity models created scored
0.9 or above at predicting the encoded polarity value, which
when multiplied through their respective station the LSTM
prediction generally retained or increased in HSS for the |BN|
thresholds of the original |BN| model. The HSS within Table 1
show an enhancement within the storm time dBN/dt scores for
14 out of 16 thresholds when using a coupled model approached,
while 15 out of 16 2015 threshold scores stay the same or

TABLE 1 | HSS of selected |BN| and d|BN|/dt thresholds for the LSTM and MLR models. Scores are evaluated through direct comparison on a minute by minute basis
across the year of 2015 and separately for the 07-Sep-2015 storm. Polarity has been encoded into a value of 0 (−) or 1 (+) and the HSS for this corresponds to
accurately assessing a 1.

d|BN|/dt [nT/min] |BN| [nT]

Threshold 18 42 66 90 14.4 41.6 75.3 427.0
FYU LSTM 0.35 0.28 0.23 0.18 0.48 0.61 0.63 0.58
FYU MLR 0.25 0.23 0.20 0.19 0.13 0.31 0.47 0.23
FYU LSTM (storm) 0.29 0.24 0.26 0.12 0.53 0.70 0.68 0.72
FYU MLR (storm) 0.31 0.32 0.18 0.10 0.02 0.29 0.63 0.26
KAV LSTM 0.35 0.29 0.25 0.20 0.58 0.68 0.66 0.50
KAV MLR 0.30 0.26 0.26 0.26 0.17 0.35 0.49 0.30
KAV LSTM (storm) 0.27 0.37 0.23 0.20 0.43 0.54 0.54 0.65
KAV MLR (storm) 0.41 0.41 0.37 0.34 0.05 0.39 0.54 0.56
PKR LSTM 0.36 0.26 0.15 0.10 0.39 0.58 0.63 0.47
PKR MLR 0.24 0.22 0.19 0.15 0.17 0.30 0.48 0.24
PKR LSTM (storm) 0.29 0.25 0.27 0.26 0.37 0.76 0.71 0.61
PKR MLR (storm) 0.30 0.39 0.24 0.10 0.06 0.38 0.60 0.10
CMO LSTM 0.41 0.31 0.25 0.20 0.68 0.75 0.73 0.60
CMO MLR 0.33 0.30 0.25 0.23 0.17 0.35 0.51 0.19
CMO LSTM (storm) 0.36 0.29 0.28 0.34 0.67 0.74 0.75 0.65
CMO MLR (storm) 0.36 0.34 0.30 0.34 0.13 0.39 0.60 0.07

Model Polarity

FYU KAV PKR CMO

Polarity 0.93 0.90 0.94 0.91

dBN/dt [nT/min] BN [nT]

Threshold 18 42 66 90 14.4 41.6 75.3 427.0
Coupled (FYU) 0.35 0.29 0.23 0.18 0.48 0.61 0.63 0.58
Coupled (FYU) (storm) 0.43 0.35 0.36 0.19 0.61 0.78 0.75 0.72
Coupled (KAV) 0.35 0.29 0.25 0.20 0.58 0.67 0.66 0.50
Coupled (KAV) (storm) 0.37 0.41 0.33 0.28 0.58 0.67 0.61 0.66
Coupled (PKR) 0.32 0.23 0.19 0.15 0.39 0.58 0.63 0.47
Coupled (PKR) (storm) 0.38 0.31 0.36 0.25 0.29 0.81 0.77 0.62
Coupled (CMO) 0.44 0.36 0.30 0.25 0.68 0.75 0.73 0.60
Coupled (CMO) (storm) 0.45 0.46 0.41 0.37 0.77 0.81 0.80 0.67
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increase. The minimal increase of the coupled models BN HSS
from the LSTM models |BN| HSS is understandable because
BN is mainly determined by the |BN| models and not by the
polarity model. However, the coupled model provides important
sign information of |BN|, creating overall larger dBN/dt, and
thus boosting the original dBN/dt HSS of the coupled models
from the d|BN|/dt HSS of the LSTM models. Additionally,
there are more data points for both BN and dBN/dt of the
coupled models than the LSTM models, since the dataset
for the LSTM models had the data points where the MLR
models predicted negative removed. These additional data may
play a role in increasing the BN and dBN/dt HSS of coupled
models.

There are concerns for the Polarity models to generate false
peaks within the d|BN|/dt predictions due to overpredictions in
the |BN| models before and after a sign transition or a sign change
with incorrect timing. However, the occurrence of this is rare
because the current models underpredict |BN| leading to overall
lower negative to positive and vice versa jumps within the
dataset and thus lead to lower dBN/dt values. A majority of the
unexpectedly large d|BN|/dt peaks are due to the original |BN|
models predicting a large fluctuation occurring at thewrong time,
which persist when multiplied through by Polarity. The Polarity
model, while scoring well, fails predominately at times where
there is a flip from positive to negative and vice versa.The delayed
or preemptive timing of polarity switching may in turn cause
unexpected d|BN|/dt patterns, however the vast majority of these
patterns will arise during quiet times where the geomagnetic field
is fluctuating minutely around 0 nT.

LSTM Caveats
The LSTM models, while promising, have a few different caveats
to them in their implementation. The first and foremost caveat
is that the models only predict |BN| one time step ahead, which
is limiting in advanced GIC prediction. For future work we
aim to provide a 10–20 min prediction range thus increasing the
model’s practicability. There are two main methods of achieving
this, one of which is utilizing the initial t+1 prediction as the
starting point of a secondary network that spans the desired
prediction range. This setup requires that the secondary network
be initializedwith the full training dataset to set the internal states
of the model. In practice, this is a time consuming approach,
which will only increase as more data is used to create the
models. This is opposed to our justification for using the 30-
min time history model over the 120-min history model, since
complexity of the model will play a factor in time to set the
states every time a new prediction is made. Another method is
to determine the probability of strong d|BN|/dt fluctuations in
a set period. This type of approach has been utilized in other
studies, such as the one by Maimaiti et al. (2019) to determine
the probability of geomagnetic substorm onset and the studies
by Smith et al. (2021) and Camporeale et al. (2020) to forecast
the probability of specific dB/dt (i.e., surface geomagnetic field
time derivative) thresholds. However, this approach for GIC
prediction has ambiguity inwhether the outcomewill occur at the
beginning,middle, or end of the window, whichmay be pertinent
information to the end user.

Secondly, our models currently only predict |BN| and in
combinationwith a polaritymodel,BN, while GICs are influenced
by the surface geomagnetic field which is made up of both BN
and BE (Ngwira et al., 2008; Bedrosian and Love, 2015; Lotz and
Cilliers, 2015). For future work we aim for the models to predict
two output variables, |BN| and |BE|. The surface geomagnetic
field information, combined with ground conductivities, can
be used to determine geomagnetically induced electric fields
within the Earth’s surface and GICs in specific electrical
systems (Ngwira et al., 2008). The current models are limited
in this capacity as local conductivity information is currently
unavailable for the Alaska region. Until proper conductivity
information is available, the models may still be utilized as
an indication system, since GICs oftentime occur with large
geomagnetic field perturbations that our models are intended to
predict.

Thirdly, our models generally underpredict the geomagnetic
field strength and do not properly capture the time variations
observed in the data. This underprediction is commonly seen
in other Machine Learning models (e.g. Keesee et al. (2020)) and
likely due to the choice of training with both quiet and storm
time data, where the quiet time data makes a larger portion of the
trained set leading to lower overall geomagnetic field predictions.
A possible solution around this is to train solely off of storm
time data, however this adds an extra layer of complexity to the
training process during model training and has been shown to
not completely solve the problem on its own (Pinto et al., 2022).
However, this approach improves general model performance
and is something we plan to implement in the future. Another
possible approach would be to create a model that takes the
incoming prediction and computes the likely offset for that
value to better retain the strength of the observed field data,
though such a setup would likely require careful consideration in
implementation. Even with the aforementioned approaches, the
machine-learning based model may find difficulty in predicting
“once-in-a-lifetime” singular events, for example, the Carrington
event on 1–2 September 1859 (Green and Boardsen, 2006; Cliver
and Dietrich, 2013), because such severe events are very rare. In
such a case, a physics-based model is a good alternative for the
dB/dt predictions.

Lastly, the internal setup of LSTM requires full time history
information of the incoming data, which this study does not have
access to due to gaps in data sources. During the training of
the models, if data is not split into groups of continuous data,
the model will not understand the presence of gaps assuming
that the incoming data is continuous. In a real-time situation
data outages will occur and the model will continue with these
data gaps present in the dataset, unless reset to avoid, which
would result in 30 min of time without predictions at aminimum
while waiting for a continuous stream of data. With this in mind,
we chose to train the model with data gaps included within
the dataset, which can be seen in Figures 2, 4 where gaps in
data are present, allowing the model to pick up immediately
when new information is available rather than requiring a down
time to fill a continuous segment. This is done after the linear
interpolation by passing the model the dataset as-is and allowing
the training algorithms to assume the set is continuous. However,
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we understand this decision results in performance decreases
in datasets with many or expansive gaps in data, such as the
PKR dataset which was missing the year of 2010 within the
supplied dataset. Despite the known limitations of training from
incomplete datasets, we find the models still attain high Pearson
correlation coefficients and promising HSS for |BN| and BN
prediction, and will benefit from on-going efforts for continuous
dataset collection.

While the caveats mentioned above are inherent to the
utilization of LSTM and our current efforts in producing amodel,
there is one limitation within our model that puts a restraint on
where these models may be used. The models produced so far
rely on past known geomagnetic field information (i.e., d|BN|/dt
in the previous 30 min) in the local region, which may not be
suitable for all areas looking to perform GIC risk assessment. The
Alaska region can accommodate this since the magnetometers
chosen also provide real-time data which may be used with the
models for real-time predictions. Additionally, the SpaceWeather
UnderGround outreach project initiated at the University of New
Hampshire (Smith, 2020) and expanded to the University of
Alaska Fairbanks, will build a cost efficient and research-capable
array of magnetometers across Alaska and New Hampshire
with a 1 nT/s resolution, increasing the spatial resolution of
data in these regions. Moving forward our models will utilize
the datasets provided by these arrays for forecasting GIC
risk.

Potential LSTM Model Use and Future
Work
With the inclusion of multi-minute output, the LSTM models
will be matured enough to create advanced GIC warnings
based on likely dBN/dt thresholds without the need to directly
predict GICs. The creation of GICs is a complex problem
that is dependent on ground conductivity and the properties
of the electrical device that it is being influenced. The land
conductivities of Alaska have not been thoroughly studied
though conductivity maps exist for the mainland of the
United States. Due to the complexity of GIC prediction on
every electrical system, it becomes practical to provide GIC
warning and geomagnetic field predictions to the end user.
In this manner, the end user can apply these predictions
coupled with the knowledge of their own system to determine
risk.

The increase of model performance via multi time history
predictions and closer values to the observed data will allow the
models to be utilized in ionospheric current predictions. This
possible use case was the reason for pursuing BN predictions
instead of |BN| leading to the creation of the polarity model.
Previous studies have created modeling techniques to predict the
ionospheric current based on local and/or global geomagnetic
field patterns and electrodynamics (Lu et al., 1995; Kihn and
Ridley, 2005; Vanhamäki and Juusola, 2020). A local model to
determine the auroral oval requires, at a minimum, multi-
point field values along a line perpendicular to the oval. Our
current study is setup for this with the use of PKR, FYU,
KAV, and CMO, which roughly lay on a line perpendicular

to the auroral oval. With the inclusion of multi time history
predictions our LSTM models coupled with ionospheric current
modeling have the potential to forecast north-south motion
or expansion of the ionospheric currents. Current patterns
would be useful in region-based GIC risk assessment and
awareness while also providing information to aurora enthusiasts
and citizen scientists since strong ionospheric currents have
been connected to auroral activity (Akasofu, 1989; Newell et al., 
2001).

SUMMARY AND FUTURE WORK

This study aims to show the progression of LSTM neural
networks trained to predict the geomagnetic field at individual
stations across Alaska. To achieve this we trained 12 models
(4 LSTM, 4 MLR, 4 Polarity) with NASA OMNI IMF and
solar wind data coupled with SuperMAG geomagnetic field
information from the years 2000–2015 split in a 68.75-25-6.25
training/validation/test set configuration. We produced 8 models
to test the configuration of LSTM with our desired inputs and
outputs. From these models we chose 30 min of time history
utilizing IMF, solar wind, and past d|BN|/dt information as the
most effective and applied the configuration to 4 stations across
Alaska. We find that the LSTM models generally outperform the
MLR models with respect to predicting |BN|, however the results
of d|BN|/dt prediction performance are inconsistent between the
two modeling methods. Due to the initial model performing best
when predicting |BN| a coupled model approach was utilized to
retain BN output with performance similar to the original |BN|
model it was based on.

The models are limited to single point future predictions and
generally underestimate the strength of the geomagnetic field.
Future work on these models aims to increase the time history
output to 10–20 min of future predictions while also increasing
the performance of the models to estimate the geomagnetic
field strength and variations in both the North-South and East-
West components. With this will come potential integration into
ionospheric current models for ionospheric current and auroral
activity forecasting. Further, the models will be converted to a
regional GIC risk assessment allowing the end user to apply the
geomagnetic field predictions to their own electrical systems.
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Motivated by MMS mission observations near magnetic reconnection sites, we have
developed a new empirical reconstruction (ER) model of the three-dimensional (3D)
magnetic field and the associated plasma currents. Our approach combines both the
measurements from a constellation of satellites and a set of physics-based equations as
physical constraints to build spatially smooth distributions. This ER model directly
minimizes the loss function that characterizes the model-measurement differences and
the model departures from linear or nonlinear physical constraints using an efficient
stochastic optimization method by which the effects of random measurement errors
can be effectively included. Depending on the availability of the measured parameters and
the adopted physical constraints on the reconstructed fields, the ER model could be either
slightly over-determined or under-determined, yielding nearly identical reconstructed fields
when solved by the stochastic optimization method. As a result, the ER model remains
valid and operational even if the input measurements are incomplete. Two sets of new
indices associated respectively with the model-measurement differences and the model
departures are introduced to objectively measure the accuracy and quality of the
reconstructed fields. While applying the reconstruction model to observations of an
electron diffusion region (EDR) observed by NASA’s Magnetospheric Multiscale (MMS)
mission, we examine the relative contributions of the errors in the plasma current density
arising from randommeasurement errors and linear approximations made in application of
the curlometer technique. It was found that the errors in the plasma current density
calculated directly from the measured magnetic fields using a linear approximation were
mostly contributed from the nonlinear configuration of the 3D magnetic fields.

Keywords: stochastic optimization, empirical reconstruction model, magnetospheric reconnection, simultaneous
perturbation stochastic approximation, loss function

INTRODUCTION

Visualization of Earth’s magnetosphere is an effective way to understand the magnetospheric
environment and its associated physical processes. However, historically our exploration and
understanding have been limited to either remote sensing (energetic neutral atom imaging, e.g.,
IMAGE, TWINS) or in-situ point-wise measurements made from satellites in space, from either
single- (e.g., Geotail, Polar) or multi-satellite (e.g., THEMIS, Cluster, MMS) missions. One technique
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to translate discrete point-wise satellite measurements into a 3D
visualization is to develop a reconstruction model that captures
the fundamental magnetic field (B) and plasma field as
characterized by the plasma current density (J)—measured
independently from the magnetic field—in the neighborhood
of the measurement domain. Introduction of
magnetohydrodynamic (MHD) equations could also lead to
the reconstruction of additional field variables such as plasma
velocity (U) and electric field (E). It is understood that MHD is
not appropriate just at the localized site of the electron diffusion
region (EDR) where the X-point becomes a singularity in an ideal
MHD model and the diffusion is parameterized by a bulk
parameter of resistivity in a resistive MHD model (Priest,
2016). Our goal is to visualize the broader regions
surrounding the EDR site. Depending on specific science
problems, the magnetic and plasma fields can be reconstructed
either from a set of global measurements to yield a climatological
configuration covering the entire magnetosphere (e.g.,
Tsyganenko and Sitnov, 2007) or from a set of in-situ
measurements along satellite paths to yield a localized
configuration in both space and time (e.g., Dunlop et al., 1988;
Dunlop et al., 2002). This paper focuses on the localized
reconstruction.

Previously, there have been two categories of models for
reconstructing localized fields (e.g., B and J) in Earth’s
magnetosphere. The first uses the Grad-Shafranov
reconstruction (GSR) technique to produce reconstruction
field maps of (B, J) and U by solving a set of MHD equations
where the measurements are used as boundary conditions to
constrain the reconstructed field (e.g., Sonnerup and Guo, 1996;
Hasegawa et al., 2004; Hasegawa et al., 2005; Sonnerup and Teh,
2008; Zhu and Lui, 2012; Sonnerup et al., 2016). The GSR
technique was developed for a force-free magnetic-field
configuration (e.g., Sturrock, 1994) and was mainly used to
derive two-dimensional stationary and coherent MHD
structure in the magnetosphere (e.g., Sonnerup and Guo,
1996). In this category of approaches, the spatial configuration
of the reconstructed fields is determined by solving a full set of
self-consistent MHD partial differential equations that
extensively describe various physical processes relating
different parameters. This reconstruction approach can
effectively yield and solve a full set of physics-based model for
(B, J) and U using measurements obtained by a single satellite
along its trajectory as the boundary conditions.

The second category of reconstruction approaches
reconstructs the field maps of (B, J) by empirically fitting a
prescribed spatial configuration of the field maps to the point-
wise in-situ satellite measurements forming a finite volume with
multiple lines and faces in space (e.g., Dunlop et al., 1988; Dunlop
et al., 2002; Torbert et al., 2020). We may call this category of
techniques an “empirical reconstruction” (ER). This ER approach
is especially effective and useful for reconstructing (B, J) fields
from multi-satellite measurements. Unlike the GSR techniques
where the spatial configuration of the fields (B, J) and U is solved
from the measurements based on a full set of MHD equations, the
ER models prescribe the spatial configurations of (B, J) guided by

in-situ measurements and use only limited number of physical
equations as constraints, such as

μ0J � ∇× B and (1a)
∇ · B � 0 (1b)

to determine the model parameters. In Eq. 1a, μ0 is the
permeability of free space. Note that the above two equations
do not form a closed set of equations for a system. There are six
individual dependent variables for four component equations. As
a result, ERmodels heavily rely on the measurements to construct
smooth fields.

Assuming a linear approximation for the spatial variation of
the modeled B, Dunlop et al. (1988) introduced a curlometer
technique to reconstruct the J field solely from the measured B
based on one MHD equation (Eq. 1a). The authors also proposed
an objective index called the “quality indicator” to measure the
accuracy or quality of the reconstructed J field. In Torbert et al.
(2020), an ERmodel for bothB and J fields produced by assuming
a nonlinear function for B was developed based on point-wise
measurements of (B, J) fromMMS and physical constraints from
Eqs. 1a, b. For a reconstruction model with a nonlinear variation
in B, we expect the reconstructed B and J fields to be more
accurate and of higher quality than those derived from the
curlometer technique, which is founded upon a linear
approximation for the B field. Such an improvement is
especially important near EDRs where the magnetic field lines
are expected to be highly curved and the plasma field plays an
important role in the localized reconnection process. Note that
the ER model by Torbert et al. (2020) was developed as an evenly
determined problem, i.e., the numbers of unknown parameters
and constraints are equal, from the perspective of the more
general data analysis technique for which an extra constraint
is needed to add to the model that will affect the quality of the
reconstructed fields. In addition, the quality and the factors
affecting the reconstruction quality are difficult to quantify.

In this paper, we develop a new 3D ER model by using a
stochastic optimization method to construct the smooth fields.
This new ER model is a generalization of the previous ER models
for which additional measurements and MHD equations can be
flexibly introduced in the samemodel framework. In addition, the
model effectively considers and quantifies the effects of random
errors arising from uncertainties in the in-situ measurements.
Furthermore, this stochastic optimization approach introduces
additional flexibility into the model by allowing it to work
regardless of whether the parameters considered are over- or
under-defined. The central idea of the previous ER models is the
utilization of the MHD Eq. 1a that derives J field from a
prescribed analytic B field to fit the point-wise measurements
and to perform the reconstructions. Note that Eq. 1a is derived by
neglecting the displacement current in Ampere’s Law and is one
of several important equations in anMHD system. The validity of
Eq. 1a is based on the MHD fundamental assumption that the
fields vary on the same time and length scales as the plasma
parameters (Boyd and Sanderson, 2003). Two other important
MHD equations similar to Eq. 1a are Ohm’s Law
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E � (η/μ0)(∇× B) − U × B (2)
which derives the electric field E from the plasma velocity U for a
given B field, and Faraday’s Law of Induction, which relates the
plasma resistivity (η) to the rest of the fields (Boyd and Sanderson,
2003)

zB
zt

� −B(∇ · U) + (B · ∇)U − (U · ∇)B + η

μ0
∇2B + ∇η ×

(∇× B)
μ0

.

(3)
Here, Eq. 2 plays a role similar to Eq. 1a in that an analytic E

field can be derived from a prescribed analytic U field for given
(B, η). Note that the plasma resistivity η can be considered a
parametric measure of the particle acceleration and energy
conversion near EDRs. Alternatively, it can also be considered
as a phenomenological parameter to be used as a proxy to locate
the EDRs of reconnection (e.g., Scudder, 2016; Yamada et al.,
2016). In particular, the ultimate inclusion of this aspect of
particle acceleration—and thus connection to recent MMS
energetic particle observations near EDRs (e.g., Cohen et al.,
2021; Turner et al., 2021)—motivated development of this new
reconstruction approach.

For an ER model that only adopts one or two MHD linear
equations, the problem can be solved by a traditional least-
squares method that solves a set of linear algebraic equations
(e.g., Dunlop et al., 1988; Dunlop et al., 2002; Denton et al., 2020;
Torbert et al., 2020). When additional and, more importantly,
nonlinear MHD equations such as Eqs. 2, 3 are included, a more
practical approach is to solve the model parameters by directly
minimizing a “loss function” that characterizes the model-
measurement differences and the model departures from the
above MHD equations (Eqs. 1–3). The new ERmodel introduced
here solves for the reconstruction parameters by directly
minimizing this loss function, which will be discussed in detail
in Section 2. Note that the term “model departure” here means
violation of a physical constraint—e.g., a violation of Eq. 1b in the
reconstructed model. Such a violation arises either from the
measurement errors on which the ER model is built or from
the nature of the ER with a prescribed configuration—e.g., a
linear or quadratic functional form in B field.

The new 3D ER model presented here has been built on the
basis of directly minimizing the loss function L (or y) using a
stochastic optimization method. For a linear system such as one
using only Eqs. 1a, b, the model parameters could also be solved
by the traditional least-squares method if the reconstruction is
formulated in an even-determined or an over-determined
problem. Comparing to the traditional least-squares method
that solves a set of linear algebraic equations, this alternative
method has several merits. First, the system could be nonlinear or
the loss function L is not necessarily in a quadratic form with
respect to the model parameters. The nonlinearity becomes
unavoidable when the plasma resistivity is included in an ER
model that uses MHD Eqs. 1–3. The loss function L, to be
discussed in detail in Section 2 for the present ideal MHD ER
model, has a quadratic form for which the model parameters
could also be derived by solving a set of linear algebraic equations

when an additional constraint is used to formulate the problem
into an even-determined one (e.g., Denton et al., 2020; Torbert
et al., 2020). However, our detailed discussions on how to specify
and select different components of L clearly also show the
flexibility of the new model that allows other constraints
corresponding to the point-wise measurements of (U, E) fields
and Eqs. 2, 3 to be added to the reconstruction without much
change in the algorithmic structure. Second, the effect of the
measurement errors is explicitly included in the reconstruction
model (see Section 3.1). While by nature all parameters of
stochastic algorithms are random variables, there are two
sources of uncertainties in practice for a physical problem: 1)
the measurements carry random errors and 2) physical relations
used in the loss function constraints are not perfect. Both
uncertainty sources are included in the stochastic optimization
method, which gives a solution with its accuracy limited by the
error term εσ in Eq. 8b. Of course, algorithmically, one may
choose a very small error term or set σ → 0 in Eq.
8b—i.e., assuming perfect measurements and physical
constraints - to recover a quasi-mathematically deterministic
solution (e.g., Zhu and Spall, 2002). Finally, we adopted a
simultaneous perturbation stochastic approximation (SPSA)
algorithm to solve the stochastic optimization problem that
makes directly minimizing the loss function efficient or
practically feasible when the number of the model parameters
gets large. The ability of SPSA algorithms to efficiently evaluate
the loss function gradient at each iteration makes stochastic
optimization a powerful tool for various applications models
and simulations (e.g., Spall, 2003; Bhatnagar et al., 2013).

In Section 2, we describe how to build an ER model that
includes two critical steps: 1) design of a loss function and 2) use
of an efficient optimization technique to solve for the model
parameters. Section 3 defines several indices that measure the
accuracy and quality of the reconstructionmodel and presents the
model results for a test case near a previously-studied EDR event
(Torbert et al., 2018; Torbert et al., 2020) observed in the
magnetotail by the Magnetospheric Multiscale (MMS) mission
(Burch et al., 2016). Section 4 provides a few concluding remarks.

MODEL DESCRIPTION

The first step to build an ER model is to design a “loss function”
based on the available measurements and a set of adopted MHD
equations such as those shown in Eqs. 1–3. In general, an analytic
and smooth specification of the field variables (B, U, η) will
automatically lead to analytic and smooth functions for (J, E)
fields by use of Eqs. 1a, 2. This procedure allows analytic
evaluations of all modeled fields at any space-time grids to be
compared with the available measurements. The loss function is
defined as a collection of various constraints corresponding to the
model-measurement differences and the model departures from
the adopted MHD equations, such as Eqs. 1–3. In practice, other
complementary physical equations may serve as additional
constrains. For example, just as to Eq. 1b that imposes a
strong constraint on the reconstructed B field, the plasma
velocity U may satisfy an approximate continuity equation ∇ ·
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U � 0 (Priest, 2016), which can serve as an additional constraint
on the U field in addition to Eqs. 2, 3 and the point-wise U
measurements.

The second step to build an ER model is to solve for the model
parameters by minimizing the defined loss function. When the
MHD equations are linear, such as those shown in Eqs. 1a, b, the
model parameters can be derived by a traditional least-squares
method that solves a set of linear algebraic equations.
Alternatively, the model parameters can also be solved by
directly minimizing the loss function. This approach is
especially useful when the adopted MHD equations contain
nonlinear components, which generally cannot be converted to
a set of linear algebraic equations. In this paper, we use a
stochastic optimization method called the “simultaneous
perturbation stochastic approximation” (SPSA) method to
directly minimize the loss function regardless of whether or
not the system contains nonlinear terms (e.g., Spall, 1998a;
Zhu and Spall, 2002; Spall, 2003). In addition, random errors
are treated directly in the loss function and the SPSA solution
procedure so that the effects of measurement uncertainties can be
examined. Once the model parameters are obtained, the last step
to build an ER model is to diagnose the accuracy and the quality
of the reconstructed fields. Such a post-diagnostic procedure is
necessary because the ER models are built on both measurements
that contain random measurement errors and adopted MHD
equations that do not form a closed system.

Design of the Loss Function for the
Reconstruction Model for an Ideal
Magnetohydrodynamic System
To demonstrate how the aforementioned three steps are
implemented, we first apply this new 3D ER model to an
MHD system that only contains point-wise measurements of
(B, J) fields together with MHD Eqs 1a, b as has been extensively
investigated by the traditional least-squares method (e.g., Denton
et al., 2020; Torbert et al., 2020). This reconstruction model can
be considered an ER model for an ideal MHD system because the
effect of resistivity (η) is not included. Extension to a more
comprehensive nonlinear ER model that uses Eqs. 1–3 with
point-wise measurements of (B, J) and (U, E) fields and
incorporates the effects of plasma resistivity contained in Eqs.
2, 3 near the EDRs will be presented in our future investigations.

Here, we follow Torbert et al. (2020) and prescribe the form of
the reconstructed field by expressing the time-independent
magnetic field B as a quadratic function of the spatial
coordinate r by a second-order Taylor expansion of a vector field

B(r) ≈ B(r0) + [DrB(r0)](r − r0)
+ 1
2
(r − r0)T[D2

rB(r0)](r − r0), (4)

where r0 � (1/4)∑α�1: 4rα is the barycenter of the tetrahedron
defined at its four vertices by the locations of the four MMS
spacecraft (rα(α � 1, 2, 3, 4)), with DrB(r0) and D2

rB(r0) being
the first- and second-order derivatives of B at r0, respectively. The
new ER model presented here is independent of the coordinate

system though we have chosen to employ Geocentric Solar
Ecliptic (GSE) coordinates. The terminology, notations and
various manipulations of the tetrahedron geometry formed by
a four-point satellite configuration have been discussed
previously (e.g., Chanteur, 1998; Harvey, 1998; Robert et al.,
1998; Dunlop et al., 2002). In addition to the barycenter, we may
also define four face-centers (rFα � (1/3)∑β≠αrβ) and six edge-
centers (rαβ � (rα + rβ)/2) of the tetrahedron that can be easily
calculated from the coordinates of the vertices. In practice, the
coefficients of the derivatives in Eq. 4 will be determined by the
reconstruction model based on the measurements. Hence, we
may define the reconstruction model by rewriting Eq. 4 into the
following explicit form for the ith component of the magnetic
field

Bi(r) � B0i +∑
3

j�1
C0i,jΔxj + 1

2
∑
3

j,k�1
D0i,jkΔxjΔxk, i � 1, 2, 3, (5)

where r � (x1, x2, x3) and Δxj � xj − x0,j. The resulting smooth
3D magnetic field will be determined by thirty model parameters
{B0i, C0i,j, D0i,jk} constrained by the MMS measurements. Given
these model parameters, the spatial derivatives of the B field and
the associated divergence (∇ · B) and vorticity (∇× B) fields can
be evaluated analytically and thus their valuations are available at
any spatial point, though the measurements (B̂, Ĵ) are only
available at the four vertices. Note that, physically, δ(r) ≡ ∇ ·
B(r) � ∑3

i�1zBi(r)/zxi ≡ 0 for any value of r. Specifically, δ(r0) �
0 leads to ∑3

i�1C0i,i � 0 and ∑3
i�1∑

3
j�1D0i,ijΔxj � 0 for the

quadratic expression of B given in Eq. 5. Likewise, the plasma
current density J can also be evaluated analytically from the
modeled B field by Eq. 1a. When using these analytic expressions,
the field values and constraints evaluated at barycenter, four
vertices and four face centers, such as J(rFα) � JFα and
δ(r0) � δ(rα) � δ(rFα) � 0, are of particular importance.

Given MMSmeasurements at the vertices (rα) of the magnetic
field (B̂) from the MMS Fluxgate Magnetometer (FGM)
instruments (Russell et al., 2016) and particle current density
(Ĵ) from the Fast Plasma Investigation (FPI) sensors (Pollock
et al., 2016), the model parameters {B0i, C0i,j, D0i,jk} in Eq. 5 can
often be derived by minimizing a loss function as defined below.
Here, the loss function characterizes 1) the model-measurement
differences between the modeled (B, J) and measured (B̂, Ĵ)
parameters and 2) the model departures corresponding to the
violation of the MHD Eqs. 1a, b. For a linear system, the
minimization procedure can also be reduced to solving a set
of linear algebraic equations (e.g., Menke, 1989). Depending on
whether the number of the adopted constraints is smaller than,
equal to, or greater than the number of model parameters, the
solution derived from the least-squares method could be under-,
even-, or over-determined, respectively. Previous reconstruction
models have focused on the even-determined solutions of a
quadratic loss function (e.g., Dunlop et al., 1988; Torbert
et al., 2020), for which the measurement errors were not
explicitly considered. The new ER model presented here
adopts a new method that derives the model parameters by
directly minimizing a generalized loss function using a
stochastic optimization method that contains random
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measurement errors and consists of a flexible number of
constraints. As a result, the solution is always
programmatically feasible regardless of whether the physical
constraints defined by the MHD equations are linear or
nonlinear and whether the system is under-, even-, or over-
determined.

The generalized loss function (L) has the following form

L � LO + wAεALA + wBεBLB + wCεCLC, (6)
where the individual components of the loss function
(LO, LA, LB, LC) are given by

LO � 1
12

∑
4

α�1
∑
3

i�1
[Bi(rα) − B̂α,i]

2
, (7a)

LA � 1
12

∑
4

α�1
∑
3

i�1
[Ji(rα) − Ĵα,i]

2
, (7b)

LB � 1
9
⎡⎣δ2(r0) +∑

4

α�1
δ2(rα) +∑

4

α�1
δ2(rFα)⎤⎦or

Lp
B � 1

5
⎡⎣δ2(r0) +∑

4

α�1
δ2(rα)⎤⎦, and

(7c)

LC � 1
4
∑
4

α�1
[μ0J(rFα) · (Δrβγ × Δrβδ) − (�Bβγ · Δrβγ + �Bγδ · Δrγδ + �Bδβ · Δrδβ)]2

(7d)
with Δrβγ � (rγ − rβ) being the edge vector connecting the
vertices rβ and rγ and �Bβγ � (B̂β + B̂γ)/2 being the mean
magnetic field on the edge Δrβγ calculated by the measured B̂
field by using a linear approximation to obtain the field along an
edge, between two spacecraft measurements. In Eq. 7, we use i to
denote the dimensional index ranging 1-3 and use Greek letters to
denote tetrahedron points or faces ranging 1–4. The components
LO and LA each consist of twelve terms or twelve constraints and
represent the differences of the modeled and measured fields at
the vertices rα. Thus, LO and LA correspond to the model-
measurement differences in the loss function. The component
LB consists of nine physical constraints, which requires
minimization of δ2(r) � (∇ · B)2 at nine particular spatial
points (i.e., one barycenter r0, four vertices rα and four face
centers rFα). Because the measurements do not directly enter the
expression, LB corresponds to the model departures or violations
from the above MHD equations. LB can be replaced by LpB, which
neglects the face-center constraints. The component LC consists
of four approximate physical constraints derived from the generic
MHD equation obtained by applying Stokes’ Theorem to
Ampere’s Law (μ0 ∫∫

S

~J · dS � ∮
C
B̂ · dl) on the four tetrahedron

faces, which derives the current density components normal to
the tetrahedron faces (~J) by using the linear curlometer technique
from the measured B̂ (Dunlop et al., 1988). A minimization
between ~J and J projecting onto the normal directions of four
tetrahedron faces yields LC. Thus, LC also possesses the nature of
the model-measurement differences. Note that, as previously
denoted, each face-center rFα in Eq. 7d is defined by other
three vertices (rβ, rγ, rδ). Specification of the weighting factors
(wA,wB, wC) in Eq. 6 determines the selection of the loss

function components to be included in the reconstruction
model. The scaling parameters (εA, εB, εC) in Eq. 6 depend on
the characteristic length scale of the tetrahedron and the
dimensional factors of the loss functions. We will discuss the
settings of these parameters in more detail below.

We first note the similarities and differences between LA and
LC in Eqs. 6, 7. Both loss function components adopt the
differences in current densities as constraints. LA is the
difference between the modeled J and the measured particle
current density Ĵ at four vertices whereas LC is the difference
between the modeled J components and the current density ~J
components derived from the curlometer technique (i.e., using
B̂) on the four tetrahedron face-centers. When both B̂ and Ĵ are
available and include direct measurement errors of the same
order, LA is more accurate to be included in the generalized loss
function L than LC because the ~J value used in LC contains
additional errors due to the linear approximation assumed in
the curlometer technique. On the other hand, if only B̂, but not
Ĵ, is available (in which case LA will not be available) or if the
errors in Ĵ are far greater than those in B̂, then LC is preferred to
LA for inclusion in L. In Denton et al. (2020), ~J derived from the
curlometer technique is used to modify the particle current
density Ĵ to produce a composite current density, which together
with the measured B̂ is used to build the reconstruction model.
Our approach of introducing different constraints LA and LC for
different current densities Ĵ (measured directly by FPI) and ~J
(derived from the curlometer technique) evaluated at different
spatial locations provides a clear physical significance and
algorithmic flexibility.

Application of a Stochastic Optimization
Algorithm to Solve for Model Parameters
and Selection of Loss Function
Components
In this new 3D ER model, the model parameters in Eq. 5 are
solved by directly minimizing the loss function L defined in
Eq. 6 using a stochastic optimization algorithm called the
SPSA method (Spall, 1998a; Spall, 1998b; Spall, 2003) through
an iterative procedure that also naturally incorporates the
errors for the measured fields (B̂, Ĵ). A comprehensive
introduction to the algorithm with detailed procedures of
implementation to the current problem is presented in
Supplementary Appendix A. Note that the generalized loss
function L defined by Eqs. 6, 7 is in a quadratic form with
respect to the model parameters {B0i, C0i,j, D0i,jk} because the
MHD Eqs. 1a, b are linear. Minimization of a quadratic loss
function is equivalent to solving a set of linear algebraic
equations for the model parameters (e.g., Menke, 1989;
Axelsson, 1996). When the model parameters are obtained
by directly minimizing the loss function L the corresponding
MHD system could be either linear or nonlinear. The
nonlinearity occurs in our new 3D ER model when Eqs. 2,
3 are also included as additional constraints. Nonlinear
systems are not unusual in various empirical models. For
example, in Roelof et al. (1993), the loss function for
reconstructing global magnetospheric images based on the
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extreme ultraviolet (EUV) and energetic neutral atom (ENA)
measurements is highly nonlinear, for which the loss function
can only be directly minimized. Furthermore, when the loss
function contains measurements, it also contains random
measurement errors. The SPSA method effectively solves
problems containing random errors by including the errors
in the solutions. In addition, we will show later through
examples that the SPSA method can solve slightly under-
determined problems that could not be solved directly by the
traditional least-squares approach.

In practice, the SPSA method solves for the model parameters
that minimize the following dimensionless loss function (y) with
a random perturbation that characterizes the measurement errors
(Supplementary Eqs. A4a, b in Supplementary Appendix A)

Lθ �
��
L

√
/B00 and (8a)

y � Lθ + εσ , (8b)
where L is given by Eq. 6, B00 is themeasured meanmagnetic field
(defined by Supplementary Eq. A1 in Supplementary Appendix
A) used to normalize the general loss funciton L, εσ � N(0, σ2)
represents a random variable having a normal distribution with
zero mean and σ2 variance that characterizes the random
measurement errors. The first-order SPSA algorithm is
adopted to solve for the model parameters in this paper. The
specifications of various model parameters including the
weighting coefficients and scaling parameters in Eq. 6 and the
algorithmic procedures of the recursive formulations are
presented in Supplementary Appendix A. In Section 3, we
will detail the application of this SPSA-based ER model to a
specific EDR case using MMS measurements and discuss the
relationship between the SPSA model variance σ2 in Eq. 8b and
the variances of the random errors of the measured B̂ and Ĵ fields,
σ2B and σ2J , respectively. Note that Lθ in Eq. 8a is a deterministic
variable whereas y in Eq. 8b is a randome variable. A stochastic
optimation method such as SPSA algorithm optimizes loss
functons associated with randome variables.

When all the loss function components in Eq. 6
(LO, LA, LB, LC) are included, then, the total number of
constraints is thirty-seven (37). This number is greater than
the number of model parameters (30) and the problem is
significantly over-determined. Because LC adopts a linear
approximation in the curlometer technique it is expected to
introduce additional errors in the modeled fields near the
reconnection regions where the field curvature is large. As a
result, our default setting for the reconstruction model is to set
wC � 0, i.e., to not include LC in the generalized loss function L.
This reduces the total number of constraints for the default
setting to thirty-three (33) and thus renders the problem,
i.e., solving thirty model parameters, only slightly over-
determined. The model departures in the loss function
component LB shown in Eq. 7c are the application of the
MHD equation ∇ · B � 0 to nine particular points on the
tetrahedron (the four vertices, the four face-centers, and the
barycenter). When LB is replaced by LpB that only applies ∇ ·
B � 0 to the barycenter plus four vertices, the total number of the
constraints is reduced to twenty-nine (29) and the problem

becomes slightly under-determined. Our numerical
experiments show that the model parameters resulting from
the SPSA method yield only slight and negligible (~1–3%)
differences when the problem is changed between slightly
over-determined and slightly under-determined. On the other
hand, the numerical solution to a set of under-determined linear
algebraic equations no longer exists or cannot be calculated
directly if the problem were solved by the traditional least-
squares method (e.g., Menke, 1989).

To explain why using LB and LpB does not lead to significantly
different solutions, we first note that for an even-determined or
an over-determined problem with a quadratic loss function, a
unique solution can be derived either by directly solving an
optimization problem or by solving a set of linear algebraic
equations (e.g., Axelsson, 1996; Chong and Zak, 2001). It is
also noted that for an over-determined problem, the inclusion
of additional measurements or constraints may not change
noticeably the existing solution if the newly added constraints
are redundant (e.g., Menke, 1989). For an under-determined
problem where the number of constraints is less than that of
the model parameters, however, the set of linear algebraic
equations becomes undetermined and one is no longer able to
uniquely solve for the model parameters. Returning to the
expressions of the loss functions in Eqs. 6–8, we note that the
roles of model parameters and constraints (e.g., B vs. B̂, or J vs. Ĵ)
do not show preference to one or the other. A minimized or a
least-squares solution is always formally available for given
numbers of model parameters and constraints regardless of
their relative magnitudes. Adding four constraints of ∇ · B � 0
to the four tetrahedron faces is expected to be largely redundant
to the already existing constraints of ∇ · B � 0 at the barycenter
and four vertices, thus leading to only slight modifications to the
model parameters. Again, it is noted that unlike (B̂, Ĵ) that are
only available on the four vertices, the analytic B-field as
expressed by Eq. 5 and all its derived fields such as J and ∇ ·
B are available on any spatial point. Furthermore, in terms of the
uniqueness of the solution, either the random noise term or the
under-determined constraints in the loss function y in Eq. 8 could
lead to the non-uniqueness of the solution. Note that the
stochastic optimization algorithm minimizes the random
variable y defined by Eq. 8b rather than the deterministic
physical loss function Lθ defined by Eq. 8a. We will discuss
this issue in more detail in the next section. From the perspective
of constraint redundancy, it is also noted that given the analytic
expression in Eq. 5 for B, the relation ∇ · J � ∇ · (∇× B/μ0) ≡ 0
will be automatically satisfied regardless of what the model
parameters are. As a result, one cannot introduce a constraint
component for J similar to LB based on the redundant relation of
∇ · J � 0.

RESULTS

To test our new model and to also demonstrate the third step of
diagnosing the accuracy and the quality of the reconstructed
fields while building an ER model, we use MMS measurements
from the magnetotail EDR event of 11 July 2017. During this
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event, the MMS constellation traversed a reconnection region in
the earthward and northward directions while remaining near the
neutral plane (Torbert et al., 2018). Figure 1 shows 7 s of
magnetic field (B̂) and particle current density (Ĵ)
measurements starting at 22:34 UT. Since B̂ and Ĵ are
measured and processed at different sampling rates and the
loss function L shown in Eq. 6 is assumed to be evaluated
simultaneously, we have interpolated the measured fields onto
the same time resolution with a time interval of Δt � 0.0293 s,
which corresponds to a sampling frequency of 34 Hz.

Error Consideration and Quality Indicators
Note that the measurement errors here include uncertainties in
both the instrumentation and subsequent processing of the data.
However, the random errors in Eq. 8 are associated with the
unbiased instrument noise. Here, we estimate the errors by
directly calculating the parameter variability included in the
data series. In Figure 2, we show both the means (B0, J0) and
the normalized standard deviations (σB, σJ) of themagnitudes for
the measured B̂ and Ĵ fields. The averages are taken over the four
spacecraft and over moving windows with widths of 7, 11, and

FIGURE 1 | Measurements from the four MMS spacecraft (MMS1, MMS2, MMS3, MMS4) on 11 July 2017 showing (left) the measured magnetic field B̂ �
(Bx ,By ,Bz) from FGM (Russell et al., 2016) and (right) particle current density Ĵ � (Jx , Jy , Jz) from FPI (Pollock et al., 2016) in GSE coordinates.

FIGURE 2 |Mean and normalized standard deviation fields derived from the MMSmeasurements. The means and standard deviations are calculated on a moving
window with a width of 7 (red), 11 (blue), and 15 (green) time steps, respectively. Panels (A) and (B) correspond to the B field and J field, respectively.
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15 time steps, respectively. The calculated B0 is approximately
equal to the characteristic value of the temporal mean of the
magnetic field B00 defined in Supplementary Eq. A1. It is noted
that themean fields are not noticeably sensitive to the width of the
moving window. This implies that the sampling rate of the
measurements is high enough to resolve the temporal
variability of the fields. It is also noted from Figure 2 that
there is no systematic variation of σB with respect to B0,
whereas σJ is inversely proportional to J0. The weighting
factor wA in Eq. 6 is proportional to the σ2B/σ

2
J parameter that

can be calculated from the values shown in the figure. The
weighting factors (wB, wC) are prescribed to (1, 0) for the
default setting of the reconstruction model. Note that setting
wB � 1 here also means that we give no preference between the
model-measurement differences L0 and the model departures LB.
To set the final model parameter σ used in Eq. 8, we note that σB
directly derived from the measured B̂ contains both the unbiased
random errors required for the construction of εσ in Eq. 8 and
possibly also the biased errors associated with the parameter
retrieval and data processing issues. In addition, a smaller σ in the
random loss function y will yield a more numerically accurate
solution, though its usefulness may be limited by the
measurement errors; any numerical accuracy achieved that is
higher than the measurement errors after setting σ → 0 does not
contain additional information as the results are ultimately
limited by the uncertainty in the measurements. As a result,
our default setting for σ in the algorithm as shown in Eq. 8b takes
a conservative value of σ � 0.1�σB, where �σB is the time-averaged
standard deviation of B̂ as shown in Figure 2A.

Given model parameters {B0i, C0i,j, D0i,jk}, a smooth 3D
solution for (B, J) can be plotted to be visulized. But before
addressing these visualizations, we begin our discussions here
with evaluations of the quality factors associated with these
results. In Figure 3, we show the relative differences of the
fields (B, J) reconstructed at every time step based on the
MMS-measured fields (B̂, Ĵ) shown in Figure 1. The indices
(γB, γJ) can be considered as the normalized loss function

components (LO, LA) corresponding to the model-measurement
differences, which can be used as a set of accuracy indicators of the
reconstruction model and are defined as:

γB �

����������������

∑
4

α�1
∑
3

i�1
[Bi(rα) − B̂α,i]

2

∑
4

α�1
∑
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i�1
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2

α,i

√
√
√
√

and (9a)

γJ �

����������������
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∑
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i�1
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2

∑
4

α�1
∑
3

i�1
Ĵ
2

α,i

√
√
√
√

. (9b)

The results from a pair of reconstructions with σ � 0.1�σB and
σ � �σB, respectively, are presented in Figure 3. The default
setting, which has a smaller measurement noise of σ � 0.1�σB,
yields a more accurate reconstruction field as characterized by
smaller indices (γB, γJ). On the other hand, if the measurement
noise in the loss function y amounts to �σB, such that
σ ~ �σB ~ 0.1 as shown in Figure 2, then, a numerical solution
of B with γB < �σB can be considered to be an acceptable or valid
solution. Our default setting of σ � 0.1�σB leads to a numerical
solution of B with γB ≪ �σB, which can be considered an accurate
solution. It should also be noted that because of the existence of
measurement errors in B̂ (i.e., σ > 0), a deterministic and
idealized solution with γB ≡ 0 is considered to be as accurate
as one with γB < σ. Figure 3 shows that far greater errors exist in
the modeled current density γJ than those in the magnetic field
γB. This is largely expected since the modeled current density J is
a quantity derived from the prescribed B field and contains
fewer free parameters and therefore is expected to lead to greater
errors in J than in B. This is another reason for us to set σ so that
it is much smaller than �σB in Eq. 8, which yields a solution also
with an acceptable error in the reconstructed J field.
Comparison between the two panels in Figure 3 shows that
the magnitude of the errors in the reconstruction model is

FIGURE 3 | Relative differences (γB , γJ) of the reconstructed (B,J) fields based on MMSmeasurements shown in Figure 1. Panels (A) and (B) correspond to two
cases of a standard setting of σ in Eq. 8 with σ � 0.1�σB and an alternative setting of σ � �σB, respectively.
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sensitive to the measurement errors. This feature can be further
confirmed by examining γJ variation with the time-dependent
measurement errors. We note from Figure 2 that σJ changes
more significantly with time than σB, which leads to a significant
variation in the weighting factor wA. Figure 4 shows both wA(�
σ2B/σ

2
J) and γJ for a standard setting of σ � 0.1�σB. The figure

shows a negative correlation between wA and γJ. Since errors in
B̂ are nearly constant, Figure 4 shows a strong positive
correlation between the errors in the measured Ĵ and the
modeled J. Overall, Figures 2–4 show that the accuracy of
the reconstructed fields from the stochastic optimization
algorithm is limited by the measurement uncertainties, with
more accurate measurements unsurprisingly resulting in a more
accurate solution for the reconstruction based upon those
measurements.

Unlike reconstruction models based on the GSR technique,
where the reconstructed fields are mainly derived by various
physical relations, the new ER model presented here is mainly
data-driven, directly fitting the modeled fields to the measured
fields. Since the design of the general loss function highlighted in
Eqs. 6, 7 also contains a component of the model departures
characterizing a few physical constraints, the validity of those
constraints can be used as a measure of the quality of the ER
model in addition to the two indices (γB, γJ) for measuring the
accuracy of the solution. Here, one important constraint is the
vanishing of the divergence of the magnetic field (∇ · B � 0),
which is also used as a constraint of the loss function component
LB in Eq. 7. Dunlop et al. (1988) introduced an index of the ratio
of the divergence to the vorticity of the magnetic field as a quality
indicator to measure the robustness of the reconstructed current
density J field. In Figure 5, we show the following two quality
indicators Qmodel and Qcurl representing the ratio of the
divergence to the vorticity of the magnetic field based on the
reconstructed B field and the measured B̂ field by curlometer
technique, respectively. These are defined as

Qmodel �
�������������

∑
4
α�1(∇ · B)2α

∑
4

α�1
∑
3

i�1
(∇× B|α,i)2

√
√
√

and (10a)

Qcurl � [

∣∣∣∣∇ · B̂∣∣∣∣
∣∣∣∣∇× B̂

∣∣∣∣
]
curlometer

. (10b)

In the above, Qmodel is calculated by evaluating ∇ · B and ∇× B
analytically based on the modeled B field at the four vertices,
whereasQcurl is calculated by evaluating the volume-averaged |∇ ·
B̂| and |∇× B̂| based on the measured B̂ field following the
schemes shown in Dunlop et al. (2002) and Middleton and
Masson (2016). Note that Qcurl has also been used as an
objective index that measures the quality of the J fields
reconstructed from the curlometer technique (Dunlop et al.,
2002). On the other hand, the index Qmodel defined in Eq. 10a

FIGURE 4 | Weighting factor wA versus the relative difference γJ for the
reconstructed current density J shown in Figure 3.

FIGURE 5 | Quality indicators Qmodel and Qcurl representing the ratio of the divergence to the vorticity of the magnetic field based on the reconstructed B field and
the measured B̂ field by curlometer technique, respectively. The left and right panels correspond to two cases of a standard setting of σ in Eq. 8 with σ � 0.1�σB and an
alternative setting of σ � �σB, respectively.
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measures the quality or robustness of both B and J fields derived
from the ER model. Figure 5 shows that typically Qmodel ≤ 0.01
for a standard setting of the model parameter σ � 0.1�σB, whereas
the typical values of Qcurl are much greater, Qcurl ≥ 0.1. Since Qcurl

is calculated directly by a linear approximation from the
measured B̂ field, it contains errors from both the linear
approximation and measurement errors (Dunlop et al., 1988;
Dunlop et al., 2002). Comparison between the two panels in
Figure 5 also shows that the increase in the measurement errors
by changing σ � 0.1�σB to σ � �σB only increases the quality
indicator Qmodel by a factor of ~3 (note the changed scale on
the ordinate between the two panels for just the “model” result,
not the “curl” result). The relation of Qmodel ≪Qcurl is still valid
for σ � �σB. As a result, we can conclude based on Figure 5 that the
uncertainties in the reconstructed fields based on the MMS-
measured B̂ near the EDR using the curlometer technique are
mostly contributed by the linear approximation used in the
technique. It should be pointed out that when an ER model is
formulated and solved as an even-determined problem based on
the traditional least-squares method, one may impose a condition
of vanishing Qmodel everywhere (Qmodel ≡ 0). In this case, an
alternative constraint corresponding to model departures, say, a
vanishing variance of the modeled B field in a particular diretion
M, i.e., z2B/zM2 � 0, needs to be introduced into the
reconstruciton model (e.g., Torbert et al., 2020).

We now turn to the loss function component LC. The default
setting of the weighting factors is (wB, wC) � (1, 0). This means
that the constraint of the precise physical relation of ∇ · B � 0 is
fully utilized whereas the constraint of matching the modeled
current components to the ones derived from the curlometer
technique on the tetrahedron faces is neglected. Again, setting
wB � 1 here also means that we give no preference between two
sets of constraints of the model-measurement differences and the
model departures. Our analysis of the quality indicators
(Qmodel, Qcurl) derived from the runs without LC shown in
Figure 5 can be considered as a rationale for the default
setting of wC � 0. It is noted that the curlometer technique

developed in Dunlop et al. (1988) and Middleton and Masson
(2016) applies a linear approximation to the entire volume of the
tetrahedron, whereas in LC the linear approximation applies only
to the four individual tetrahedron faces. Hence, it is worthwhile
examining quantitatively the effect of the loss function
component LC on the performance of the reconstruction
model. In Figure 6, we show the indices (rB, rJ) and the
quality indicators (Qmodel, Qcurl) for a sensitivity run of the
reconstruction model with all parameters in default settings,
except wC that is set to 1. Comparing Figure 6A with
Figure 3A, we find that the inclusion of LC significantly
reduces the accuracy of the reconstructed fields. This is
expected because the inclusion of LC not only introduces a
linear approximation in the calculation of the current density
J from the magnetic field B, but also enhances the degree of over-
determination of the model. Both of these are expected to increase
the errors of a least-squares solution. Comparing Figure 6B with
Figure 5A on the modeled quality indicators Qmodel derived from
different runs underscores the same conclusion—i.e., that the
inclusion of LC makes the model performance worse. However,
Figure 6B also shows that Qmodel is still significantly smaller than
Qcurl (note the different scales), indicating that a linear
approximation in a loss function component only partially
affects the model performance. This sensitivity investigation of
setting wC � 1 also demostrates the flexibility of the new ER
model that directly minimizes the general loss function with its
components being able to be included or excluded without
changing the model framework.

At this stage, it is also interesting to examine a largely
under-determined setting of excluding both LB and LC in the
generalized loss function L by setting (wB, wC) � (0, 0) in Eq.
6. There are only twenty-four (24) constraints in LO and LA, all
given by the MMS measurements, whereas the reconstruction
model contains thirty (30) model parameters that need to be
determined. Hence, the problem is largely under-determined
and the solution cannot be uniquely solved. For a stochastic
optimization, such as the one based on the SPSA method, there

FIGURE 6 | (A) Relative differences (γB , γJ) and (B) quality indicators (Qmodel ,Qcurl) for a sensitivity run with weighting factors wB and wC being both set to 1:
(wB ,wC) � (1, 1).
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is no fundamental difference in the non-uniqueness of the
solution either due to the lack of constraints or due to random
errors in the loss function. In other words, the unknown
parameters for the reconstruction model can always be
formally solved by minimizing the generalized loss function
y in Eq. 8. Figure 7 shows the indices (γB, γJ) and the quality
indicators (Qmodel, Qcurl) for a sensitivity run of the
reconstruction model that sets (wB, wC) � (0, 0). We note
from Figure 7A that the relative differences between the
modeled and measured fields (γB, γJ) are much less than
those shown in Figures 3A, 6A. However, the quality
indicator Qmodel shown in Figure 7B is much greater than
those derived by any approach shown above including Qcurl

derived by the curlometer technique. Figure 7 shows that even
though one can construct an empirical model that leads to a
very good fit between the modeled and the measured fields at
the prescribed spatial points, the fields may not necessarily
satisfy some physical relations, such as ∇ · B � 0. This is due to
the following two facts: 1) the fields contain errors, either in the
measured field or in the modeled field derived from the
measurements and 2) the numerical evaluation of the
physical relation based on the discrete measurements
involves a small difference between two large quantities.
The divergence of a vector field contains two components
of variation corresponding to variations in the magnitude and
direction of the vector. For a deformation vector field that is
mainly confluent-diffluent—i.e., divergence is mainly caused
by the change in direction—the calculation of the divergence of
the vector field generally involves a small difference of two
large quantities (e.g., Holton, 2004). In this case, small errors
in the B field will be greatly amplified in calculating ∇ · B unless
an additional constraint or assumption of ∇ · B � 0, or |∇ · B|
being small, is explicitly included in the model or algorithm
development. A similar assumption of “charge neutrality” in
plasma physics is also used as an explicitly imposed constraint
in developing various MHD models (e.g., Gurnett and
Bhattacharjee, 2005).

The other more important implication of this test run for a
largely under-determined setting with only 24 constraints for a
30-parameter reconstruction model is that the current ER
model can be directly applied to reconstructing fields with a
set of incomplete measurements. The stochastic optimization
algorithms can solve for model parameters under the same
algorithmic framework regardless whether the problem is
over- or under-determined. For example, for a default setting
of the current ER model with 33 constraints, the algorithm can
be directly applied to an incomplete set of MMS measurements
if the (B̂, Ĵ)measurements from one spacecraft are not available.
Under such a circumstance, the same algorithm with 27 (=
33−6) constraints will produce a reconstruction field (B, J) that
fits the measured (B̂, Ĵ) at three vertices having available
measurements plus ∇ · B � 0 being satisfied at all four
vertices, all within the measurement errors. The results
shown in Figure 7 also suggest that the deterioration of the
reconstructed fields due to lack of the needed constraints is
gradual. On the other hand, the algorithm based on the
traditional least-squares method that solves a set of linear
algebraic equations (e.g., Torbert et al., 2020) becomes
inapplicable once the problem changes from an even- to
under-determined one.

The Reconstructed Fields
We now present the reconstructed fields based on the MMS
measurements shown in Figure 1. A reconstruction model can be
developed in either an L-M-N coordinate system derived from the
minimum variance analysis or in a fixed system, such as GSE that
is used in the present reconstruction model. One purpose of
adopting the L-M-N coordinate system to develop a
reconstruction model is to take advantage of the ability to
neglect changes in the minimum variance direction to convert
a slightly under-determined problem into an even-determined
one (Denton et al., 2020; Torbert et al., 2020). When the
reconstructed field varies rapidly with time, the constructed
L-M-N coordinate may also change accordingly. Under such a

FIGURE 7 | (A) Relative differences (γB , γJ) and (B) quality indicators (Qmodel ,Qcurl) for a sensitivity run with weighting factors wB and wC being both set to 0:
(wB ,wC) � (0, 0).
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circumstance, the reconstructed fields at different time instances
cannot be directly compared with each other. Our reconstruction
model based on the SPSA stochastic optimization method can
automatically accommodate an over-determined or under-
determined setting of the model as discussed above. As a
result, the fields reconstructed at different temporal instances
but on the common, fixed GSE coordinate system can be directly
compared.

We present the reconstructed fields in a local GSE coordinate
X-Y-Z such that

(X,Y, Z) � (X′, Y′, Z′) − (X0, Y0, Z0), (11)
where X′ − Y′ − Z′ define the generic GSE coordinate system
and (X0, Y0, Z0) = (−1.373 × 105, 2.70 × 104, 2.32 × 104) km is
determined by the satellite constellation, which corresponds
to the GSE coordinate of the mean barycenter averaged over

the measurement time shown in Figure 1. In Figure 8, we
show the reconstructed B fields projected into and its
magnitude |B| (�

�����������
B2
1 + B2

2 + B2
3

√
, in nT) evaluated on the

X-Z plane of Y = 0 at six time instances of (a) t � 1.172 s,
(b) t � 1.904 s, (c) t � 2.636 s, (d) t � 3.368 s, (e) t � 4.100 s,
and (f) t � 4.833 s after 22:34 UT. The figure shows that both
the magnetic configuration and the intensity of the magnetic
field change noticeably with time. The reconnection region is
characterized by a weak |B| and a reversal of the orientation
(or a near anti-parallization) of the B vectors across the
region. It is noted that a weak |B| also means a weak
confinement to the motions of energetic electrons. This will
lead to localized very fine-scale energy spectra and angular
distributions that could be correlated with the remote
magnetic topologies through the gyro-sounding process as
revealed by the data from the Fly’s Eye Energetic Particle
Spectrometer (FEEPS) onboard the MMS spacecrafts (Cohen

FIGURE 8 |Modeled B fields projected into and its magnitude |B| (in nT) evaluated on the X-Z plane of Y = 0 at six time instances of (A) t � 1.172 s, (B) t � 1.904 s,
(C) t � 2.636 s, (D) t � 3.368 s, (E) t � 4.100 s, and (F) t � 4.833 s after 22:34 UT on 11 July 2017.
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et al., 2021; Turner et al., 2021). The development and
evolvement of these two features can be easily identified in
this figure. To provide a better view on the development of the
reconnection region, we show in Figure 9A the superimposed
B fields at two neighboring time instances of t � 2.636 s and
t � 3.368 s on the same plot. The figure shows the
development of an anti-parallel B field having a nearly
opposite direction and an equal magnitude with a
significantly weak B field sandwiched between the two
regions at t � 3.368 s and especially in the region of X> 0.
Though the reconstruction in the present model is under the
X-Y-Z coordinate whereas the reconstruction in Torbert et al.
(2020) was presented in the L-M-N coordinate, the
configuration of the reconstructed B-field shown in
Figure 9A is qualitatively similar to that shown in Torbert
et al. (2020). Figure 9B shows the corresponding cross tail
current J on the Y-Z plane of X = 0 that shows a significant
intensification in its magnitude due to the development of the
reconnection event.

CONCLUSION

A new ER model for the 3D magnetic field and plasma current
field has been developed by use of a stochastic optimization
method called SPSA. This reconstruction model adopts an
empirical approach by fitting the prescribed analytic functions
for the magnetic and plasma fields to the point-wise
measurements from a constellation of satellites with a set of
physical constraints determined by the MHD equations. The
fitness is defined by a general loss function that consists of the
model-measurement differences and the model departures
from linear or nonlinear physical constraints. The new ER
model directly minimizes the loss function using a stochastic
optimization method called SPSA algorithm for which the
effect of the random measurement errors is also included. We
presented the concrete steps of how to implement this ER
model to a special case of having the MMS-measured fields
(B̂, Ĵ) combined with a set of physical constraints
corresponding to an ideal MHD system of Eqs. 1a, b, which
has been extensively investigated by traditional least-squares
method (e.g., Denton et al., 2020; Torbert et al., 2020). Most
SPSA applications contain the loss functions that only involve
the difference between the modeled and measured quantities
(e.g., Chin, 1999; Spall, 2003). On the other hand, the
constraints contained in the generalized loss function (6)
include not only the model-measurement differences but
also the model departures derived from the physical
constraints Eqs. 1a, b, which in turn characterizes the
physical robustness of the fields reconstructed by an
empirical model.

We have introduced the indices (rB, rJ) in Eq. 9 that
calculate the relative differences between the modeled (B, J)
fields and the measured (B̂, Ĵ) fields. This set of indices (γB, γJ)
provides an objective measure of the accuracy to the modeled
fields. In addition, the concept of the quality indicator Qcurl

introduced in Dunlop et al. (1988) has been extended to a new
model quality indicator Qmodel shown in Eq. 10. This index
provides an objective measure to the robustness of the modeled
field in terms of its physical property of ∇ · B � 0. These two
sets of new indices are respectively associated with the two sets
of constraints of model-measurement differences and the
model departures used in designing the general loss
function for the new ER model. The new ER model was
applied to the measurements of an EDR observed by the
MMS mission (Torbert et al., 2018). By conducting various
sensitivity investigations of the reconstruction model, we were
able to examine the sources of the errors in the reconstructed
fields previously noted by the curlometer technique. It is now
found that the errors in the plasma current density calculated
directly from the measured magnetic fields based on
curlometer technique were mostly contributed from the
linear approximation to a nonlinear configuration of the 3D
magnetic fields. A more comprehensive nonlinear ER model
that uses Eqs. 1–3 with point-wise measurements of (B, J) and
(U, E) fields and effectively includes the effects of plasma
resistivity contained in Eqs. 2, 3 near the EDRs will be
presented in our future investigations.

FIGURE 9 | (A)Modeled B fields projected into the X-Z plane of Y = 0 at
two times of t � 2.636 s (blue) and t � 3.368 s (red) after 22:34 UT on 11 July
2017. (B) Modeled J fields projected into the Y-Z plane of X = 0 at the same
two instances as in panel (A). A significant intensification in J fields at
t � 3.368 s as indicated by a plot with dominant red arrows.
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Automatic detection of outliers is universally needed when working with scientific
datasets, e.g., for cleaning datasets or flagging novel samples to guide instrument
acquisition or scientific analysis. We present Domain-agnostic Outlier Ranking Algorithms
(DORA), a configurable pipeline that facilitates application and evaluation of outlier
detection methods in a variety of domains. DORA allows users to configure experiments
by specifying the location of their dataset(s), the input data type, feature extraction
methods, and which algorithms should be applied. DORA supports image, raster,
time series, or feature vector input data types and outlier detection methods that
include Isolation Forest, DEMUD, PCA, RX detector, Local RX, negative sampling,
and probabilistic autoencoder. Each algorithm assigns an outlier score to each data
sample. DORA provides results interpretation modules to help users process the results,
including sorting samples by outlier score, evaluating the fraction of known outliers
in n selections, clustering groups of similar outliers together, and web visualization.
We demonstrated how DORA facilitates application, evaluation, and interpretation of
outlier detection methods by performing experiments for three real-world datasets from
Earth science, planetary science, and astrophysics, as well as one benchmark dataset
(MNIST/Fashion-MNIST). We found that no single algorithm performed best across all
datasets, underscoring the need for a tool that enables comparison of multiple algorithms.

Keywords: astrophysics, planetary science, Earth Science, outlier detection, novelty detection, out-of-distribution
detection

1 INTRODUCTION

The ability to automatically detect out-of-distribution samples in large data sets is of interest
for a wide variety of scientific domains. Depending on the application setting, this capability is
also commonly referred to as anomaly detection, outlier detection, or novelty detection. More
broadly, this is referred to as out-of-distribution (OOD) detection. In general, the goal of OOD
detection systems is to identify samples that deviate from the majority of samples in a dataset in
an unsupervised manner (Pimentel et al., 2014). In machine learning, these methods are commonly
used for identifying mislabeled or otherwise invalid samples in a dataset (Liang et al., 2018;
Böhm and Seljak, 2020). When working with science datasets, OOD detection can be used for
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cleaning datasets, e.g., flagging ground-truth labels with GPS or
human entry error or identifying wrongly categorized objects
in a catalog (Wagstaff et al., 2020a; Lochner and Bassett, 2021).
It could also be used for discovery, e.g., to flag novel samples
in order to guide instrument acquisition or scientific analysis
(Wagstaff et al., 2013; Kerner et al., 2020a; Kerner et al., 2020b;
Wagstaff et al., 2020b). Another application is the detection of
rare objects that are known to exist but the known examples
are too few to create a large enough labeled dataset for
supervised classification algorithms (Chein-I Chang and Shao-
Shan Chiang, 2002; Zhou et al., 2016).

Despite wide differences in applications, data types,
and dimensionality, the same underlying machine learning
algorithms can be employed across all of these domains. A
challenge for applying them however is that domain scientists
do not always have the programming or machine learning
background to apply the algorithms themselves using existing
tools. Given the widespread applicability and transferability of
OOD methods, the scientific community would benefit from a
tool that made it easy for them to apply popular outlier detection
algorithms to their science datasets.We createdDORA (Domain-
agnostic Outlier Ranking Algorithms) to provide a tool for
applying outlier detection algorithms to a variety of scientific data
sets with minimal coding required. Users need only to specify
details for their data/application including the data type, location,
and algorithms to run in an experiment configuration file.
DORA supports image, raster, time series, or feature vector input
data types and outlier detection methods that include Isolation
Forest, Discovery via Eigenbasis Modeling of Uninteresting
Data (DEMUD) (Wagstaff et al., 2013), principal component
analysis (PCA), Reed-Xiaoli (RX) detector (Reed and Yu, 1990),
Local RX, negative sampling (Sipple, 2020), and probabilistic
autoencoder (PAE). Each algorithm assigns an outlier score
to each sample in a given dataset. DORA provides results
organization and visualization modules to help users process the
results, including sorting samples by outlier score, evaluating
outlier recall for a set of known/labeled outliers, clustering
groups of similar outliers together, and web visualization. We
demonstrated how DORA facilitates application, evaluation,
and interpretation of outlier detection methods by performing
experiments for three real-world datasets from Earth science,
planetary science, and astrophysics, as well as one benchmark
dataset (MNIST/Fashion-MNIST).

The key contributions of this paper are:

• A new pipeline, DORA, for performing outlier detection
experiments using several AI algorithms that reduces the
effort and expertise required for performing experiments and
comparing results from multiple algorithms
• Using experiments for a diverse set of real world datasets and

application areas, we show that no single algorithm performs
best for all datasets and use cases, underscoring the need for a
tool that compares multiple algorithms
• We provide publicly available code for running and

contributing to the DORA pipeline and datasets that can be
used for reproducing experiments or benchmarking outlier
detection methods

2 RELATED WORK

Methods for outlier detection have been surveyed extensively
and can be differentiated primarily based on how they score
outliers (Markou and Singh, 2003a; Markou and Singh, 2003b;
Chandola et al., 2009; Pimentel et al., 2014). Reconstruction-
based methods construct a model of a dataset by learning
a mapping between the input data and a lower-dimensional
representation that minimizes the loss between the input and
its reconstruction from the low-dimensional representation
(Kerner et al., 2020a). The reconstruction error is used as
the outlier score because samples that are unlike the data
used to fit the model will be more poorly reconstructed
compared to inliers. Reconstruction-basedmethods include PCA
(Jablonski et al., 2015), autoencoders (Richter and Roy, 2017),
and generative adversarial networks (Akcay et al., 2018).
Distance-based methods score outliers based on their distance
from a “background” which can be defined in a variety of
ways. For example, the Reed-Xiaoli (RX) detector computes the
Mahalanobis distance between each sample and the background
dataset defined by its mean and covariance matrix (Reed and
Yu, 1990). Sparsity-based methods such as isolation forest
(Liu et al., 2008) and local outlier factor (Breunig et al., 2000)
score outliers based on how isolated or sparse samples
are in a given feature space. Probability distribution and
density based methods estimate the underlying distribution
or probability density of a dataset and score samples using
likelihood. Examples include the probabilistic autoencoder,
which scores samples based on the log likelihood under the latent
space distribution (Böhm and Seljak, 2020), Gaussian mixture
Models, and kernel density estimators (Chandola et al., 2009).
Other methods formulate outlier detection as supervised
classification, usually with only one class constituted by known
normal samples. Such methods include one-class support
vector machines (Schölkopf et al., 1999) and negative sampling
(Sipple, 2020).

In astrophysics, outlier detection methods have been used
to identify astrophysical objects with unique characteristics
(Hayat et al., 2021) as well as data or modeling artifacts
in astronomical surveys (Wagstaff et al., 2020a; Lochner
and Bassett, 2021). Example outlier detection applications
in Earth science include detecting anomalous objects
or materials (Zhou et al., 2016), data artifacts or noise
(Liu et al., 2017), change (Touati et al., 2020), and ocean
extremes (Prochaska et al., 2021). Planetary science applications
have mostly focused on prioritizing samples with novel geologic
or geochemical features for follow-up targeting or analysis
(Wagstaff et al., 2013; Kerner et al., 2020a). These examples
show the benefit of applying outlier detection methods in a
variety of real-world science use cases. However, the effort
required to apply and evaluate the many available algorithms
is non-trivial and can be daunting for non-ML experts, thus
impeding the uptake of outlier detection methods in science
applications. There is a need for tools that make it easier for
domain scientists to apply outlier detection methods as well as
compare results across datasets. While there have been some
efforts to develop tools for facilitating the application of outlier
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detection methods (Zhao et al., 2019), they cover limited data
formats and algorithms. DORA aims to fill the need for tools that
facilitate application, evaluation, and interpretation of outlier
detection methods.

3 METHODS

Figure 1 illustrates the architecture of DORA including
data loading, feature extraction, outlier ranking, and results
organization and visualization modules. In order to improve
the readability and execution speed of the code, we adopted
object-oriented and functional programming practices. We
designed DORA to be readily extensible to support additional
data types or formats, outlier detection algorithms, and results
organization or visualization methods by writing new modules
that follow the DORA API. Experimental settings are controlled
by configuration files in which users can specify the input
data, feature extraction methods, normalization method, outlier
ranking methods, and results organization methods. DORA is
implemented in Python 3.

3.1 Data Loaders
We chose to implement data loaders for four data types that are
commonly used by the machine learning and domain science
communities: time series, feature vectors, images (grayscale
or RGB), and N-band rasters. N-band rasters are images or
grids in which every pixel is associated with a location (e.g.,
latitude/longitude in degrees); most satellite data are distributed
as rasters. A data loader for each data type locates the data
by the path(s) defined in the configuration file and loads
samples into a dictionary of numpy arrays indexed by the
sample id. This data_dict is then passed to each of the ranking
algorithms.

3.2 Outlier Ranking Algorithms
We implemented seven unsupervised algorithms for scoring and
ranking samples by outlierness. We chose these algorithms to
include a diverse set of approaches to scoring outliers since
different algorithmsmay perform better for different datasets and
use cases. We describe each approach to scoring outliers and the
associated methods below.

3.2.1 Reconstruction Error
Principal component analysis (PCA) has been used for
outlier detection by scoring samples using the reconstruction
error (here, the L2 norm) between inputs and their
inverse transformation from the principal subspace
(Kerner et al., 2020a). DEMUD (Wagstaff et al., 2013) differs
from other outlier ranking methods: instead of independently
scoring all observations, DEMUD incrementally identifies the
most unusual remaining item, then incorporates it into the
model of “known” (non-outlier) observations before selecting
the next most unusual item. DEMUD’s goal is to identify diverse
outliers and avoid redundant selections. Once an outlier is found,
repeated occurrences of that outlier are deprioritized. Methods
that score samples independently maximize coverage of outliers,
while DEMUD maximizes fast discovery of distinct outlier
types.

3.2.2 Distance
The Reed-Xiaoli (RX) detector is commonly used for anomaly
detection in multispectral and hyperspectral remote sensing. RX
scores samples using the Mahalanobis distance between a sample
and a backgroundmean and covariance (Reed andYu, 1990).The
local variant of RX (Local RX or LRX) can be used for image or
raster data and scores each pixel in an image with respect to a
window “ring” of pixels surrounding it (Molero et al., 2013). LRX
requires two parameters to define the size of the outer window

FIGURE 1 | DORA pipeline architecture.
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surrounding the pixel and the inner window around the target
pixel to exclude from the background distribution.

3.2.3 Sparsity
Isolation forest (iForest) is a common sparsity-based method
that constructs many random binary trees from a dataset
(Liu et al., 2008).Theoutlier score for a sample is quantified as the
average distance from the root to the item’s leaf. Shorter distances
are indicative of outliers because the number of random splits
required to isolate the sample is small.

3.2.4 Probability
The negative sampling algorithm is implemented by converting
the unsupervised outlier ranking problem into a semi-supervised
problem (Sipple, 2020). Negative (anomalous) examples are
created by sampling from an expanded space defined by the
minimum and maximum values of each dimension of the
positive (normal) examples. The negative and positive examples
are then used to train a random forest classifier. We use
the posterior probabilities of the random forest classifier as
outlier scores, which means that the observations with higher
posterior probabilities are more likely to be outliers. The
probabilistic autoencoder is a generative model consisting of
an autoencoder trained to reconstruct input data which is
interpreted probabilistically after training using a normalizing
flow on the autoencoder latent space (Böhm and Seljak, 2020).
Samples are scored as outliers using the log likelihood in the
latent distribution, the autoencoder reconstruction error, or a
combination of both.

3.3 Results Interpretation
Each of the outlier ranking algorithms returns an array
containing the sample index, outlier score, and selection
index (index after sorting by outlier score). DORA provides
organization and visualization modules intended to help users
interpret andmake decisions based on these outputs.The simplest
module saves a CSV of the samples sorted by their outlier score
(i.e., selection order). Clustering the top N outlier selections
can enable users to investigate the different types of outliers
that might be present in the dataset; this could be especially
useful for separating outliers caused by noise or data artifacts vs
scientifically interesting samples. We implemented the K-means
and self-organizing maps (SOMs) algorithms for clustering the
top-N outliers. For use cases in which an evaluation dataset
containing known outliers is available, we provide a module
to assess how well algorithm selections correlate with known
outliers. This is done by plotting the number of known outliers
vs number of selections made. We provide a module for plotting
histograms of outlier scores to visualize the distribution of scores
in the dataset (whichmay be, e.g., multimodal or long-tailed).We
developed a desktop application to easily visualize DORA results
with the Electron application framework and React frontend
library. This enables fast and easy comparison of the results from
different methods. We developed a desktop application to easily
visualize DORA results with the Electron application framework
and React frontend library. The application loads the DORA
configuration file to locate the dataset and result CSVs. Then, it

displays the ranked samples and their scores in a table sorted by
their selection order. This allows for fast and easy comparison
of the results of different methods. Figure 2 shows a screenshot
of the “Aggregate Table” view, which displays all results from
different algorithms side-by-side.

4 DATASETS

We constructed three datasets to evaluate the utility of DORA
and algorithm performance for a variety of scientific domains
(astrophysics, planetary science, and Earth science). We also
included a benchmark dataset that uses MNIST and Fashion-
MNIST. Table 1 summarizes the number of unlabeled samples
used for training and evaluation for each dataset. We describe
each dataset in detail below.

4.1 Astrophysics: Objects in Dark Energy
Survey
Astronomical data sets are large and growing. Large modern
optical imaging surveys are producing catalogs of order 108

stars and galaxies, with dozens or hundreds of distinct measured
features for each entry. Discovery science becomes difficult
at this data volume: the scale is too large for expert human
inspection, and separating real astrophysical anomalies from
non-astrophysical sources like detector artifacts or satellite trails
is a challenging problem for current methods.

The Dark Energy Survey (DES) is an ongoing imaging survey
of 5,000 deg2 of the southern sky from the Cerro-Tololo Inter-
AmericanObservatory inChile (Zuntz et al., 2018).The resulting
galaxy catalogs produced have provided some of the strongest
constraints to date on the physical properties of dark energy
and accelerated expansion of the Universe. The first version
of this catalog, released June 2018, incorporated only cuts on
signal-to-noise and resolution, masks against known detector
anomalies and data quality indicators, and the automated data
quality flags produced during processing to filter outliers. In
December 2019, the full catalog was released after 18 months
of extensive manual vetting. We used the samples that were
removed in the second version of the catalog as a set of known
outliers for evaluating anomaly detection methods on the first
version.

We compared all methods on a dataset of 100K galaxy objects
observed by the Dark Energy Survey (DES) sampled from the
initial June 2018 release. We labeled the 25,339 objects from
this 100 K set that did not appear in the later December 2019
release, thus were likely eliminated during the manual vetting
process, as outliers. While the remaining 74,661 objects may
also contain outliers, we assume them to be inliers in this
experiment. We used publicly-available photometry from the
g−, r−, i− and z− band DES exposures. We transformed the
photometry into luptitudes1. The input features were the r-band

1A “Luptitude” (Lupton et al., 1999) is an arcsinh-scaled flux, with properties
quantitatively equal to traditional astronomical magnitudes for bright sources, but
which gracefully handles non-detections and negative fluxes.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 4 May 2022 | Volume 9 | Article 867947115

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kerner et al. Domain-Agnostic Outlier Ranking Algorithms

FIGURE 2 | A screenshot of the DORA visualizer displaying results from the planetary science dataset.

luptitude, colors computed as banddifferences between g− r, i− r,
and z− r, and associated observational errors, for a total of eight
features.

4.2 Planetary: Targets in Mars Rover
Images
Mars exploration is fundamentally an exercise in discovery with
the goal of increasing our understanding of Mars’s history,
evolution, composition, and currently active processes. Outliers
identified in Mars observations can inspire new discoveries
and inform the choice of which areas merit follow-up or
deeper investigation (Kerner et al., 2020a;Wagstaff et al., 2020b).
We collected 72 images from theNavigation camera (Navcam) on
theMars Science Laboratory (MSL) rover and employedRockster
(Burl et al., 2016) (currently used by onboard rover software) to

TABLE 1 | Number of samples in the training and test sets for each dataset.

Dataset Training Test Inliers
Unlabeled Outliers

Astrophysics 100,000 25,339 74,661
Planetary 992 9 49
Earth 6,757 37 76
F-MNIST 60,000 1,000 1,000

identify candidate rock targets with an area of at least 100 pixels,
yielding 1,050 targets. We cropped out a 64 × 64 pixel image
centered on each target.

We simulated the operational setting in which the rover has
observed targets up through mission day (sol) s and the goal
is to rank all subsequent targets (after sol s) to inform which
recent targets merit further study. Our rover image data covers
sols 1,343 to 1703. We partitioned the images chronologically to
assess outlier detection in the 10 most recent sols, using “prior”
setD1343−1693 (n = 992) and “assessment” setD1694−1703 (n = 58) for
evaluation. We collaborated with an MSL science team member
to independently review the targets in D1694−1703 and identify
those considered novel by the mission (noutlier = 9). Our goal for
this application is to assess how well the selections made by each
algorithm correlate with human novelty judgments to determine
which methods would be most suitable for informing onboard
decisions about follow-up observations.

4.3 Earth: Satellite Time Series for Ground
Observations
Many Earth science applications using satellite Earth observation
(EO) data require ground-truth observations for identifying and
modeling ground-identified objects in the satellite observations.
These groundobservations also serve as labels that are pairedwith
satellite data inputs for machine learning models. For example,
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a model trained to classify crop types in satellite observations
requires ground-annotated labels of crop type. A widespread
challenge for ground-annotated labels is that there are often
points with erroneous location or label information (e.g., due
to GPS location error or human entry error) that need to be
cleaned before the labels can be used for machine learning or
other downstream uses. Automatically detecting these outliers
could save substantial time required for cleaning datasets and
improve the performance of downstream analyses that rely on
high-quality datasets.

We used a dataset of ground annotations of maize crops
collected by the UN Food and Agriculture Organization
(FAO). This dataset includes 6,757 samples with location
(latitude/longitude) metadata primarily in Africa and Southeast
Asia. Most locations coincide with crop fields but there are
many outliers that coincide with other land cover types such
as water, buildings, or forests. We constructed an evaluation
set of all samples in Kenya (n = 113) and manually annotated
whether each sample was located in a crop field (inlier) or not
(outlier) using high-resolution satellite images in Collect Earth
Online (ninlier = 76, noutlier = 37). We used the Sentinel-1 synthetic
aperture radar (SAR)monthlymedian time series for each sample
location from the year the sample was collected. We used SAR
data because it is sensitive to ground texture and penetrates
clouds, which is important for the often-cloudy region covered
by the dataset. Our goal for this application was to assess how
well the selections made by each algorithm correlate with outliers
determined by visual inspection of the satellite images.

4.4 Benchmark: MNIST and
Fashion-MNIST
We used MNIST and Fashion-MNIST (F-MNIST) to
demonstrate DORA with a traditional benchmark dataset. We
used 60,000 images from F-MNIST as the training set and a test
set of 1,000 images each from MNIST (outliers) and F-MNIST
(inliers).

5 RESULTS

Theexperimental setup for each dataset was to fit or train amodel
for each ranking algorithm using a larger unlabeled dataset and
then apply the models to compute the outlier scores for a smaller
test dataset for which labels of known outliers were available
(Table 1). For each test set, we created a plot of the number of
known outliers detected out of the top N selections. We also
reported the Mean Discovery Rate (MDR) in the legend for each
algorithm to give a quantitative comparison across the datasets.
We defined MDR as:

MDR =
∑Ns

i=1
ni

∑Ns

i=1
si

(1)

where i ∈ [1,Ns] is the selection index, Ns is the total number
of selections, si is the number of selections made up to index i,
and ni is the number of known outliers (true positives) among
si selections. We also reported the precision at N = noutlier for

each test set where noutlier is the number of known outliers,
i.e., the precision obtained when the number of selections
is the same as the total number of outliers. Precision at
N is the number of known outliers divided by the number
of selections N (Campos et al., 2016). Table 2 compares the
precision at N = noutlier for each dataset and ranking algorithm.
We calculated a random selection baseline which we refer to as
“Theoretical Random” using the expected value of ni for i random
selections:

E[ni, i ∈ [1,Ns]] =
∑i

j=0
(noutlier
j )(D− noutlier

i− j ) j

(Di )
(2)

=
noutlieri
D

(3)

For the astrophysics dataset (Figure 3A), DEMUD was
omitted due to computational time and LRX was omitted
as it applies only to image data. Of the remaining methods,
PCA achieved the highest precision, followed by RX. Negative
sampling performs well initially before its performance drops off.
The PAE finds the most outliers overall.

For the planetary dataset, we found that the Isolation Forest
achieved the highest precision (best outlier detection) when
allowed to select only 9 images. Figure 3B shows the complete
(cumulative) outlier detection performance for each algorithm
when ranking all 58 target images in D1694−1703. We could
not employ RX since the data dimensionality (64× 64 = 4,096)
exceeded the data set size.

For the Earth dataset, negative sampling had the best
performance in both metrics. DEMUD, PCA, and PAE tied for
the lowest precision atN = noutlier whileDEMUDandPCA tied for
the lowest MDR (Figure 3C). We did not evaluate LRX for this
time series dataset because LRX can only be applied to gridded
image or raster data types.

For theMNIST and F-MNIST dataset, PCA andDEMUD tied
for the highest precision at N = noutlier while DEMUD, PCA, and
PAE tied for the highest MDR (Figure 3D). Negative sampling
had the lowest performance in both metrics.

TABLE 2 | Precision at N = noutlier for four datasets; the best result for each
data set is in bold.

Algorithm Astro Planetary Earth F-MNIST

PCA 0.42 0.44 0.41 0.84
DEMUD — 0.44 0.41 0.84

RX 0.40 — 0.43 0.82
LRX — 0.33 — 0.56

IForest 0.34 0.56 0.46 0.74

PAE 0.35 0.44 0.41 0.83
Neg. Sampling 0.32 0.33 0.49 0.43

Random 0.25 0.14 0.32 0.50

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 May 2022 | Volume 9 | Article 867947117

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kerner et al. Domain-Agnostic Outlier Ranking Algorithms

FIGURE 3 | Number of known outliers ranked in top N selections for the (A) astrophysics, (B) planetary, (C) Earth, and (D) FMNIST datasets.

6 DISCUSSION

6.1 Algorithm Performance
No one algorithm had the best performance across all four
datasets. PCA had the best performance for the astrophysics
and F-MNIST datasets, while negative sampling and isolation
forest was best for the Earth science and planetary datasets
respectively.This illustrates the importance of including a diverse
set of algorithms and tools for easily inter-comparing them
in DORA, since the best algorithm will vary for different
datasets. The purpose of this study was to demonstrate how
DORA could be used to facilitate outlier detection experiments
and compare results across datasets from different domains.
Thus we did not perform hyperparameter tuning which could
improve results for each dataset; we leave this for future
work.

6.2 Evaluation in Outlier Detection
Prior work has emphasized the difficulty of creating standardized
metrics for outlier detection that represents how models

will perform in real world settings while also enabling
intercomparison between datasets (Campos et al., 2016). We
chose two complementary metrics with this in mind: precision at
N = noutliers, which measures the fraction of selections that are
known outliers when the number of selections is equivalent
to the number of outliers, and Mean Discovery Rate, which
measures the fraction of selections that are known outliers on
average. Designing experiments to evaluate outlier detection
methods for real-world use cases is also difficult because it is
difficult, or sometimes impossible, to obtain labeled samples of
outliers, inliers, or both for evaluation. In addition, labels are
often subjective or uncertain, especially in the case of scientific
datasets. For example, a dataset of known outliers was available
for the astrophysics dataset from human annotation in prior
work, but the remainder of samples in the dataset used for
evaluation were not known to be inliers or outliers. This can
result in evaluation metrics that are deceptively low because
unlabeled samples that might actually be outliers (as was found
to be common in prior work (Wagstaff et al., 2020a)) are counted
as false positives.
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6.3 Open Code and Data
Our goal is for DORA to enable increased application and benefit
of outlier detectionmethods in real-world scientific use cases.We
have designed DORA to make it as easy as possible for scientists
to apply algorithms and to compare and interpret their results.
Users need only to specify the specifics of their data (e.g., path,
data type) in a configuration file to start running experiments
and seeing results for their own datasets and use cases. DORA
is publicly available and can be installed using pip via Github,
making it easy to integrate into existing scientific workflows.
The datasets used in this study are also publicly available via
Zenodo. This enables DORA to be improved and expanded by
the machine learning and domain science communities. If a
researcher wants to use DORA for a dataset with a type that
is not yet supported, they can contribute a new data loader
by creating a subclass that extends the DataLoader abstract
base class. Similarly, new results interpretation modules can be
added by creating a subclass of the ResultsOrganization abstract
base class. A new outlier ranking algorithm can be added by
writing a new python module that defines a subclass of the
OutlierDetection abstract base class and implements the required
functions for scoring and ranking samples, following the existing
algorithm modules named *_outlier_detection.py. In addition,
DORA will be infused into the scientific workflows for the three
use cases we demonstrated results for in this study. The DORA
code can be accessed at https://github.com/nasaharvest/dora and
datasets at https://doi.org/10.5281/zenodo.5941338.

7 CONCLUSION

The ability to automatically find outliers in large datasets is
critical for a variety of scientific and real-world use cases.
We presented Domain-agnostic Outlier Ranking Algorithms
(DORA), a configurable pipeline that facilitates application
and evaluation of outlier detection methods in a variety of
domains. DORA minimizes the coding and ML expertise
required for domain scientists since users need only to specify
their experiment details in a configuration file to get results from
all available algorithms. This is particularly important because
the experiments for three cross-domain science datasets in this
study showed that no one algorithmperforms best for all datasets.
DORA will be publicly accessible as a python package to make
it easy to integrate into existing scientific workflows. The will be
open-sourced to enable continued improvement and expansion
of DORA to serve the needs of the science community. The
datasets used in this study will also be public and can serve as
real-world benchmarks for future outlier detection methods.

In future work, we will continue to improve DORA based on
the experience of deploying it in the workflows of the domain
scientists associated with the datasets in this study and add
additional interpretation modules including causal inference
graphs.
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Classification of Cassini’s Orbit
Regions as Magnetosphere,
Magnetosheath, and Solar Wind via
Machine Learning
Kiley L. Yeakel1*, Jon D. Vandegriff 1, Tadhg M. Garton2,3, Caitriona M. Jackman3,
George Clark1, Sarah K. Vines1, Andrew W. Smith4 and Peter Kollmann1

1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States, 2Department of Physics and Astronomy,
University of Southampton, Southampton, United Kingdom, 3School of Cosmic Physics, Dublin Institute for Advanced Studies,
Dublin, Ireland, 4Mullard Space Science Laboratory, University College London, London, United Kingdom

Several machine learning algorithms and feature subsets from a variety of particle and
magnetic field instruments on-board the Cassini spacecraft were explored for their utility in
classifying orbit segments as magnetosphere, magnetosheath or solar wind. Using a list of
manually detected magnetopause and bow shock crossings from mission scientists,
random forest (RF), support vector machine (SVM), logistic regression (LR) and recurrent
neural network long short-termmemory (RNN LSTM) classification algorithms were trained
and tested. A detailed error analysis revealed a RNN LSTMmodel provided the best overall
performance with a 93.1% accuracy on the unseen test set and MCC score of 0.88 when
utilizing 60min of magnetometer data (|B|, Bθ, Bϕ and BR) to predict the region at the final
time step. RF models using a combination of magnetometer and particle data, spanning
H+, He+, He++ and electrons at a single time step, provided a nearly equivalent
performance with a test set accuracy of 91.4% and MCC score of 0.84. Derived
boundary crossings from each model’s region predictions revealed that the RNN
model was able to successfully detect 82.1% of labeled magnetopause crossings and
91.2% of labeled bow shock crossings, while the RF model using magnetometer and
particle data detected 82.4 and 74.3%, respectively.

Keywords: recurrent neural network (RNN) long short-term memory (LSTM), random forest, machine learning,
magnetosphere, boundary crossings, Saturn, Cassini-Huygens

1 INTRODUCTION

Preliminary to any detailed studies of space physics phenomena is the detection and statistical
quantification of large quantities of example “events” in data sets from orbiting spacecraft. At
present, the detection and cataloging of such events is done primarily by visual inspection of the data
sets by domain experts. Yet, as the current and near-future space missions continue to fly evermore
data-intensive sensors, the space physics community is rapidly approaching a point in which the data
volume vastly exceeds the analysis capacity of the domain experts (Azari et al., 2020). Additionally,
manual detection and cataloging of the events embeds the bias of the individual observer into the
curated catalog, consequently precluding the inter-comparison of results from two independent
observers. Semi-automation of the event detection by using, for instance, a set of explainable
threshold criteria to define an event, has helped to combat some of the inter-observer bias and reduce
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the time needed to build event catalogs relative to a purely manual
method. Yet, it can be the case that such rigid threshold criteria
fail to replicate the subtle event detection/inspection process of
the domain experts, or to appropriately account for the
complexities introduced by the varying observer (spacecraft)
position. Machine learning (ML) presents a viable alternative
to the current best practice of manual inspection or semi-
automated methodologies given the proven ability in other
fields to comb through vast data reserves to find events of
interest. In the space domain, with its exponentially increasing
data archives, ML is becoming a necessity.

A common feature to identify in spacecraft data sets is the
encounter of a spacecraft with magnetospheric boundaries such
as the bow shock or magnetopause. The regions adjacent to these
boundaries have very particular characteristics: the
magnetosphere is dominated by planetary field and plasma;
the magnetosheath is a region of turbulent, compressed,
heated, shocked solar wind plasma, and the solar wind
upstream of the bow shock can reflect a pattern of regular
corotating interaction regions as well as revealing the presence
of solar wind transients such as coronal mass ejections. There are
many physical phenomena which occur in these different
regions—e.g., from magnetic reconnection to wave-particle
interactions—and robust region identification (magnetosphere
vs magnetosheath vs solar wind) is often a necessary step prior to
doing focused event detection surveys. At Earth, various studies
have developed algorithms to detect magnetopause and bow
shock boundaries based on changes in the time-based variance
of the magnetic field, orientation of the magnetic field and the
composition and properties of the local plasma from in situ
spacecraft data (Ivchenko et al., 2000; Jelínek et al., 2012; Case and
Wild, 2013; Olshevsky et al., 2021). Similar studies have been
applied to splitting heliospheric measurements into categories
based on in situ solar wind observation and using techniques such
as Gaussian process classification (Xu and Borovsky, 2015;
Camporeale et al., 2017). On the sun-ward side of the bow
shock there is also a foreshock region, which displays
properties similar to the magnetosheath. This is especially
prominent at Earth where the orientation of interplanetary
magnetic field (IMF) drives a quasi-parallel bow shock over a
large extent of the boundary, and the resulting foreshock
propagates shocked ions and magnetic field perturbations far
upstream, obfuscating the solar wind population. The distinct
characteristics of the quasi-parallel foreshock region at Earth has
prompted ML-based region classification algorithm approaches
to identify the foreshock as a fourth region in addition to the
magnetopshere, magnetosheath and solar wind (Olshevsky et al.,
2021). In contrast to Earth, the Parker spiral angle at Saturn is
found to be larger at approximately 86.8 ± 0.3° (Jackman et al.,
2008). Thus, Saturn’s bow shock is primarily quasi-perpendicular
to the IMF, and the foreshock will be pushed to the dawn side of
the planet. While some studies have found evidence of quasi-
parallel foreshocks at Saturn present in the Cassini data (Bertucci
et al., 2007), in general, quasi-perpendicular bow shock crossings
dominate (Sulaiman et al., 2016).

At Saturn, there are still large unknowns concerning physically
processes within Saturn’s magnetosphere as well as its interaction

with the solar wind. For example, the role of dayside reconnection
in controlling the magnetospheres of giant planets is still not fully
understood (Guo et al., 2018). Increasing the event list that can
enable detailed studies of physical phenomena, i.e., magnetic
reconnection, can have impactful results in our understanding
of physical drivers of magnetospheric dynamics such as particle
injections and auroral pulsations (Guo et al., 2018). Therefore, in

FIGURE 1 | Depiction of Cassini’s orbits spanning 1 November 2004
(the end of the first capture orbit) through 15 September 2017 along with
associated labeled boundary crossings in the X-Y KSM plane (A) and X-Z
KSM plane (B). The legend refers to the color denoting the four types of
crossings in the data set: bow shock inbound (BSI, cyan), bow shock
outbound(BSO, blue), magnetopause inbound (MPI, yellow) and
magnetopuase outbound (MPO, red). The magenta box and triangle highlight
case study MP and BS crossings, which were fully encapsulated in the test set
and occurred on 3 May 2008 and 8 March 2008, respectively. These case
studies are highlighted in Figure 2.
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this study, we will focus on observations from the Cassini-
Huygens mission, which orbited the Saturn system from
2004–2017, sampling Saturn’s dynamic magnetosphere from a
diversity of vantage points as highlighted in Figure 1. The
variable orbit design of the Cassini mission meant that while
most of the mission was spent taking measurements within the
planetary magnetosphere, the magnetosheath and upstream solar
wind was also frequently sampled. Each of the three regimes all
have uniquely identifying characteristics of field and plasma, with
transitions between the three regimes occasionally seen to occur
at different times depending on the identifying data set being used
(i.e., magnetometer data versus low-energy plasma or energetic
particle data). Early studies included the publication of lists of
boundary crossings (Pilkington et al., 2015), while other work
included the development of empirical models to describe the
shape and location of the magnetopause (Kanani et al., 2010) and
bow shock (Went et al., 2011).

Since the conclusion of the Cassini mission in 2017, the full
data set has been visually inspected and a list of bow shock and
magnetopause crossings has been made available (Jackman et al.,
2019). This list uses magnetometer data as the primary descriptor,
with augmentation from plasma data (electron spectrometer)
until the failure of the CAPS sensor in 2012. The list focuses on
clear crossings of the boundaries and does not consider very short
excursions (with duration < 2–3 min). It is a common issue that
the timing of boundary crossings may appear slightly different as
seen from different instrument platforms, due to the cadence of
the measuring instruments, or to physical reasons such as finite
gyroradius effects. The Jackman et al., 2019 list upon which we
base this work placed the crossings at the location most closely
aligned with the largest change inmagnetic field and this property
of the time labels must be remembered for subsequent analysis
and interpretation. The Jackman et al. (2019) list serves as a basis
for a supervised machine learning task in which we attempt to
classify whether the spacecraft is in the magnetosphere,
magnetosheath or solar wind. We explore the predictive value
of different sensor measurements sampling the in situ magnetic
and plasma environment versus the time-based variance of a
subset of features, and compare algorithms of varying
computational complexity. By utilizing an extensively verified
event list as our basis, we can thoroughly examine the context of
the algorithm predictions to elucidate whether ML-based
approaches can sufficiently “learn” the physics of the system
of interest.

2 METHODS

2.1 Data Sets and Problem Setting
In an effort to explore whether machine learning (ML) algorithms
may be able to replicate the selection processes of the scientists,
we explored classifying segments within Cassini’s orbit according
to one of three regions - the solar wind (upstream of the bow
shock), magnetosheath (between the bow shock and
magnetopause) or the magnetosphere (inside of the
magnetopause). There are four possible types of crossings as
identified by Jackman et al. (2019) - bow shock out (BSO;

spacecraft is moving across the bow shock boundary from the
magnetosheath to the solar wind), bow shock in (BSI; spacecraft is
moving from the solar wind into the magnetosheath),
magnetopause in (MPI; spacecraft is moving across the
magnetopause from the magnetosheath into the
magnetosphere) and magnetopause out (MPO; spacecraft is
moving from the magnetosphere into the magnetosheath).
Despite the long length of the Cassini mission, there were
relatively few crossings - in total Jackman et al. (2019) found
approximately 3,300 crossings over a span of twelve years (see
Figure 1 for a depiction of Cassini’s orbit path and the locations
of the boundary crossings). Structuring the ML approach to
identify the three distinct regions in lieu of directly identifying
crossings ensured much larger data sets were available for
training, validation and testing, enabling a much greater
variety of ML algorithms to be utilized. However, as a
consequence of this approach, algorithm performance is
optimized for identifying the bulk region (i.e., the mean
conditions for each region) and can be expected to suffer in
the vicinity of boundary transitions.

To identify the regions, we explored various combinations of
data from four sensors: 1) the Cassini magnetometer (MAG)
(Dougherty et al., 2005); 2) the Ion Mass Spectrometer (IMS) of
the Cassini Plasma Spectrometer (CAPS) (Young et al., 2004)
instrument suite; and two sensors from the Magnetospheric
Imaging Instrument (MIMI) (Krimigis et al., 2004) suite: 3)
the Low Energy Magnetospheric Measurement System
(LEMMS) and 4) the Charge Energy Mass Spectrometer
(CHEMS). For completeness, we briefly describe the
instruments and the associated data products used for this
study below but more detailed descriptions can be found in
the instrument papers.

MAG: MAG consists of a fluxgate magnetometer (MAG) and
vector helium magnetometer (VHM) also capable of operating in
a scalar mode. For this study, we utilize MAG data interpolated to
a one-minute sampling cadence in the KRTP coordinate frame.

CAPS/IMS: The Ion Mass Spectrometer (IMS), measures
energy and mass resolved fluxes over an energy-per-charge
range of 1 eV/q to 50 keV/q and consists of eight look
directions. In this study, we use the ion singles data product
averaged over a ten-minute window, and utilize directional data
specifically from anode four spanning an energy range
of ≈ 0.06 eV − ≈ 46.3keV

MIMI/LEMMS: LEMMS is a particle detector with two
separate telescopes, a low-energy telescope (LET) and a high-
energy telescope (HET). We utilize both LET and HET data as
well as pulse height analyzed (PHA) data. The selected subset
of LET and HET data capture proton fluxes spanning energy
ranges of 27–158,700 keV, while the PHA data spans
25.7–67.7 keV, over which the dominate species present will
be protons.

MIMI/CHEMS: CHEMS is an instrument designed to
characterize the suprathermal ion population in Saturn’s
magnetosphere by measuring the charge state, energy, mass
and angular distributions of ions (Krimigis et al., 2004).
Double and triple count incidence data is utilized for H+, He+

and He++ over energy ranges of 2.81–220.2 keV.
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Figure 2 shows two example 24-h periods from 8 March 2008
and 3 May 2008, in which the spacecraft crossed through a bow
shock and magnetopause crossing, respectively, with only the
selected subsets of data from the MAG, CHEMS, LEMMS and
CAPS instruments used in the later algorithm approaches shown.
Note that LEMMS data below 35 keV is not shown in Figure 2
due to known spurious instrument artifacts in those channels,
however that data was included in the ML data sets to avoid
embedding bias of known instrument performance issues in the
training, validation and test data sets. Immediately evident is the
rapidity with which the transitions into and out of regions can
occur, with the spacecraft briefly transitioning into the solar wind
over the span of just an hour (Figure 2A, at approximately 04:30)
and likewise moving rapidly between the magnetosheath and
magnetosphere (Figure 2I). We also see that the changes in the
running mean and variance in the magnetic field magnitude
closely align with the observed crossings as to be expected since

the MAG data was used predominately by the scientists when
discerning boundary crossings. In addition to the total field
magnitude, the components of the magnetic field (shown in
Figure 2B) can reveal particular characteristics of the regions.
For example, the magnetosphere will primarily reflect the
orientation of the planetary field, while the solar wind may
reveal features such as field rotations associated with the
crossings of the heliospheric current sheet (Jackman et al.,
2004). Bow shock crossings are generally much clearer in the
magnetometer data than magnetopause crossings as the character
of the solar wind is typically vastly different to the character of the
magnetosheath. In contrast, crossings of the magnetopause may
be more or less clear in the magnetometer data depending on the
relative orientations of the planetary field (inside the
magnetosphere) versus the shocked interplanetary magnetic
field (IMF; in the magnetosheath). From the perspective of ion
observations, regions can generally be identified based on

FIGURE 2 | Detailed view of MAG, MIMI CHEMS & LEMMS data, and CAPS/IMS data from two example 24-h periods on 8 March 2008 (left column) and 3 May
2008 (right column) in which the spacecraft passed through the BS and MP, respectively. The regions (magnetosphere, magnetosheath and solar wind) are denoted by
shaded bands (A) and (I), with vertical lines in panels (B–H) and (J–P) denoting the labeled crossings. The MAG data are shown on a 1-min interpolated sampling rate,
while all other data are shown on a 10-min interpolated sampling rate. The only data shown from CAPS, CHEMS, and LEMMS are those utilized by the ML
algorithms, and specifically spans targeted energy ranges of H+, He+ and He++ ions.
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different characteristic energies, spectral profiles, and
composition. For example, the bulk solar wind ion populations
are typically in a narrow range of 1–2 keV and thus below the
minimum energy bin of CHEMS. However, the solar wind bulk
ion population becomes heated while crossing the bow shock
such that H+ and He++ ions are within the energy range of the
CHEMS instrument (a few to 10’s keV). For magnetosphere to
magnetosheath transitions, boundary transitions tend to appear
most clearly in magnetometer data (Figure 2). For populations
near the magnetopause, suprathermal and energetic ions and
electrons have much larger gyroradii and lower densities, and so
consequently will not always move in the direction of the bulk
plasma flow. This can at times result in boundary transitions that
appear “fuzzier” (Liou et al., 2021) as compared to low-energy,
bulk species (particularly electrons) or the magnetometer data
which can demonstrate sharp discontinuities between the various
regions.

2.2 Data Set Preprocessing
Initial preprocessing of the data set consisted of applying
background subtraction and calibration factors to convert
instrument voltages to physical units. Data gaps which were
noted in the reference crossing list from Jackman et al. (2019)
were excluded from contention. Being sampled at a much higher
cadence, the MAG data was interpolated to a 1-min sampling
rate, with the other data features (CAPS/IMS, MIMI LEMMS and
CHEMS) being interpolated to a 10-min sampling rate. MAG
data were formatted in the Kronian Radial-Theta-Phi (KRTP)
coordinates, a spherical polar coordinate system. BR (the radial
component) is positive radially outward from Saturn to the
spacecraft, Bθ (the meridional component) is positive
southward, and Bϕ (the azimuthal component) is positive in
the direction of corotation. Specific combinations of the features
were then considered to elucidate feature importance in model
prediction capability. Those subsets included (and their
abbreviated name):

1) MAG at 1 min cadence
2) MAG at 10 min cadence
3) MAG with subset of CAPS/IMS and MIMI/LEMMS/CHEMS

at 10 min cadence (MAG & subset particle)
4) Subset of CAPS/IMS and MIMI/LEMMS/CHEMS at 10 min

cadence (Subset particle)
5) All CAPS/IMS and MIMI/LEMMS/CHEMS data at 10 min

cadence (Full particle)
6) MAGwith all CAPS/IMS andMIMI/LEMMS/CHEMS data at

10 min cadence (MAG & full particle)

For the MAG data, the features used consisted of the MAG
field components in the KRTP system (BR, Bθ, and Bϕ) as well as
the total magnitude of the magnetic field (|B|), giving a total of
four total features. The specific “subset” of CAPS/IMS andMIMI/
LEMMS/CHEMS data chosen were:

1) CAPS/IMS 8.002 eV ions
2) CAPS/IMS 107.654 eV ions
3) CAPS/IMS 16.387 keV ions

4) MIMI/CHEMS 3.78 keV protons
5) MIMI/CHEMS 6.75 keV protons
6) MIMI/LEMMS 44.27 keV protons

With this list of features specifically chosen due to their
significantly divergent behavior from one another, and ability
to provide the minimum set of representative channels. The “full
particle” data set refers to the entire set of species and energy
levels—specifically H+, He+ and He++ ions—as previously
mentioned in the instrument descriptions. When all of the
MIMI CHEMS, LEMMS and CAPS/IMS data were made
available to the machine learning algorithms there were a total
of 194 features. When combined with the magnetic field data,
there were a total of 198 features. Given that CAPS data is
included in all subsets of data featuring particle data, and that
the CAPS sensor failed in 2012, all “particle” data sets only span
through 2012, while MAG-only data sets span the entirety of the
mission.

Spacecraft position data were never used as features within any
of the ML approaches, given the sparsity of the space around
Saturn through which Cassini flew relative to the entire region
under the influence of Saturn’s magnetic field. However,
spacecraft position data were used to correct for sample
imbalance within the three regions, ensuring that there was
not an orbit bias to the training, validation or test data sets,
and finally to interpret model results. The spacecraft position was
calculated in the Kronocentric Solar Magnetospheric (KSM)
coordinate system. In KSM coordinates, the X axis is the line
from Saturn’s center to the Sun, with positive X pointing in the
direction of the Sun. The Y axis is the cross product of Saturn’s
magnetic axis with the X axis, and Z completes the triad. The XYZ
KSM coordinates were then converted to spherical polar
coordinates (R, θ, and ϕ) and θ was converted to magnetic
local time, with noon along the line from Saturn’s center to
the Sun.

Initial data exploration revealed that there were far more data
present within the magnetosphere than within either the solar
wind or magnetosheath once the data from before the end of the
first capture orbit (i.e., data collected before 1 November 2004)
were removed. To correct for the sample discrepancy, regions
within the orbit regime that were exclusively within the
magnetosphere (and therefore the likelihood of a boundary
crossing were zero), were removed from consideration. Those
magnetosphere-exclusive regions were restricted to radial
locations less than 15.1 Saturn radii (RS = 60,268 km) and
local time regions less than 2.81 h and greater than
20.8 h—corresponding exclusively to the nightside of the
planet, far from the flanks and deep in the center of the
magnetotail. The radial and magnetic local time thresholds
were the location of the minimum radial and minimum/
maximum local time positions of magnetopause crossings
from our labeled crossings list. While removing these orbit
regimes vastly improved the sample imbalance present in the
data set, the resulting data set still had more samples from the
magnetosphere than from within the magnetosheath or solar
wind. Additionally, orbit locations in close proximity to Saturn’s
moon Titan were excluded. Titan orbits Saturn at a radial distance
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of ≈ 20RS which can take it very close to the nominal
magnetopause location at certain local times—and the
signatures of local field draping near Titan could be
misleading for the ML algorithms. A list of Titan close flybys
was used, with a buffer period 30 min before and after each event
removed from consideration (Simon et al., 2015).

2.3 Machine Learning Algorithms
Two fundamental approaches were undertaken with regards to
framing the ML classification problem: 1) classifying the region
based on a single time point or 2) using a time series of points to
classify the region the spacecraft was in at the last time step. The
time series approach was motivated by the observation that the
running mean and variance of a time series of features can
provide indication of the region the spacecraft is transiting.
For instance, in Figure 2, we see the total magnetic field
magnitude (|B|) varies significantly in amplitude and variance
in each of the three regions, with the magnetosheath having a very
large running variance in |B| while the magnetosphere has a
higher mean |B| but lower variance. Similarly, a single time step of
data, if rich in features, may provide sufficient information to
classify the region. Therefore, the two different approaches can be
viewed as assessing the predictive capability of the time-related
variance (i.e., gradients) of a small subset of features versus the
predictive capability of many features at a single snapshot in time.
The two approaches were also motivated by data availability, with
only MAG data available at a 1-min cadence, and therefore the
only set of features available in sufficient quantities for a deep
learning, time-series approach. In contrast, many more features
were available at a 10-min cadence, including data from MAG,
CAPS/IMS and MIMI CHEMS and LEMMS.

To classify a single time point, several different combinations
of algorithms and data sets were used. Algorithms that were
tested include the multi-class implementation of logistic
regression (LR), linear-kernel support vector machine (SVM),
and a random forest (RF). For the LR approach, the multi-class
implementation utilized a multinomial loss fit and a L2 norm
penalization (Pedregosa et al., 2011). For the SVM model, the
multi-class implementation utilized a one-versus-rest
methodology in which 3 different one-versus-rest classifiers
were trained (one classifier for each region) (Pedregosa et al.,
2011). For the RF approach, hyperparameter tuning consisted of
iterating on the number of trees in the forest and the minimum
number of samples to define a leaf node. All combinations of the
data mentioned in Section 2.2 at a 10-min cadence were utilized.
By varying the features that were used in the algorithm
development, it was possible to assess whether certain sensor
data (or combinations of sensor data) provided more predictive
capability.

To classify the last time-point in a time series, a recurrent
neural network (RNN) with long short-term memory (LSTM)
cells was utilized. Because of the quantities of data required to
appropriately train a RNN algorithm, only the 1-min MAG data
was utilized with a total of four features—total magnetic field
magnitude (|B|), and the magnetic field components in KRTP
coordinates (BR, Bθ, and Bϕ). Variations in the number of LSTM
layers (1–4) and the number of neurons per layer were explored,

with a dropout layer (with a 50% drop rate) utilized after every
LSTM layer. All neural network approaches were implemented
via the TensorFlow module (Abadi et al., 2015). For multiple
RNN layers, the full sequence (i.e., the output from all the
neurons in the layer) was returned and passed along to the
next layer. The output of the final neuron of the last RNN
layer was passed to a dense fully-connected network with
three neurons and a softmax activation. The Adam optimizer
(Kingma and Ba, 2017) was used to train all variations of the RNN
network, with the categorical cross entropy loss function and
unweighted classification accuracy used to assess algorithm
training progress. An early stopping criteria was implemented
to prevent over-fitting, with training stopped if validation loss
failed to achieve a minimum decrease of 0.001 over a period of
two epochs.

For the time-series-based approach, it was necessary to sample
from continuous segments of data, particularly because time-
series ML approaches such as the RNNs used here have no
concept of time other then the ordering of the samples fed to
the algorithm (i.e., time stamps are not supplied). Within
continuous segments of data, care was taken to sample the
data such that the training, validation and test splits were not
biased with regards to orbit location. It was found that reserving
large continuous segments of data—such as an entire year—for
the validation or test set produced an algorithm that was
significantly biased. This is due to the large year-to-year
variation in Cassini’s orbit, which results in some years being
biased towards an orbit scheme that was closer to Saturn (i.e., low
R) or a more equatorial orbit scheme (i.e., low latitude). To reduce
the bias between the three sets as much as possible, a weekly split
was used (depicted in Figure 3) in which one week of continuous
data was split into 105 h of training data, and 22.5 h each for the
testing and validation data sets. A 6 h buffer between each of the
sets was then discarded (18 h of data in total), which ensured that
there was no overlap between the training, validation or test sets.
When splitting the continuous data for the time-series-based
approach, different sample lengths (20 versus 40 versus 60 min)
were explored. A 5-sample “stride”, where “stride” refers to the
number of samples skipped over before the next sample is
indexed, was used for all iterations. As an example, using a
20 min sample length with a five sample stride, sample one
would utilize the data indexed from 0 to 19, while sample two
would utilize the data indexed from 5 to 24. Offsetting the
samples in this way ensured that there were still enough
samples to attempt more data-intensive methods such as
RNNs, but that samples were not so closely overlapped that
over-fitting was a concern. By analyzing the distribution of
spacecraft positions in KSM coordinates for the overall data
set as well as across the training, validation and test sets, it
could be deduced whether the time-based splicing induced any
bias. Figure 4 shows the spacecraft position histograms for the 1-
min-interpolated MAG data that was utilized by the RNN (a—c)
and the 10-min-interpolated data used in the SVM/LR/RF
algorithms (d—f). Generally, the time-based splitting produced
a relatively equal distribution across the overall sets and the three
subsets for the 1-minute-interpolated data. There does appear to
be some slight aliasing in the local time for the three sets (Figures

Frontiers in Astronomy and Space Sciences | www.frontiersin.org May 2022 | Volume 9 | Article 8759856

Yeakel et al. Classification of Cassini’s Orbit Regions

126

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


4B,E) which is may be related to the periodicity of Cassini’s orbit
and the week period chosen to do the time splitting.

While all iterations of the RNN approach used the same four
features derived from the MAG data, the SVM, LR and RF
approaches used solely the 10-min interpolated data sets
(previously mentioned in Section 3.2) since even at a lower
sampling cadence there were still sufficient amounts of training
and test data. Both approaches used the time-based splitting
procedure previously described, with the sets spanning the same
intervals whether at a 1-min or 10-min cadence to allow
comparisons across the algorithms. In other words, the same
time span used for training a RNN algorithm with the 1-min-

interpolated data was used to train the SVM/LR/RF algorithms
with 10-min-interpolated data. One deviation between the two
approaches was to ignore the validation data for the SVM/LR/RF
algorithms since these algorithms do not require epoch-based
training.

The final pre-processing step that was completed prior to ML
algorithm development was to standardize and scale each of the
features independently. This was done using the python scikit-
learn “Robust Scaler” algorithm, which operates on each feature
independently, removing the median and scaling the data to the
range of the 1st (25%) and 3rd quartiles (75%) (Pedregosa et al.,
2011). After scaling the features, the training, validation and test

FIGURE 3 | Depiction of time-based splitting of data set into training, validation and test splits. 105 h of continuous data from each week were reserved for the
training set, and 22.5 h each for the validation and test sets. A 6 h buffer period between each of the three sets was discarded, ensuring that there was no overlap
between the sets.

FIGURE 4 | Histogram of spacecraft position in KSM coordinates for Saturn radius [R; (A) and (D)], local time [(B,E)] and latitude [(C,F)] for the 1-min interpolated
MAG-only data used in the RNN approaches (left panels) and 10-min interpolated MAG and full particle data set used in the RF/SVM/LR approach. For the RNN
approach the data is split across the overall data set (black line), training set (red), validation set (cyan) and test set (blue). For the RF approach, a validation set was not
used but the time periods of the test and training sets were matched as closely as possible to the RNN data sets for the sake of comparison. The histograms are
scaled relative to the total number of samples in each set (for the 1-min interpolated data: Ntrain = 504,338, Nval = 109,582, and Ntest = 109,259; for the 10-min
interpolated data Ntrain = 103,665 and Ntest = 32,475).
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sets were randomly shuffled. The final breakdown of the number
of samples in each region for the training, validation and test sets
is shown in Table 1. As is evident in Table 1, there remained
approximately three times as many samples from within the
magnetosphere than either the magnetosheath or the solar wind
even after removing samples within a low radial or near midnight
local time position.

2.4 Error Metrics
The algorithms report a confidence in each of the three regions,
the maximum of which was taken as the prediction and compared
to the accompanying label for the sample. We measured the
effectiveness of the variousMLmodels on the unseen test samples
using four different metrics: accuracy, balanced accuracy,
Matthew’s Correlation Coefficient (MCC) and the F1 score.
Accuracy is simply the ratio of the number of correct samples
to the total number of test samples, where no weighting has been
applied to any samples from a particular class. Balanced accuracy,
in contrast, accounts for the sample imbalance in the test set and
weights samples from a particular class according to the
occurrence of that class within the test set. The weighting for
a sample from a particular class is simply the fraction of test
samples which belong to that class. In this instance, in which
magnetosphere samples outnumber the magnetosheath and solar
wind samples by a factor of roughly three, it can be expected that
the balanced accuracy will give a more appropriate depiction of
the model’s performance across all the classes.

In the binary case, the F1 score is the harmonic mean of the
precision and recall:

F1 � 2 × precision × recall

precision + recall
(1)

where precision is defined as:

precision � TP

TP + FP
(2)

and can be interpreted as the ability of the model to maximize the
detection of true events while minimizing the detection of false
events. Recall is defined as:

recall � TP

TP + FN
(3)

and can be interpreted as the ability of the model to correctly
identify all the events in the test set. The subcomponents for

precision and recall are also best described in the binary case:
True Positives (TP) are positive-class samples that have been
correctly identified as positive by the model, False Positives (FP)
are negative class samples that have been incorrectly identified as
positive by the model, with True Negatives (TN) and False
Negatives (FN) defined similarly for the negative samples. In
the multi-class setting, the F1 score was calculated for each class
independently, and then combined into a single metric using a
weighted average. The “weight” of a class’s F1 was scaled as the
ratio of the samples from a particular class to the total number of
test samples.

Matthew’s Correlation Coefficient (MCC) was derived in the
binary case as a means of encompassing the confusion matrix
within a singular number (Matthews, 1975). The MCC in the
binary case is described by the following equation:

MCC � TP × TN − FP × FN
�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (4)

For a model which has predictions which are perfectly anti-
correlated with the labels, MCCwill return a value of −1, while for
a model in which the predictions are perfectly correlated with the
labels MCCwill return a value of +1. For a model in which there is
no relationship evident between the predictions and the labels
(i.e. predictions are equivalent to a random guess), MCC will
return a value of 0. MCC was extended to the multi-class setting
by Gorodkin (2004), and in such cases the lower limit for anti-
correlation may range between 0 and −1, but the maximum
remains +1 for perfect correlation. For the sake of brevity, the
equation for MCC in the multi-class setting which was used in
our model evaluation is not shown here (see (Gorodkin, 2004) for
details). Recent evidence has pointed to MCC being a more
informative and less misleading metric than F1 or accuracy
(Chicco and Jurman, 2020). All of the classification metrics
were implemented via scikit-learn (Pedregosa et al., 2011).

3 RESULTS

3.1 Single Time Step Classification Results
Table 2 provides a breakdown in the performance of the SVM,
LR, and RF models for different combinations of feature sets. We
find that across all feature sets, the RF model, when appropriately
tuned, performs the best. Figure 5 illustrates the accuracy of the
RF models at predicting the three regions when utilizing different

TABLE 1 | Number of samples in each region for the training, validation and test sets. Note that for the 10-min interpolated data sets, which were only used by the SVM, RF,
and LR classifier, a validation data set was not used. The time spans of the training, validation and test sets remained as close as possible across the different sets to allow
for intracomparison of the model results.

Data Set Total (Ntrain/Nval/Ntest) Magnetosphere Magnetosheath Solar Wind

1-Minute MAG 504300/109500/109200 290692/63265/63851 130017/29821/28024 83591/16414/17325
10-Minute MAG 265300/-/62400 152646/-/36262 68553/-/16195 44101/-/9943
10-Min. Some Particle 142925/-/33245 86584/-/20229 33173/-/8532 23168/-/4484
10-Min. Full Particle 139665/-/32475 84714/-/19795 32484/-/8307 22467/-/4373
10-Min. MAG & Some Particle 142925/-/33245 86584/-/20229 33173/-/8532 23168/-/4484
10-Min. MAG & Full Particle 139665/-/32475 84714/-/19795 32484/-/8307 22467/-/4373
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combinations of feature sets. We find generally that utilizing the
CAPS/IMS and MIMI/CHEMS/LEMMS data alone, without any
magnetic field data, leads to a model which over-predicts the
magnetosphere region. This is particularly the case when utilizing
only the small subset of features (6 total) from the CAPS/IMS and
MIMI/LEMMS/CHEMS data set (see Section 3.2 for a list of
features). In contrast, using the magnetic field data alone provides
some physical interpretation of the different regions, since the
magnitude of the magnetic field acts as a proxy for the radial
distance from the planet. However, we see there is still confusion
between the adjoining regions - solar wind being confused for
magnetosheath or magnetosheath being confused for
magnetosphere, and vice versa. The best performance is found
when the MAG and full particle data set is used as shown in
Figure 5E. While the model using this feature set still confuses
magnetosheath samples for magnetosphere, we generally see a
much improved performance over the models using either only
the magnetometer data or only the CAPS/IMS and MIMI/
CHEMS/LEMMS data. In contrast to the RF models, the SVM
and LRmodels fail to approach the same accuracy level on the test
set predictions, except for when the MAG data is used alone.

When comparing the performance of different input sets it
needs to be considered that boundaries and regions can appear
different in different measurements. Boundaries can appear
generally more gradual in energetic particle data (Mauk et al.,
2019; Liou et al., 2021) and show dependencies on particle energy
and direction that are still under scientific investigation (Mauk
et al., 2016, 2019). Results from particle measurements that
disagree from magnetic measurements are therefore not
necessarily wrong from the scientific perspective but are a
signature of physical processes such as particle escape that
effectively soften up boundaries. However, our goal here is not
to understand the underlying physics but to find the best defined
boundaries, which can be found through magnetic field
measurements. We therefore calculate our error measures
relative the manually derived list that relied on magnetic field data.

3.2 Time Series Classification Results
Table 3 shows the RNN model performances for varying time
sequence lengths along with the hyperparameters for the best-
performing model at each time segment length. As mentioned in
the Methods section, the number of layers and number of
neurons per layer was iterated on to find the best performing
model without overfitting. An exhaustive search for the optimal
number of layers and neurons per layer was not performed due to
the limitations on time and computational resources. However,
general trends in test accuracy and test loss were observed by
iterating over various combinations of neurons and layers.
Overall, it can be observed that the 60-min RNN model
provides the best performance on the test set. There was some
slight overfitting (as can be seen by comparing the training loss
with the validation and test set loss), however, stopping criteria
were implemented to prevent substantial over-fitting. It also
should be noted that the number of samples for the training,
validation and test sets changed slightly between the 20-, 40-, and
60-min models due to the length of the time sample and allowed
overlap between samples.

As the length of the time segment increases from 20 to
40–60 min, we see overall accuracy slightly increases, as
indicated in Table 3. Therefore, it can be reasonably
concluded that the gradients of the individual features and
amount of variance in the features over the selected time
frame is important for correctly classifying the region.
Essentially, the longer the time segment, the more contextual
information is provided to the model which allows for correct
prediction of the region at the last time step. This is even more
noticeable when we consider the samples which contain a
boundary transition, which are a very small subset of the
overall sample set. As shown in Figure 6, there is a drastic
improvement in the model’s accuracy for the small subset of
samples containing a listed boundary transition as we increase the
length of the sample. The improvement in accuracy is most
drastic when moving from a 20-min sample to a 40-min

TABLE 2 |Comparison of SVM, Logistic Regression and RFmodels using various feature sets as described in the Methods section. Depending on the feature sets used, the
amount of training and test data available will change, however all the time intervals used for training and testing are consistent across the different feature sets.

Feature Set Model Type Accuracy Balanced Accuracy F1 MCC

MAG SVM 78.45% 72.77% 0.766 0.623
Logistic 78.35% 73.86% 0.778 0.620
RF 82.21% 77.22% 0.820 0.686

Some Particle SVM 69.18% 45.88% 0.625 0.370
Logistic 66.03% 41.32% 0.575 0.282
RF 73.99% 56.69% 0.710 0.484

Full Particle SVM 68.60% 56.82% 0.682 0.409
Logistic 41.14% 37.10% 0.426 0.054
RF 86.11% 81.49% 0.858 0.740

MAG & Some Particle SVM 84.02% 78.97% 0.835 0.708
Logistic 81.78% 73.91% 0.806 0.657
RF 87.08% 82.08% 0.869 0.760

MAG & Full Particle SVM 78.41% 72.81% 0.777 0.603
Logistic 43.82% 37.68% 0.449 0.053
RF 91.38% 88.83% 0.912 0.840

Frontiers in Astronomy and Space Sciences | www.frontiersin.org May 2022 | Volume 9 | Article 8759859

Yeakel et al. Classification of Cassini’s Orbit Regions

129

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


FIGURE 5 | Normalized confusion matrices for different combinations of data, all using the RF model which was the best performing model across all feature sets
[(A) MAG-only, (B) Some particle, (C) Full particle, (D) MAG & some particle, and (E) MAG & full particle]. The comparisons here are shown as normalized confusion
matrices in which each row is divided by the number of “true” samples in the class. A perfect model would have all ones on the diagonal and all zeros on the off-diagonal.

TABLE 3 | Comparison of RNN model performance for differing time sequence lengths as well as relevant model parameters.

Parameter 20-Minute Model 40-Minute Model 60-Minute Model

Accuracy 92.25% 93.08% 93.14%
Balanced Accuracy 91.69% 92.76% 93.08%
F1 0.923 0.931 0.932
MCC 0.863 0.877 0.878
Number Layers 2 2 1
Number Neurons 120 120 180
Trainable Parameters 176043 176043 133743
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sample, but incremental improvements are also observed as we
increase the sample length from 40 to 60 min. Most notably, the
confusion between the magnetosphere and magnetosheath
regions decreases, which is where most of the confusion lies
for the 20-min model. The number of samples containing a
boundary transition is only approximately 1.5% of the total
samples in the test set (1,619 samples out of 109,200 test
samples for the 60-min model), however we see the
improvement in accurately predicting the sample jumps from
62.28% for the 20-min model to 81.03% for the 40-min model to
84.25% for the 60-min model.

3.3 Spatial Errors
All remaining analysis is focused on three models in particular—RF
MAG, RF MAG & full particle, and RNN 60-min MAG model.
These models were chosen as the best performers for time series
classification (RNN 60-min) and single time point classification (RF
MAG & full particle). The results from the RF MAG model are
shown given that they are the closest comparison in feature space to
the RNN model. Figure 7 shows the spatial discrepancies between
the model predictions and the labeled data for three models in
particular—the RFmodel with onlyMAG data [predictions (b) and
difference from actual (c)], the RF model with MAG and full
particle data set [predictions (d) and difference from actual (e)]
and the RNN 60-min model with only MAG data [predictions (f)
and difference from actual (g)]. The data has been binned according
to local time and R, with the total number of predictions or labels of
a particular region (magnetosphere, magnetosheath or solar wind)
in a particular polar bin scaled to the total number of observations
across all regions in that bin. The discrepancy plots have been scaled
to highlight differences between the actual fraction of a region in a
polar bin to the predicted fraction exceeding +/− 0.25. Despite
having no information about the spacecraft position, we see in all
cases that the models are generally able to correctly discern the
physical layering of the problem, with the magnetosphere most
commonly predicted radially close to the planet, the solar wind
farthest from the planet, and the magnetosheath sandwiched in
between.

The discrepancy polar histograms (Figures 7C,E,G) show the
differences between the binning of the model predictions of
particular regions and the binning of the labeled data (a),
revealing where the model has under-predicted (in blue) or
over-predicted (in red) a particular region. It is clear the RF
model utilizing only MAG data performs the worst (as is also
evident in comparing it’s test accuracy with that of the RFMAG&
full particle model and the RNN 60-min model). Utilizing only
the MAG data set at a single time step, the model has much
greater confusion on the spatial location of the magnetosphere
and magnetosheath regions. We see a strong tendency to over-
predict the magnetosphere and under-predict the magnetosheath
on the dawn side of the planet. This confusion between the
magnetosheath and the magnetsphere is then reversed on the
dusk side of the planet, where there is a preference to under-
predict the magnetosphere and over-predict the magnetosheath.
Dawn-side errors could be due to the presence of the foreshock,
which, as previously mentioned, causes large perturbations in the
solar wind magnetic field. When the full particle data set is added
to the RF model, we see that the spatial discrepancies are
drastically improved as compared to the MAG data alone.
Figure 7E shows that instead of the strong dawn/dusk
preferences in the model predictions that we see with the
MAG-only RF model (c) for the magnetosphere and
magnetsheath predictions, that generally the MAG & full
particle RF model tends to over-predict the magnetosphere
and under-predict the magnetosheath at all radial and local
time bins. Finally, the RNN 60-min model demonstrates the
best spatial accuracy of the three (Figure 7G), with the least
amount of spatial discrepancy from the true labels. It can be
observed, however, that the 60-min RNN model, using the same
feature set as the RF MAG model, again shows the dawn/dusk
confusion between the magnetosphere and magnetosheath
regions, though to a much lesser degree than the RF MAG
model. In particular, there appears to be a very spatially
narrow (14:00 to 16:00 h LT and 20–40 RS) but discernible
preference to over-predict magnetosheath and under-predict
magnetosphere. Outside of this spatially-narrow region,

FIGURE 6 | Comparison of length of the time sample used with overall prediction performance on samples containing a boundary transition for the 20-min (A), 40-
min (B) and 60-min (C) RNN models. The comparisons here are shown as normalized confusion matrices.
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FIGURE 7 | Comparison on the spatial distribution of predictions for the magnetsophere (left column), magnetosheath (middle column) and solar wind (right
column), for the true labels (A), RF MAG-only model (B), RF MAG & full particle model (D) and RNN 60-min MAG-only model (F). The predictions for a particular region
have been binned by local time (0.5 h increment) and radial distance (5 RS increment), with bins in gray indicating where there is no data. The discrepancy polar
histograms (C,E,G) shows the difference between the observed fraction of a bin labeled as a particular region (A) and the predicted fraction (B,D,or,F), highlighting
model errors. Discrepancy bins trending toward red indicate where the model has over-predicted a region, while blue indicates where a model has under-predicted a
region. Panels (B,D,F) share the colorbar in panel (A), while panels (E,G) share the colorbar for panel (C).
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however, we find that the RNNmodel tends to underestimate the
magnetosheath and overestimate the magnetosphere across all
areas, similar to the Mag & full particle RF model. Confusion at
low radial positions does not appear to be driven by traversals of
the cusp region (see Supplemental Material and Figure ??),
though previous studies have shown that Saturn’s cusp shows
a depressed magnetic field relative to the surrounding
magnetosphere (Jasinski et al., 2017) and contains
magnetosheath plasma (Arridge et al., 2016; Jasinski et al.,
2016). In the case of the MAG-only models, a depressed
magnetic field may cause the algorithm to predict
magnetosheath in lieu of magnetosphere, while the RF MAG
& full particle model would likewise predict magnetosheath due
to the presence of magnetosheath plasma. The 60-min RNN
model demonstrates by far the best spatial accuracy in predictions
of the solar wind (Figure 7G, right), with virtually no discrepancy
from the label set with the exception of a few large radial, dawn
side bins where the solar wind is over-predicted. It is important to
note that the RF model utilizing the MAG & full particle data set
has far fewer samples than the MAG-only RF and RNN models
due to the failure of the CAPS sensor in 2012.

3.4 Temporal Errors
To investigate temporal consistency in the model predictions,
each continuous segment of testing data (22.5 h of data per week)
was individually analyzed. Example segments demonstrating a
bow shock andmagnetopause crossing are shown in Figure 8 and
are directly corollary to the crossing shown in Figure 2, showing
the temporal evolution of the predictions for the three models in
particular. Within each continuous segment of data the time
points in which predictions changed from one region to another
can be used to derive the model’s predicted crossings. Counting

the number of predicted crossings in the continuous time frame
and comparing with the labeled crossings over the same segment
can thus provide an indication of the temporal consistency of the
model’s output. The example test segments shown in Figure 8 is
one such example of how a worse-performing model will have
much less consistency in its predictions, with the RF models
predicting far more transitions than the RNN 60-min model, as
well as being largely incorrect in the case of the BS crossing. The
numbers of predicted and actual transitions in each weekly test
period were counted and summed up to the encompassing month
for ease of comparison across the entire length of the mission. The
results are shown in Figure 9 for RF MAG (b), RF MAG & full
particle (c) and RNN 60-min MAG (d). Here there are four
possible types of transitions (as defined earlier)—BSI, BSO, MPI,
and MPO. It is important to note, however, that these inbound/
outbound notations simply refer to the spacecraft direction of
travel at the time of the boundary encounter, and there is no
expectation that the character of the regions on either side of the
transition would be biased by the travel direction of the
spacecraft.

All the models analyzed drastically over-predicted the
number of transitions occurring, with the RF models
demonstrating more false boundary transitions than the
RNN 60-min model. The MAG-only RF model performs
the worst of all, with significantly higher numbers of false
transitions predicted at every time interval. Of all the RF
models analyzed (see the appendix for all possible feature
combinations), we find that the MAG & full particle data
set (Figure 9C) produces the greatest consistency in region
prediction (i.e., least false transitions). The RNN 60-min MAG
model performs better yet (Figure 9D), while still predicting
vastly more transitions than present in the labeled data set.

FIGURE 8 | An example BS crossing is shown from 8 March 2008 (left column) and an example MP crossing is shown from 3 May 2008 (right column), coincident
with the transitions shown in Figure 2. Magnetic field magnitude and KRTP components are shown (A,F) along with regions as denoted by the labeled MP and BS
crossings (B,G) and the model predictions from three selected models - RF MAG (C,H), RF MAG & full ion (D,I), and RNNMAG 60-min model (E,J). Time periods which
do not have any predictions due to a lack of data are denoted by white. Ideally the time periods of the model-predicted regions would coincide directly with the
labeled regions. Here, we see that the RNN 60-minmodel comes closest to the labeled test set, while the RFmodels predict significantly more transitions, and particularly
with the BS crossing, they are incorrect in their prediction of the solar wind region.
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FIGURE 9 | For the bow shock transitions, comparison of the numbers of crossings from the labeled data set (A) and those predicted by the RFMAGmodel (B), RF
MAG & full particle model (C) and RNN 60-min model (D) are shown in the top grouping of panels. The numbers of crossings were computed per each continuous
segment of test data and grouped by month. Panels (E–H) show the corollary for the magnetopause crossings, with the number of actual magnetopause crossings
shown in (E). The number of actual crossings is then compared with predicted crossings from the RF MAG model (F), RF MAG & full ion (G) and RNN 60-min
models (H). The vertical scaling of panels (A,E) are significantly smaller than the other panels to allow for ease of comparison. All models over-predict the number of
crossings, however we find of the three shown that the RNN 60-min model has the best performance, with the least amount of crossings predicted and closest crossing
type alignment to the true crossings shown in (A) and (E).
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However, comparisons between the labeled transitions and the
RNN-predicted transitions qualitatively reveal that the general
trends of BSI/BSO-dominant periods (such as 2011–2012)
versus MPI/MPO-dominant periods (2010) seen in the
labeled data set are echoed in the model results, giving
confidence that the model is capturing the underlying
physics of the system. We also note that the Jackman et al.
(2019) list, upon which this supervised learning approach is
based, was formulated to capture the clearest and longest
duration boundary crossings, and was not optimised to
select multiple short-duration (2–3 min) crossings. While
the aim of our ML approach is to determine what method
best classifies the bulk of the regions, and the models
demonstrate proficiency at doing so, the multiple short-
duration “false” crossings predicted by the models could be
actual phenomena (e.g. boundary-layer dynamics) that are not
fully labeled and thus require further investigation (see
Supplemental Material). In our investigation, the
prediction for a particular sample was taken as the
maximum of the algorithm confidence in the three regions,
as is standard practice in the machine learning community.
However, examining the algorithm confidence in the three
regions rather than the maximum, as well as the inter-sample
variance in the confidence, could eliminate many “false”
crossings as well as highlight the need for SITL-intervention
in the case where confidence in any one particular region is
not high.

3.5 Derived Boundary Crossings
To understand whether the boundary crossings identified by the
temporal error analysis aligned with those in our labeled data set,
we analyzed each of the model’s boundary crossings shown in
Figure 9 to see if they were a “matched” event (coincided with a
boundary crossing of the same type identified in the labeled data
set), an “unmatched” event (a labeled boundary which did not
have a corresponding match in the model’s boundary crossings),
or a “False Boundary,” (FB) i.e., a model boundary without a
corresponding match in the labeled boundary list. A model-
identified boundary crossing would be considered a “match” if
it occurred within an hour before or after a list boundary crossing

of the same type. In the case that the model identified multiple
boundary crossings of the same time within the +/− hour span
surrounding a labeled event, we chose the model crossing that
was closest in absolute time. Table 4 shows the results for the RF
MAG, RF MAG & full particle and RNN 60-min MAG model.
For labeled boundaries which were matched to a model
prediction, the time difference between the model-predicted
boundary and the true boundary was calculated, with a
positive difference indicating that the model transition
occurred after the list transition (i.e., the model was delayed).

In general, we find that all themodels perform relatively well at
identifying the crossings manually identified by Jackman et al.
(2019), however, there were a high number of FBs across all
models and all boundary types. The number of FBs was especially
pronounced for the RF MAGmodel, echoing the large amount of
spatial and temporal variability in model predictions seen in
Figures 7,9, respectively. The RNN MAG model, which covers
the same duration of the mission as the RF MAG model
(2004–2016), observes much fewer FBs, particularly of BSO
and BSI transitions. The RF MAG & full particle model
observes much fewer FBs than the MAG-only RF model, likely
as a consequence of the addition of the CAPS/IMS and MIMI/
CHEMS/LEMMS data. Relative to the total number of test
samples provided to the respective models, the RNN model
shows the least FBs by far, indicating it has far more temporal
accuracy and consistency than the RF approach. Investigating the
RNN performance more closely, an interesting observation is the
greater lag observed on outward transitions (BSO and MPO) as
opposed to inward transitions (BSI and MPI), as well as a greater
lag observed at the magnetopause transitions as opposed to the
bow shock transitions. The lag suggests that the model needs at
least a few minutes of data from the new region before it is able to
shift its prediction, with the running variance and mean of the
features within the new region “learned” by the model. Therefore,
it can be assumed that RNN-based approaches for predicting
region transitions may lag on their exact prediction of the
boundary crossing, particularly when the boundary between
the regions is only subtly hinted at by the behavior of the
features. This is especially the case at the magnetopause
boundary, where the transition between the magnetosheath

TABLE 4 | Performance of the RF MAG, RF MAG & full particle, and 60-min RNN model at correctly detecting labeled boundary crossings. A boundary crossing was
considered “matched” if there was the same type of boundary in the model predictions within one hour of the labeled crossing. The mean time offset of the matched
boundaries is positive if the detected boundary crossing occurred after the labeled boundary (i.e., the model was delayed in its prediction). Noted is the shorter length of the
RF MAG & full particle test set (extending only through 2012) and fewer labeled boundary crossings.

Parameter Model Type BSO BSI MPO MPI

Matched Boundaries (% Total) RF MAG 76 (79.2%) 72 (75.8%) 120 (81.1%) 126 (84.0%)
RF MAG & Full Part. 25 (73.5%) 30 (75.0%) 91 (85.0%) 87 (79.8%)
RNN 60-Min 77 (90.6%) 78 (91.8%) 102 (78.5%) 114 (85.7%)

Unmatched Boundaries (% Total) RF MAG 20 (20.8%) 19 (20.0%) 28 (18.9%) 24 (16%)
RF MAG & Full Part. 9 (26.5%) 10 (25.0%) 16 (15.0%) 22 (20.2%)
RNN 60-Min 8 (9.4%) 7 (8.2%) 28 (21.5%) 19 (14.3%)

Mean time offset to matched boundary
(median) (min)

RF MAG + 7.33 ± 14.62 ( + 7) − 0.58 ± 13.67 ( + 3) + 5.24 ± 18.34 ( + 6.5) + 2.97 ± 18.05 ( + 5)
RF MAG & Full Part. + 6.52 ± 10.44 ( + 7) + 5.03 ± 9.69 ( + 5) + 3.75 ± 14.70 ( + 5) + 1.67 ± 15.70 ( + 4)
RNN 60-Min + 11.41 ± 15.23

( + 8.5)
+ 3.55 ± 13.00

( + 3.5)
+ 13.93 ± 17.54

( + 11.5)
+ 7.18 ± 17.48 ( + 7)
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and magnetopause can be somewhat ambiguous when using the
MAG data alone for times of small magnetic shear and/or highly
turbulent boundary layers. In contrast, a sharp difference between
the solar wind and the magnetosheath is typically observed,
particularly in the enhancement of the running variance across
all MAG field components as we move into the magnetosheath.
We see that consequently the BSI transition appears to be the
easiest transition for the RNNmodel to discern, with a lag of only
≈3.6 min.

It should also be noted that the five-minute stride present
within the test sample data for the RNN to prevent over sampling
means that the “labeled” boundary may be slightly offset from the
“true” boundary depending on whether the timing of the “true”
boundary falls on the same sample cadence of the test data. In
cases where the true boundary timing does not directly coincide
with a test sample, the nearest following sample was indicated as
the location of the boundary, which was at most 4 min away from
the true boundary location. For the RF models, the sampling
cadence of 10 min results in the model’s first sample within a new
region being at most 9 min away from the true boundary. A
secondary point to note is how the model results are interpreted,
which impacts the determination of predicted boundary
crossings. The output of the models is a three component

vector, representing the model’s confidence in each of the
three regions; the maximum of these three components is
interpreted as the model’s predicted region. The confidence in
a particular region would have to exceed 0.33 before it is
interpreted as the current region, yet the model’s confidence
in a region would increase prior to it becoming the dominant
region. Therefore, the lag in recognizing a transition may not be
as severe as suggested when we only interpret the maximum as
the model’s prediction, since investigating the individual
confidence levels may reveal an increasing trend in a
particular region before it overtakes the confidence levels of
the other regions and becomes the maximum.

3.5.1 Epoch Analysis
Again focusing only on the RNN 60-min model, Figures 10,11
show the corresponding behavior of the magnetic field features at
the bow shock and magnetopause boundary crossings,
respectively for both the matched and unmatched boundaries.
Outward transitions (i.e., the spacecraft is encountering the
boundary on an outward trajectory) and inward transitions
are overlaid in the figures, such that all transitions are
oriented to be inwards. The sharp division between the solar
wind and magnetosheath is present in Figure 10, with the cross

FIGURE 10 | Comparison of the bow shock crossings in the labeled data set which were matched to a predicted crossing (A-E), versus those which were not
matched (F–J) in the RNN 60-min model predictions. Panels (A–D) and (F–I) show the magnetic field conditions in a 1-h vicinity surrounding the labeled crossing, with
individual instances plotted as transparent black lines. The average conditions ± the standard deviation are shown as thick black solid and dotted lines, respectively.
Panels (E,J) show the prediction confidence of the model surrounding the labeled crossing for matched (E) and unmatched (J) crossings, with the average ± the
standard deviation shown in the shaded region. Here the inwards and outwards crossings have been overlaid, such that all crossings are oriented in a inwards trajectory.
In total there were 155 matched crossings and 15 unmatched crossings (see Table 4).
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over into the magnetosheath resulting in a much more variable
and higher magnitude magnetic field. As indicated in Table 4, we
see that the RNN 60-min model is easily able to detect the BS in
most cases as revealed by the high confidence levels in the solar
wind and magnetosheath before and after the transition,
respectively (Figure 10E). In the few cases (N = 7 for BSI,
N = 8 for BSO) when the BS was missed, we see that it was
because the model failed to register it was in the solar wind before
the transition, seemingly due to elevated Bθ values.

The boundary between the magnetosheath and the
magnetosphere is much more subtle than that between the
solar wind and magnetosheath as revealed in Figure 11. The
subtle nature of the boundary is underscored by the greater
percentage of missed MPI (14.3%) and MPO (21.1%)
transitions relative to the BSI (9.1%) and BSO (10.4%)
transitions (see Table 4), and the greater delay in the matched
transitions from the timing of the actual boundary crossing and
the model detection of the new region. The MP crossings that
were successfully identified demonstrate a sharp increase in |B| as
the spacecraft moves into the magnetosphere, which is principally
driven by an increase in Bθ. The missed MP transitions show a
slightly more gradual increase in |B| and particularly in Bθ, with

the model failing to recognize the magnetosheath is present
before the transition. For all four boundary transition types,
we see that the missed transitions exhibit confusion mainly
between the magnetosphere and the magnetosheath, even for
bow shock boundaries.

4 CONCLUSION

Here we have found that a variety of ML algorithms are capable of
producing relatively accurate classifications of the region the
spacecraft is inhabiting using only instrument data as the
model input. Architecting the problem as a region-
classification task instead of attempting to directly classify the
boundary crossings afforded a much larger data set for both
training and testing, enabling a broader swath of algorithms to be
explored. However, as a consequence, assessment of where and
how well the model predicted boundary crossings required a
more-complicated post processing methodology and ultimately
led to a large number of FBs. Daigavane et al. (2020) performed a
complementary study in which they attempted to directly detect
magnetopause and bow shock crossings in the CAPS-ELS data set

FIGURE 11 | Comparison of the magnetopause crossings in the labeled data set which were matched to a predicted crossing (A–E), versus those which were not
matched (F–J) in the RNN 60-min model predictions. Panels (A–D) and (F–I) show the magnetic field conditions in a 1-h vicinity surrounding the labeled crossing, with
individual instances plotted as transparent black lines. The average conditions ± the standard deviation are shown as thick black solid and dotted lines, respectively.
Panels (E,J) show the prediction confidence of the model surrounding the labeled crossing for matched (E) and unmatched (J) crossings, with the average ± the
standard deviation shown in the shaded region. Here the inwards and outwards crossings have been overlaid, such that all crossings are oriented in a inwards trajectory.
In total there were 216 matched crossings and 47 unmatched crossings (see Table 4).
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using an anomaly detection methodology. Similar to the results
contained herein, they found that bow shock crossings were
substantially easier to detect than magnetopause crossings.

Comparing the predictive value of different feature sets, as was
possible with the simpler and less data-intensive RF models, we
find that the inclusion of more features clearly increases the
predictive capability of the model, as expected. It should be noted
that the specific subset of features from the plasma data chosen is
important for this type of classification scheme. Ultimately, the
best models will have inputs derived from the most physically
relevant measurements, which given the architecture of this
problem would be those features showing distinctly different
characteristics in the bulk regions. We find that ultimately a time-
series-based approach, as is possible with the RNN LSTM
algorithm, produces a model with the greatest accuracy and
temporal consistency, indicating that the temporal trends and
variances of the MAG data alone provides sufficient predictive
capability. This is further underscored by the improvement in the
model performance as the length of the time sample fed to the
RNN models is increased from 20 to 40 and, finally, 60 min.
Though outside the scope of this study, we urge future studies to
consider algorithm approaches which can leverage the benefits of
both time-variance of the features and a richer feature set
encompassing multiple instruments. While the scope of the
algorithms explored in this study was relatively limited, other
algorithms such as 1-D Convolutional Neural Networks (CNNs)
or hybrid CNN-LSTM architectures should be explored given
their utility in other sequence classification tasks, such as natural
language processing and speech recognition (Sainath et al., 2015;
Yin et al., 2017).

We have also shown the necessity of doing a full error analysis of
the results and expand beyond the scope of analysis typically done in
multi-class ML classification tasks. Blanket accuracy metrics fail to
measure the algorithm prediction consistency over temporal or
spatial scales. Nor do such metrics capture the feature context
leading to model errors, or attempt to elucidate whether model
predictions are tied to particular physical phenomena. By
investigating the errors on spatial and temporal scales, we have
found that models only slightly different in their overall accuracy
metrics have demonstrably different performance in terms of
temporal or spatial cohesion. The RF models in particular are
only slightly worse than the RNN 60-min model in terms of
their overall accuracy, and yet their predictions exhibit much
more temporal volatility and undesirable patterns in spatial errors.

4.1 Implication for On-Board AI Utilization
on Future Space Missions
Given that there was an intentional decision to not apply
filtering or smoothing techniques such as a centered running
mean to the data prior to implementing the ML methods, the
algorithms presented here could be run in a real-time scenario
(ignoring the computational limitations of current
spacecraft). As such, the instability of the model output
could be addressed in real-time by implementing a
persistence counter, i.e., a prediction of a different region
would have to persist for a set number of continuous samples

before the model were to shift its predictions. Such persistence
measures are already widely used in spacecraft fault
management autonomy systems to prevent outlier
measurements from driving operational fault containment
measures to the detriment of science or broader mission
objectives (Fesq, 2009). Similarly, a threshold on the
model’s confidence in a particular region needed before
shifting the region prediction from one region to another,
as would be the case in a boundary crossing, could be
implemented. Both of these measures would reduce the
rapid, and likely incorrect, false boundary crossings
observed here—reducing risk with the side effect of
potentially lengthening the lag between the true boundary
crossing and the model’s recognition of the boundary
crossing.

As noted by several studies (Azari et al., 2020; Hook et al.,
2020; Theiling et al., 2021; Vandegriff et al., 2021), current
missions are already facing severe downlink constraints and
more data-intensive sensors. Without increased capabilities in
on-board storage and deep space communications, missions
may ultimately require the use of on-board autonomy to sift
through the deluge of collected data to prioritize the most
relevant observations for downlink or optimize the science
collection of the sensors for the environment the spacecraft or
lander is currently inhabiting. Examples of automated
decisions the spacecraft could complete with on-board AI
could be changing the sampling rate of an instrument or
changing the binning scheme of plasma data. Already,
research is being done to optimize data downlink using AI
on earth-orbiting missions such as MMS, where only 4% of the
high-rate data collected daily can be sent to the ground (Argall
et al., 2020). In these cases, where predictions from an on-
board AI system could contribute to mission operations,
model stability becomes critical else undue risk is embedded
in the mission. The results shown here illustrate that while
simpler algorithms such as a RF can replicate the overall
accuracy of more complicated RNNs and are more apt for
on-board application due to their ability to operate in low-Size,
Weight and Power (SWaP) embedded applications, they fail to
replicate the accuracy and temporal stability of neural network
approaches. Therefore, assessments of candidate algorithm
performance must not only assess model performance using
an unbiased, representative test set but also fully evaluate the
context of the predictions.
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Revisiting the Ground Magnetic Field
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Forecasting ground magnetic field perturbations has been a long-standing goal of the
space weather community. The availability of ground magnetic field data and its potential
to be used in geomagnetically induced current studies, such as risk assessment, have
resulted in several forecasting efforts over the past few decades. One particular community
effort was the Geospace Environment Modeling (GEM) challenge of ground magnetic field
perturbations that evaluated the predictive capacity of several empirical and first principles
models at both mid- and high-latitudes in order to choose an operative model. In this work,
we use three different deep learning models-a feed-forward neural network, a long short-
term memory recurrent network and a convolutional neural network-to forecast the
horizontal component of the ground magnetic field rate of change (dBH/dt) over 6
different ground magnetometer stations and to compare as directly as possible with
the original GEM challenge. We find that, in general, the models are able to perform at
similar levels to those obtained in the original challenge, although the performance
depends heavily on the particular storm being evaluated. We then discuss the
limitations of such a comparison on the basis that the original challenge was not
designed with machine learning algorithms in mind.

Keywords: geomagnetically induced currents, deep learning, ground magnetic disturbance, space weather, neural
network

1 INTRODUCTION

Horizontal magnetic field variations (dBH/dt) derived from ground magnetometer recordings have been
utilized commonly as a proxy for evaluating the risk that geomagnetically induced currents (GIC) present
in different regions (e.g., Viljanen et al., 2001; Pulkkinen et al., 2015; Ngwira et al., 2018). GICs occur in
ground-level conductors following an enhancement of the geoelectric field on the ground, usually in
association with active geomagnetic conditions (Ngwira et al., 2015; Gannon et al., 2017), and have been
known to cause damage to power transformers, corrode pipelines, and interfere with railway signals
(Pirjola, 2000; Boteler, 2001; Pulkkinen et al., 2017; Boteler, 2019). As our society continues to become
more “technology dependent” and as we enter a new cycle of intense geomagnetic activity during the
ascending and maximum phases of solar cycle 25, having the appropriate tools to assess the risk GICs
pose to different regions becomes urgently relevant (Oughton et al., 2019; Hapgood et al., 2021).
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GIC levels are dependent on the characteristics of the system
they affect as well as the environmental conditions, and
unfortunately, measured GIC data are rarely available to the
scientific community as they are either not monitored or the
measurements restricted by power operator and therefore not
made public. For this reason, variations of the measured ground
magnetic field are commonly used as proxy to estimate the risk of
GIC occurrence (Viljanen, 1998; Viljanen et al., 2001; Wintoft,
2005; Dimmock et al., 2020). These variations can be utilized to
calculate the geoelectric field in regions where the ground
conductivity profile is available (Love et al., 2018; Lucas et al.,
2020; Gil et al., 2021).

In the past, many attempts have been made to forecast dBH/dt
with different degrees of success, using first-principles and
empirical models (e.g., Tóth et al., 2014; Wintoft et al., 2015).
However, comparisons are rarely made between models, in part
because most models are not meant to be deployed for
operational purposes, but also because models have different
general forecasting objectives. The Geospace Environment
Modeling (GEM) challenge (Pulkkinen et al., 2013) that ran
during the years 2008–2012 tried to provide a direct
comparison between models and to choose a model for real-
time forecasting. It involved the entire space weather community
in order to come up with a standardized method to test models
against each other, and from there select a model to be
transitioned into operation at NOAA (Pulkkinen et al., 2013).

Recently, machine learning empirical models have become
more common thanks in part to the increased availability of data
for training and the improvement of open-source machine
learning tools (e.g. Keesee et al., 2020). Machine learning
models present the advantage that, once trained, execution
time is extremely low, and as such, they are able to deploy for
real-time forecasting with extremely low computational cost. But
while machine-learned models are able to forecast dBH/dt or even
GICs when data is available to different degrees of success, few
attempts have been made to evaluate them on the grounds of
established benchmarks. It is within that framework that we
attempt to evaluate a series of machine learning models with
the same metrics used by the GEM Challenge. In Section 2 we
describe the GEM challenge in detail as well as the datasets we
utilized and the models we developed. Section 3 presents the
results of our models in the context of the GEM challenge metrics.
In Section 4 we discuss the main challenges and lessons from our
model development and comparisons. Finally, Section 5 presents
our summary and conclusions.

2 DATA AND METHODOLOGY

The Geospace Environment Modeling (GEM) ground magnetic
field perturbations challenge (“the GEM challenge”) consisted of
a multi-year community effort that ran roughly between 2008 and
2011 with the objective of testing, comparing, and eventually
delivering a model to be used at National Oceanic and
Atmospheric Administration (NOAA) Space Weather
Prediction Center (SWPC). The final results, description and
evaluations of the different models that participated in the

challenge are described in depth by Pulkkinen et al. (2013).
The purpose of this study is to evaluate our machine learning
based models using the same conditions and test on the same
benchmarks, only deviating when an exact replication is not
possible. The GEM challenge (and therefore the work presented
here) consisted of forecasting the 1-min resolution of the
horizontal component of ground magnetic field perturbations
at several mid- and high-latitude stations. The horizontal
component H is defined by

dBH

dt
�

����������������

dBN

dt
( )

2

+ dBE

dt
( )

2

√
√

(1)

where E represents the east-west component, and N the north-
south component in magnetic coordinates. The choice of
forecasting the horizontal fluctuations is based on the
assumption that it is the most important component for GIC
occurrence (Pirjola, 2002). Although the GEM challenge involved
a total of 12 different ground magnetometer stations during its
different stages, the final evaluation presented in Pulkkinen et al.
(2013) was performed only on 6 of them. Because the published
scores are only available for those six stations, they will be the
focus of this study. Table 1 lists the ground magnetometer
stations, their code name and their magnetic latitude and
longitude. Note that SNK replaced PBQ after 2007, so those
data serve as a single location.

The GEM challenge proposed a unique and interesting
evaluation mechanism. The models forecast four known
geomagnetic storms during the testing period, and two
extra storms were added as “surprise events” during the
final evaluation. Table 2 presents the six storms used in the
evaluation of the models. Our first deviation from the original
challenge is that we are not evaluating our models on unknown
storms—we have only calculated the final scores of the six
storms after our training of the models was complete, and
therefore we did not perform tuning of the models after the
evaluation. The model output is the 1-min resolution
horizontal component dBH/dt predicted 1 minute ahead of
time. This is counted from the time of arrival of the solar
wind to the bow-shock nose, which involves a propagation
from the L1 monitors. Once the forecast is done, the 1-min
resolution predictions are reduced to obtain the maximum
dBH/dt value every 20 min. Each 20-min window prediction is
then evaluated against four different thresholds set up at 18,
42, 66, and 90 nT/min. This approach turns the challenge into
a classification problem, and a contingency table can be made
for each of the thresholds counting true positives (hits), true
negatives (no crossings), false positives (false alarms) and false
negatives (misses). From this contingency table the values of
probability of detection, probability of false detection, and the
Heidke Skill Score are calculated. The definitions can be found
in Pulkkinen et al. (2013). To obtain each model performance,
the contingency tables are added by grouping the mid-latitude
stations together (NEW, OTT, WNG) and the high-latitude
stations together (ABK, PBQ/SNK, YKC) for each of the events
and each of the thresholds.
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2.1 Datasets and Pre-processing
For our study we have used the OMNI dataset obtained from the
CDAWeb repository (https://cdaweb.gsfc.nasa.gov/pub/data/
omni/omni_cdaweb/) at 1-min resolution. The OMNI
database provides solar wind measurements obtained mostly
from spacecraft located at the L1 Lagrangian point (~ 235RE

sunward of Earth) and then time-shifted to the magnetosphere’s
bow shock nose (King and Papitashvili, 2005). We train our
models to forecast 1-min ahead of the current time on the OMNI
dataset, however, this is equivalent to a 20–40 min lead time if we
were using real-time data, depending on the solar wind speed.
The benefits of using the OMNI dataset for training is that it is a
well validated dataset that is readily available for anyone to use
with minimal work involved, and as such, it increases the
reproducibility of the results. For our study, we used data
between (and including) January 1995 and December 2019.

The OMNI dataset provides both plasma and magnetic field
parameters, as well as some derived physical quantities. It suffers
from having significant gaps which amount to around 20% of
missing data in the plasma parameters and around 7% of missing
data in the magnetic field. Further exploration of the data shows
that most of the gaps are relatively small, and therefore we have
performed a linear interpolation in the magnetic field parameters
for gaps of up to 10 min, and we have performed a linear
interpolation with no limit on time of the plasma parameters,
to fill any possible gap. The remaining gaps, as determined by the
missing magnetic field data, are dropped from the training
dataset.

The ground magnetic field perturbations from the six different
stations were obtained from the SuperMAG 1-min resolution
database (https://supermag.jhuapl.edu/) with baseline removed
(Gjerloev, 2012). The data availability is high for all the studied

stations, although there are some significant gaps in the SNK/
PBQ set around the time of the replacement in 2007–2008. We
have decided not to perform any interpolation in the magnetic
field components and therefore all missing data points are
excluded from the training. For training, we use the N and E
components to obtain dBH/dt (Eq. 1) and also the MLT position
of the observatories from the SuperMAG data.

Given the nature of the system we are trying to predict, one of
the issues we have encountered is that the magnetic field
fluctuations are heavily biased towards 0 nT/min. That is,
during quiet times, the fluctuations are relatively low, and they
amount for a sizable portion of the available dataset. On the
contrary, during active times, the fluctuations can easily go up to
the hundreds of nT/min at least for high-latitude stations. To
reduce the bias, we have decided to reduce our training samples to
only those times in which a geomagnetic storm is occurring. To
do this, we have identified all geomagnetic storms in the
1995–2018 period with SYM-H < − 50 nT and we have
selected for training the period between ±12 h around the
minimum SYM-H value. Figures 1A,B show a visual
representation of the effect of using only storm-time data. As
can be appreciated for both the mid-latitude NEW station and the
high-latitude YKC station, the restriction to storm-time only
reduces the training dataset to ~ 10% of its original size
eliminating mostly small fluctuations. From the histogram, it
can also be observed that—especially at high-latitudes—some
strong fluctuations do occur outside of the storm-time. Those
cases can prove interesting for analysis in the future, but will not
be further discussed in the context of this work. It is important to
note that the six storms considered for testing have been removed
from the storm dataset. A list with the storm dates can be found in
the Supplementary Material.

To train the models we have decided to use the following
solar wind parameters: solar wind speed (Vx, Vy, Vz),
interplanetary magnetic field (BT, By, Bz), proton density,
solar wind dynamic pressure, reconnection electric field
(-VBz), and proton temperature. Figure 1C shows the
absolute value of the maximum correlation coefficient
between dBH/dt and the different solar wind parameters for
the previous 60 min (i.e., max correlation of dBH/dt(t) with
param(t), param (t-1), etc). The symbol corresponds to the
average correlation over the six stations used in this study, and
the bar corresponds to the range of correlations. Here it is
important to note that some parameters are most likely
contributing significantly more to the training process than
others. We have decided to keep them all on the basis that the
models can support the amount of input parameters.

2.2 Models
For the evaluation of the GEM Challenge scores we used three
different deep learning models: a feed-forward fully connected
artificial neural network (ANN), a long short-term memory
recurrent neural network (LSTM) and a convolutional neural
network (CNN). The election of those particular models offers a
continuation to our previous modelling attempts of dBH/dt using
neural networks (ANN + LSTM) (Keesee et al., 2020) as well as to
test the capabilities of convolutional neural networks after they

TABLE 1 | Ground magnetometer stations used in this study and their location.
Stations PBQ and SNK (in bold) are complementary as one replaces the other
after the year 2007.

Station name Code Geomagnetic
latitude

Geomagnetic
longitude

Abisko ABK 65.74 101.7
Newport NEW 54.65 −54.82
Ottawa OTT 54.98 2.52
Poste-de-la-
Baleine

PBQ 65.01 0.2

Sanikiluaq SNK 66.31 −1.92
Wingst WNG 50.15 86.75
Yellowknife YKC 69.42 −56.85

TABLE 2 | Storms used for model evaluation.

Storm
start date (UT)

Storm end date (UT) Minimum Dst (nT)

2001-08-31 00:00 2001-09-01 00:00 −40
2003-10-29 06:00 2003-10-30 06:00 −353
2005-08-31 10:00 2005-09-01 12:00 −131
2006-12-14 12:00 2006-12-16 00:00 −139
2010-04-05 00:00 2010-04-06 00:00 −73
2011-08-05 09:00 2011-08-06 09:00 −113
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have shown promise for time series forecasting in different Space
Weather applications (e.g., Collado-Villaverde et al., 2021;
Siciliano et al., 2021; Smith et al., 2021). The development and
training of the models was done using the TensorFlow-Keras
framework for Python (Abadi et al., 2016) as well as the scikit-
learn toolkit (Pedregosa et al., 2011). All models used in this study
were trained by minimizing the mean square error. This
optimization was done in each case using the Adam
optimization algorithm. Further description of each model is
given in the next sections.

2.2.1 Artificial Neural Network
Fully-connected feed-forward neural networks can capture
temporal behavior (similar to a recurrent neural network) if
the time history is embedded as a set of new features. In our
case, we have built a 50-min time history of the selected solar
wind parameters by creating new features (columns) in our
dataset corresponding to the time-history of each parameter
t − 1, . . . , t − 50 min. The time history length was
determined purely by our maximum computational
capabilities. This has resulted for our final model in an input
array of 513 features. The network architecture contains four
layers of 320–160–80–40 nodes. The activation function is the
rectified linear unit (ReLU). To avoid overfitting, a dropout rate
of 0.2 was added between the first and the second, and then
between the second and third layers. The training ran for 300
epochs with the possibility of early stopping after 25 epochs of no
improvement.

A consequence of embedding the time-history as extra
features is that an independent array exists for each training
point, and therefore we have trained our ANN model using a
random 0.7/0.3 split, as opposed to the sequential split of the
data that would be needed with a recurrent neural network. We
have reasonably determined that the random split does not
introduce data leakage to the model in our testing and that it
resolves the bias introduced by the effect of different solar
phases in the system. In this case, a more complex manual split
of the data or a k-folds technique did not offer substantial
improvement over the random split, which increased
performance by ~ 20% compared to a sequential split.

2.2.2 Long-Short Term Memory
The Long-Short Term Memory (LSTM) neural network
(Hochreiter and Schmidhuber, 1997) was developed as an
alternative to solve the gradient vanishing problem of
traditional recurrent networks by adding a “long memory.”
This “memory” refers to the network’s ability to “remember”
the state of previous cell states as well as previous outputs. The
LSTM does this by using a series of gates, the first of which is the
forget gate. The forget gate uses a sigmoid activation function,
which varies between 0 and 1, to decide how much of the output
from the previous cell output (t − 1) to feed to the next cell state
(t). The input gate follows the forget gate and, as its name implies,
determines what new information the cell state will receive. The
first part of this gate consists of a tanh function, which uses a
linear combination of the previous cell output and new input to
the current cell, as well as a weight and bias factor. Another
sigmoid function is then used to determine how much of the
information from the tanh function will be input to the current
cell state. The final gate used in the LSTM cell is the output gate,
which uses another sigmoid function to determine how much
information should be passed onto the next cell.

In our model, we used 100 cells in our LSTM layer, followed by
two hidden dense layers using 1,000 and 100 nodes respectively.
Each dense layer used ReLU activation. Dropout layers with weights
of 0.2 were placed in between the hidden layers, and in between the
final hidden layer and the output layer, to help prevent overfitting.
The training ran for 100 epochs with the possibility of early stopping
after 25 epochs of no improvement, and processed data with 60min
(determined by computational limitations) of time history
embedded using the method described in Section 2.2.1.

2.2.3 Convolutional Neural Network
Convolutional Neural Networks (CNNs) were initially proposed
as a method of detecting handwritten digits. They have since
proved extraordinarily successful in a variety of image analysis
problems (LeCun et al., 2015), and in recent years have shown
promise in space weather forecasting (e.g., Collado-Villaverde
et al., 2021; Siciliano et al., 2021; Smith et al., 2021). The CNN
reads in a matrix all at once, and thus is not explicitly fed the time
series information like the LSTM. The dimensions of CNN input

FIGURE 1 | Histogram of dBH/dt for all data between 1995 and 2019 (blue) and storm-only data (orange) for (A) the mid-latitude station NEW and (B) the high-
latitude station YKC. (C)Correlation coefficient between different solar wind parameters and dBH/dt for all data (blue) and storm-only data (orange). The symbol indicates
the average of all six stations, and bars represent the range of the individual stations.
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array are (N, height, width, channels), where N is the number of
sequences available for training, the height corresponds to the
time history, and the width, the number of input features. The
CNN is capable of analyzing multiple arrays in the same step. The
channels dimension corresponds to the number of arrays to be
analyzed at the same time, typically three for RGB color images.
For this study we just have the CNN analyze one array per time
step, so we set the number of channels equal to one. To keep some
consistency between the LSTM and the CNN we used the same
input parameters, time history, training data, and training/
validation splits, so the input array has dimensions of (N,
60, 13, 1).

The CNN layer functions by using a matrix window called a
kernel, which is smaller in size than the 2D input array being
analyzed by the layer at step t. The kernel performs a matrix
multiplication between a weight matrix the size of the kernel and
a segment of the input array of the same size. The output is then
put through the activation function (here ReLU), and the kernel
window repeats the operation after moving to the next segment of
the image. The length that it moves is defined by the stride. In this
study, a kernel of size (1,2) and stride of one were used, resulting
in overlapping kernel windows between parameters, but not
between t and t − 1 for the same parameter. Padding, which is
the process of adding columns of zeros to the ends of the array
image to retain the initial image size, was used. A Pooling layer
was used to reduce computational time in the models. The
Pooling layer is a method of using a kernel window to move
over the output of a CNN layer. Unlike the CNN layer, it does not
perform a matrix multiplication using a weight matrix, it only
extracts the maximum value in the kernel for the MaxPool, or the
average in the kernel for the AveragePool. In this case a
MaxPooling layer was used, the maximum value in the kernel
window is taken, and the dimensions of the resulting image are
reduced. In our case, the output of the CNN layer was of size (60,
13, 1). A 2 × 2 kernel window and a stride of (2,2) were used, and
the resulting dimensions of the output array were (30, 6, 1). The
flatten layer was used, which stacks the resulting 2D output from
the Pooling layer into a 1D array that can be used as input to the
Dense layers. Following the MaxPooling layer were two Dense
Layers with 1,024 and 128 nodes, respectively, and dropout of 0.2
in between to help prevent overfitting. The model was trained for
100 epochs and early stopping was used after 25 epochs of no
improvement.

3 RESULTS

The results presented in this section correspond to those obtained
with the “best” version of each model. Our process of
optimization involved testing the use of different solar wind
parameters, lengths of the solar wind time series, scalers,
splits, loss functions, etc. However, a formal hyper-parameter
tuning process such as a Grid Search was not performed. Since
model optimization is a never-ending task, we expect to continue
it in the future.

Each model (for each station) was trained to output 1-min
resolution dBH/dt values. The final evaluation of those models

was done on the six different storms listed in Table 2. Figure 2
shows two of the six storms: 14 December 2006 (left) and 5 April
2010 (right). The rest of the storms can be found in the
Supplementary Material. Panels (a-d) in Figure 2 show the
main parameters of the solar wind for each storm: SYM-H index,
solar wind speed (Vx) component, proton density and
interplanetary magnetic field (IMF) Bz. Both geomagnetic
storms are driven by interplanetary coronal mass ejections,
with a sharp increase in solar wind speed associated with the
arrival. It is somewhat expected that most chosen storms
correspond to coronal mass ejections as the sudden storm
commencement has been associated with larger fluctuations
on the ground (e.g., Kappenman, 2003; Fiori et al., 2014;
Rogers et al., 2020; Smith et al., 2021). Beyond that, both
storms are significantly different in strength and in their
proton density and IMF profiles. Figures 2E–J panels show
the 1-min dBH/dt measurement from the six different stations
considered for this study (black). The three top stations (e-g)
correspond to the mid-latitude stations while the bottom three
(h-j) are the high-latitude stations. It can be seen that, in general,
dBH/dt spikes tend to scale with the strength of the storm,
although peaks can significantly differ in timing and
magnitude for stations at similar latitudes depending on their
magnetic local time (MLT).

The predictions in the lower panels are shown in red for the
ANN, blue for the CNN and green for the LSTM. Those colors
will remain associated with the respective models throughout the
text. A quick overview of the predictions shown in Figure 2
indicates that the models are able to somewhat follow the trend of
the enhanced activity, while missing most of the variability and
spikes in dBH/dt. A consequence of this is that all models severely
under-predict the values unless the real measurements are
relatively low. All three models do capture some of the spikes,
or the overall increase of dBH/dt during the storm-period. This is
somewhat promising and let us speculate that the models can
indeed follow the general evolution of the disturbance strength.
At the moment, this is only true for certain stations and certain
storms and further studies would be required to improve and
evaluate the timing accuracy of the predictions.

Figure 3 shows the root mean square error (RMSE; smaller
is better) and the coefficient of determination (R2; bigger is
better) for each of the stations for the same storms shown in
Figure 2. The rest of the storms can be found in the
Supplementary Material. By itself, RMSE doesn’t allow us
to evaluate the quality of the predictions. As can be clearly
seen, different stations present markedly different results, with
mid-latitude stations having lower RMSE than high-latitude
stations due to the significantly lower magnetic fluctuations
measured during geomagnetic storms. We can see in Figure 3
that RMSE values for the different models tend to obtain
similar scores at mid-latitudes. At high-latitudes the CNN
model performs slightly better than the other two models (by
up to 10% depending on the station and the storm). The LSTM
tends to perform similarly to the ANN in most of the stations
for both storms, although the LSTM performance is slightly
better, approaching and even surpassing the CNN
performance on a few evaluations. The coefficient of
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determination (R2) parameter is less dependent on the
magnitude of the fluctuations, and the results are relatively
similar across all stations, suggesting that the models may have
similar performance based on their solar wind inputs. From

the figure, LSTM scores slightly better at mid-latitudes, while
CNN performs better at high-latitudes. Still, the overall R2

values are relatively low (0.1–0.3) and thus is hard to speculate
on which model is better just from the pair of metrics shown.

FIGURE 2 | Solar wind parameters (A–D) and ground magnetometer dBH/dt fluctuations as well as our model predictions (E–J) for all selected stations during the
14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms. Panels show (A) SYM-H index, (B) Vx, (C) proton density, (D) IMF Bz. Panels (E–J) show for
each of the labeled stations the 1-min dBH/dt fluctuations (black), and predictions from the ANN (red), CNN (blue) and LSTM (green) models.

FIGURE 3 | Root mean square errors (bars, left axis) and coefficient of determination R2 (symbols, right axis) for each model and each station for the 14 December
2006 (left) and the 5 April 2010 (right) geomagnetic storms.
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The 1-min resolution forecast proves similarly difficult for our
models as it did in the original GEM challenge for the models that
were evaluated (Pulkkinen et al., 2013). Therefore, a risk-
assessment approach was introduced to evaluate whether the
models would predict crossing at different thresholds using the
maximum value of the predicted and real data every 20 min.
Figure 4 shows the result of that transformation, with black
indicating the real values, and colors indicating the prediction of
the different models. Thresholds are drawn at 18, 42, 66 and
90 nT/min (dashed lines) and were selected following the
requirements imposed on the models during the GEM
Challenge (Pulkkinen et al., 2013). In the figure, the constant
under-prediction of the models gets magnified by the drawing of
the “upper envelope” of the fluctuations. This can be clearly seen
in the 14 December 2006 results where the peak values at most
stations are a factor of 10 or more higher than the predictions.
This figure, however, does not necessarily indicate that the
models perform poorly in the risk-assessment approach; as
with the threshold evaluation, it is only important whether or
not both the model and the original measurement cross a certain
value. The relevant question for the metrics is whether both
model and measurements are on the same side of the threshold or
not. To do this, a contingency table is created for each storm,

station, and threshold and the true positives (hits, H), true
negatives (no crossing, N), false positives (false alarms, F),
false negatives (missed crossing, M) are recorded.

Following Pulkkinen et al. (2013) we transform the
contingency table into probability of detection POD = H/(H +
M), probability of false detection POFD = F/(F + N) and the
Heidke Skill Score given by

HSS � 2 HN −MF( )
H +M( ) M +N( ) + H + F( ) F +N( ). (2)

The Heidke Skill Score weights the proportion of correct
predictions obtained by the model against those that would be
obtained purely by randomness. A positive score therefore
indicates that the model performs better than chance. Figure 5
and Figure 6 show the probability of detection, probability of
false detection and Heidke skill scores obtained at each station
for the storms discussed in the previous figures. Figure 5
shows the values for the threshold of 18 nT/min. Despite
the general under-prediction of the models, the probability
of detecting the crossings at high-latitudes (ABK, PBQ, YKC)
is > 0.5 for all models in the 2006 storm and only slightly lower
in the 2010 storm. At mid-latitudes the probability of detection
is significantly lower for all stations, yet we see again a

FIGURE 4 | Maximum ground magnetic fluctuations every 20 min (black) and maximum predictions every 20 min for ANN (red), CNN (blue) and LSTM (green).
Dashed black lines indicate the thresholds of prediction at 18, 42, 66, and 90 nT/min. From top to bottom, SYM-H index and the six magnetometer stations. The 14
December 2006 storm is shown to the left and the 5 April 2010 storm is shown to the right.
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dominance of the CNN model for these particular cases. The
probability of false detection is generally low at all stations and
storms, although it is not quantified in this figure if that occurs
because of the lack of real crossings over the threshold in that
particular storm or not. Still, given the models’ consistent
under-prediction problem, it is not reasonable to expect a
significant number of false positives to contribute to this score.

The Heidke Skill Score shows a larger spread even at the same
station for different models, but consistently with the other
metrics it seems to indicate a better performance of the models
at high latitudes. A particularly interesting result is the
extremely poor performance of the models in the station
WNG, where none of the three models can get a single
correct detection. This seems to be at least in part driven by

FIGURE 5 | Top panels: Probability of detection (bars, left axis), probability of false detection (symbols, right axis). Bottom panels: Heidke skill score, calculated for
the 18 nT/min threshold for each model and each station for the 14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms.

FIGURE 6 | Top panels: Probability of detection (bars, left axis), probability of false detection (symbols, right axis). Bottom panels: Heidke skill score, calculated for
the 42 nT/min threshold for each model and each station for the 14 December 2006 (left) and the 5 April 2010 (right) geomagnetic storms.
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the very small dBH/dt values measured at that station for those
storms.

Figure 6, which shows the values for the threshold of 42 nT/
min, shows a similar trend as Figure 5. The performance at high
latitudes is varied depending on the station and the model, with
the CNNmodel still outperforming the other two, but with results
that are (at the very best) moderately good. The lack of a
significant number of real crossings of the 42 nT/min
threshold at mid-latitude stations makes evaluation of the
models very difficult. Though a few crossings do occur, the
models miss them. For that same reason we are not showing
the individual results for the 66 nT/min and the 90 nT/min
thresholds, although they are included in the Supplementary
Material for the sake of completeness.

To properly compare with the GEM Challenge, we calculated
the Heidke Skill Score by aggregating all the geomagnetic storms
for all mid-latitude stations (WNG, NEW, OTT) and doing the
same for the high-latitude stations (ABK, YKC, PBQ/SNK). This
results in two scores for each threshold, one at high latitudes and
one at mid-latitudes. Figure 7 shows the results obtained by each
of the models at mid-latitudes (top panel) and high latitudes
(bottom panel). From the figure, we can note that the final scores
are generally consistent with the individual scores obtained in the
previous figures (and with those not shown in the manuscript). It
is clear that the model that uses a CNN outperforms the other two
consistently at high-latitudes, for the first three thresholds.
However, at mid-latitudes it is the LSTM model that performs
the best, even holding some predictive power (i.e., HSS positive)
at the 90 nT/min threshold. A comparison against the models
shown by Pulkkinen et al. (2013) would indicate that the CNN
and LSTM models outperform all the GEM challenge models at

high latitudes for the lowest two thresholds but do a bit worse
than the top performer (Space Weather Modeling Framework-
SWMF) for the highest two. At mid-latitudes, however, even the
LSTM model is outperformed by most of the GEM Challenge
models, indicating that our models do present a different
behavior at mid-latitudes and high latitudes, even beyond the
differences in the scores which can be attributed to many causes.

4 DISCUSSION

The development of machine-learning models to forecast 1-min
ground magnetometer fluctuations (dBH/dt) and our benchmark
against the set of metrics previously used in similar models during
the GEMChallenge for ground magnetic perturbations presented
several interesting challenges, and therefore we have learned
important lessons from the process. In the next sections we
discuss a few of the most important points regarding the
evaluation of the models and the improvements that need to
be made moving forward.

4.1 The 30 October 2003 Storm
Out of the events selected for evaluation, perhaps the most
interesting is the storm that occurred on 30 October 2003.
This storm is the third largest storm recorded in the high
resolution OMNI dataset (1995-present). It is reasonable to
expect modelers to test the models on such extreme event.
This storm, however, presents a series of challenges for our
models, the most important being that there are no high
resolution plasma parameters available during most of the
storm due to a saturation of the instrument on-board the ACE

FIGURE 7 | Cumulative Heidke Skill Score “GEM score” calculated by adding the contingency tables of all storms and all stations at mid (top) or high (bottom)
latitudes for all three models and four thresholds.
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spacecraft (Skoug, 2004). For our model evaluation of the 2003
storm, we used a procedure similar to that described by Pulkkinen
et al. (2013) which involved the use of low-resolution (1-h) ACE
data to reconstruct the plasma parameters and 4-s resolution data
for the interplanetary magnetic field. The data was then
propagated to the bow-shock nose to make it consistent with
OMNI data. Figure 8 (left) shows the reconstructed solar wind
data re-sampled at 1-min resolution. The only data that could not
be reconstructed are solar wind speed Vy and Vz which are shown
as straight lines connecting last known values (linear
interpolation).

Figure 8 (right) shows the prediction of the models for the
different stations during the 30 October 2003 storm. Here, one of
the main difficulties when training machine-learning models
becomes evident: their poor ability to extrapolate to unseen
data. It can be seen that the models behave in strange
different ways. All three of the models respond to the sudden
increase in proton density at the beginning of the evaluated
timespan, but the models’ predictions differ significantly
afterwards. For example, the ANN predictions go to zero
following the initial spike, thus missing most of the strong
fluctuations. The CNN model, although troubled to produce a
strong prediction, seems to at least be robust enough to follow a

pattern of prediction similar to what it would predict in different
storms. Finally, the LSTM model predicts huge spikes in at least
two stations. Fine-tuning a model to get good predictions on
extreme (and unseen) data was not among the goals we set for this
work, but it is something that we will consider moving forward.

4.2 Metrics
The Heidke Skill Score (HSS) was the main metric used here for
comparison with the GEM challenge. The main reason for its use
was that it was also their metric of choice, and as such was the
simpler choice. We believe that the use of only one metric to
evaluate a model is restrictive, as it provides only a glimpse into
the strengths and weaknesses of that model. For example, the HSS
(Equation 2) contains a series of products or sums between
elements of the contingency table. This requires a variety of table
elements to produce a meaningful score. During the process of
model evaluation, the most intense storm in the testing suite, the
2003 Halloween storm, had a large percentage of missing data,
meaning the model evaluation was only done on a portion of the
storm where data was available. This portion of storm data was
completely above the lowest (18 nT/min) threshold. The model,
recognizing the intensity of the storm, predicted over the
threshold for the same time period. This resulted in the H

FIGURE 8 | Solar wind parameters (left) and 20-min window ground magnetometer data and predictions (right) for the 30 October 2003 geomagnetic storm. From
top to bottom (left) SYM-H index, IMFBz, proton speed, proton density, dynamic pressure, temperature and electric field. From top to bottom (right) SYM-H index, and all
six ground magnetometer stations showing 20-min window maximum values of real measurements (black), ANN model (red), LSTM model (green), and CNN model
(blue).
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(hits) element of the table being the only one populated, as all of
the predictions and real data were over the lowest threshold,
ideally a perfect model. However, because only one element of the
table was nonzero, we get zeros in both the numerator and
denominator of the HSS, producing a NaN value in our
evaluation. Similarly, in the evaluation of the 2003 storm, the
PBQ station had an almost perfect prediction in terms of being all
hits for the 18 nT/min threshold. However, while the proportion
of hits was very high, there was one false negative. Because there
were only two elements of the table represented, but they are in
different terms of the numerator, we get a result of zero for the
HSS. A score of zero is supposed to be akin to 50–50 random
chance model; however, with a hit-to-false-negative proportion of
13:1 for this particular storm, that is obviously not the case,
showing that the HSS does not do justice to the skill of the model.
Thus, it is important to consider multiple metrics when validating
or comparing models. Liemohn et al. (2021) provides an overview
of numerous metrics, and Welling et al. (2018) recommends
adding a Frequency Bias metric to those used by Pulkkinen et al.
(2013) for assessment of ground magnetic field perturbations.

It is also important to consider that out of the six storms
evaluated for the six ground magnetometer stations, the 30
October 2003 storm is the only storm that provides a high
number of crossings above the higher three thresholds. This is
also discussed in Pulkkinen et al. (2013) because it heavily
impacts the overall HSS score of a model depending on
whether the model can effectively predict fluctuations that are
large enough to cross over those thresholds. In our case, the ANN
model that fails to predict the 2003 storm at all, sees its HSS
tremendously affected when compared against the other two
models, even if they are all similar in performance for the
remaining of the geomagnetic storms evaluated.

4.3 Training and Testing
One of the reasons to replicate an existing community effort is
that we wanted to benchmark our model results against known
baseline models. In doing so, we have made choices that may or
may not be the optimal choices for a machine learning model. A
good example is the 2003 storm, which would be ideally used for
training instead of for testing given its unique nature in the
existing dataset (and that we will use when the models move into
operational real-time forecast). As mentioned before, it is
understandable that modelers may want to test using extreme
events, as opposed to machine-learning practices where extreme
events can help models perform better. However, in the future, it
may be worth exploring new events for testing, such as those
already proposed by Welling et al. (2018).

Another important aspect not addressed in detail here is the
choice of the target parameter. Following the GEM challenge we
focused on the 1-min resolution dBH/dt values, and then
reprocessed those predictions to obtain the maximum value
every 20-min, which is what was finally used for the actual
evaluation. While a 20 or 30 min window of prediction is
probably a reasonable timespan in which to raise warnings
when a model is operational, the way the model was
proposed, it is not actively creating predictions that far into
the future but rather 1-min ahead (plus the time of

propagation from L1), which can lead to confusion. In the
future, we plan to try different types of forecasts, such as
doing a direct prediction of the maximum value of the
fluctuations over a determined time window.

5 SUMMARY AND CONCLUSION

We have revisited the ground magnetic field perturbations
challenge “GEM Challenge” using deep learning models for
our evaluation: a feed forward neural network (ANN), a
convolutional neural network (CNN) and a long short-term
memory recurrent network (LSTM). We followed the same
procedure set by the original challenge, including the forecast
of 1-min resolution dBH/dt values, followed by a conversion to a
“maximum of” in 20-min windows. We then evaluated our
models by creating a contingency table for thresholds of 18,
42, 66 and 90 nT/min. The metrics created from these
contingency tables were probability of detection, probability of
false detection and the Heidke Skill Score, which we used to
evaluate our models at six ground magnetometer stations, three
mid-latitude and three high-latitude, over six different
geomagnetic storms. We finally calculated an overall score by
aggregating storms at mid-latitude stations and also at high-
latitude stations.

Overall, we found that the machine-learning models we
developed tend to perform similarly or slightly worse compared
against the models presented by Pulkkinen et al. (2013), with scores
that would situate them roughly in the middle of all the models they
tested. Pulkkinen et al. (2013) does not present exact numbers, so
those need to be inferred from their figures. For example, ourmodels
perform poorly for the 18 nT/min threshold at mid-latitudes
compared to all models discussed there. On the other hand, two
of our models (CNN, LSTM) outperform all but the two top models
at high-latitude for the same threshold. At the 42 nT/min threshold,
our models (LSTM at mid-lat, CNN at high-lat) would outperform
all but the top model presented there. There are several reasons for
such results, including difficulties in predicting the 30 October 2003
geomagnetic storm, which is a unique and extreme case that causes
machine learning training to predict poorly. Out of the three models
we tested, the CNN did consistently better than the other two.

The machine-learning models we used here have a few
advantages over traditional simulations such as the minimal
computational requirements they need for training, and to be
run in real-time. Most of our models have been trained in
machines of moderate computational power, and more
importantly can provide real-time predictions on a desktop
computer. This allows for great flexibility in the design of
models and quick iteration between different algorithms as
they become available. Here we used an LSTM, CNN, and
even an ANN model for their capability to capture the time-
history of the time series used as an input. We consider that any
machine learning model capable of capturing the temporal
evolution of the target parameter is worth exploring and could
be used in the future. We plan in the future to continue exploring
models of this type, with the intention of moving into real-time
forecasting.
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Statistical Methods Applied to Space
Weather Science
Daniele Telloni*

National Institute for Astrophysics, Astrophysical Observatory of Torino, Pino Torinese, Italy

Space Weather is receiving more and more attention from the heliophysical scientific
community, as it is now well established that an adequate capability of monitoring any
Earth-directed heliospheric event and forecasting the most severe perturbations produced
by solar activity and their impact on the geo-spatial environment is crucial, given the human
increasing reliance on space-related technologies and infrastructures. Predicting how the
Sun affects life on Earth and human activities in the short term relies on establishing
empirical laws to forecast not only the arrival time on Earth of potentially geo-effective solar
drivers, but also, and more importantly, the intensity of induced geomagnetic disturbance
(if any). Scientific studies performed on a statistical basis are the key to providing such
empirical laws and analytically relating solar-wind properties to geomagnetic indices. This
paper summarizes the results achieved by the author in the last few years in the context of
Space Weather science, and based on statistical analyses of interplanetary and
geomagnetic data.

Keywords: methods: statistical, solar-terrestrial relations, Sun: activity, Sun: coronal mass ejections (CMEs), solar
wind, turbulence, interplanetary medium, magnetohydrodynamics (MHD)

1 INTRODUCTION

The Sun influences conditions in the near-Earth environment, including the magnetosphere,
ionosphere and thermosphere, and can pose a persistent hazard in the form of damaging
radiation to both space- or ground-based stations and human health. More specifically, Space
Weather (as commonly referred to the science dealing with the complex Sun-Earth interaction and
forecasting of potentially geo-effective events) covers the geo-space disturbances caused by the
release of solar energy into the Earth’s magnetosphere during geomagnetic storms, and all related
phenomena. Sun-related environmental impacts include a potential slowdown and orbital decay of
the low-Earth-orbiting satellites (due to an additional aerodynamic drag force induced by solar
activity), induction of very harmful electric currents in power transmission grids and pipelines,
disruption of satellite signal propagation with severe implications for positioning systems, and
unrecoverable failures of electronics onboard spacecraft. The ionosphere reflectivity can also be
altered by the arrival of solar energetic particles, impairing radio communication systems. Finally,
Space Weather deals with radiation produced by solar storms that can endanger the astronauts’
health.

Interplanetary counterparts of Coronal Mass Ejections (ICMEs, large eruptions of magnetized
plasma from the Sun into interplanetary space Webb and Howard, 2012), which occur much more
frequently at solar maximum than at minimum, and Corotating Interaction Regions (CIRs, forming
at the interface between high- and low-speed streams), which are instead typical of low activity
phases of the solar cycle, are the largest interplanetary manifestations of the solar activity (Gosling
et al., 1990; Tsurutani et al., 1995; Gonzalez et al., 1999; Yermolaev et al., 2005, 2012). These
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interplanetary structures, which can be seen as propagating
regions of space of enhanced density and magnetic field
strength, are characterized by an intense and long-lasting
South-directed magnetic field, which thus magnetically
reconnects with the oppositely (North-)oriented Earth’s
magnetic field, according to the scenario first proposed by
Dungey (1961). This process allows a net transfer of energy
from the solar wind to Earth, triggering “de facto” the most
severe geomagnetic disturbances (Russell and McPherron, 1973;
Gonzalez et al., 1994; Baker et al., 1996). However, the old-
fashioned paradigm that the level of geomagnetic storming
depends primarily on how pronounced in the southern
direction the interplanetary magnetic field is (Fairfield and
Cahill, 1966) is not quite correct. Other solar wind-related
parameters, such as the dynamic pressure (e.g., Burton et al.,
1975), the transported kinetic/magnetic energy (Telloni et al.,
2020), and turbulence (e.g., D’Amicis et al., 2020), play a crucial
role in driving the geomagnetic activity.

Although one-to-one studies have been often performed so
far, a statistical approach is needed for forecasting Space Weather
phenomena, with particular reference to predicting the
geomagnetic response to the impact of geo-effective solar
structures, the relativistic electron flux (which may cause
irreparable damage to the geosynchronous satellites, Forsyth
et al., 2020), the occurrence of solar flares, the propagation
time of CMEs, the transit of high-speed streams to Earth, and
the crossing of the heliospheric current sheet (the latter two also
being sources of geomagnetic disturbances, though to a lesser
extent). In fact, by means of the analysis of a large amount of
solar, interplanetary, and geomagnetic data of past events, it is
possible to establish empirical laws, a sort of analytical functions
relating the different quantities involved, that allow the prediction
of the onset of new solar events and/or their effects on the Earth’s
magnetosphere.

Most forecasting methods rely on remote-sensing
observations of solar phenomena, i.e., CMEs, causing
geomagnetic storms, and can be roughly divided into three
main classes, namely, physics-based, event-based, and drag-
based models, depending on the approach used to provide
expectations of CME arrival times. Physics-based models rely
on photospheric magnetic field observations to initiate numerical
MagnetoHydroDynamic (MHD) simulations of the eruption of
the CME and its propagation from Sun to Earth. Predictions of
the CME transit time can be thus provided. These numerical
codes require the use of supercomputers to run efficiently. In
addition, their reliability obviously depends on a correct
representation of the physical processes within the models,
i.e., the understanding (unfortunately not yet full) of the
physics of the corona and the solar wind. The MHD models
currently used for operational Space Weather predictions are the
well-known Enlil (Odstrcil, 2003) and the EUropean
Heliospheric FORecasting Information Asset (EUHFORIA,
Pomoell and Poedts, 2018). Simpler and much less
computationally expensive (but no less reliable) event-based
(or empirical) models rely on statistical studies of past CMEs
and essentially relate the CME Sun-Earth transit times to their
propagation speeds, as inferred from coronagraphic images. This

allows the establishment of empirical laws, say analytical
functions, that (assuming that past observations are analogous
to future ones, i.e., that CMEs share common kinematic
characteristics) allow prediction of the impact time on Earth
of a new CME, once its coronagraphic speed is measured (e.g.,
Manoharan et al., 2004; Schwenn et al., 2005; Vršnak and Žic,
2007). Similar empirically-derived relations to forecast the geo-
effectiveness of CMEs are also available (e.g., Dumbović et al.,
2015). Observational evidence for an adjustment of the CME
propagation speed to the background solar wind and its
interpretation in terms of aerodynamic drag, stimulated the
development of the so-called drag-based models (e.g., Vršnak
and Gopalswamy, 2002; Vršnak et al., 2013), which basically
assume that the CME propagation in the heliosphere is governed
by aerodynamic drag (one of the most refined drag-based model
is 3D COronal Rope Ejection (3DCORE) introduced by Möstl
et al., 2018). That is, the dynamics/kinematics of the CME can be
analytically described through a pretty simple equation of
motion, which can thus provide real-time prediction of the
CME arrival time and impact speed at Earth (in spite of
various drawbacks associated with the approximations intrinsic
to this approach).

Regardless of the pros and cons of the different approaches
(whose discussion is beyond the scope of this paper, but the
interested reader is refereed to Verbeke et al., 2019), all these
methods provide alerts 1–4 days in advance of the geomagnetic
storm, although the predictions are significantly model-
dependent and affected by large uncertainties. On the other
hand, expectations of CME arrival and storminess level based
on in-situ solar wind data at the Lagrangian point L1, i.e., Space
Weather now-casting methods, are not widely used, although
they could provide much more accurate warnings. This is
essentially due to the difficulty of identifying CMEs locally in
the interplanetary medium with in-situ measurements.
Interplanetary scintillation (IPS), which is scattering
phenomenon of solar wind density irregularities, serves as a
remote sensing method for observing the solar wind. Thus,
IPS observations have the potential to bridge a gap between
the Sun and the near-Earth solar wind. Some efforts to improve
CME arrival time predictions already have been performed using
IPS observations (e.g., Iwai et al., 2021). However, in in-situ data,
many of the CME distinctive properties (i.e., higher magnetic
fields and lower plasma densities/temperatures with respect to the
ambient solar wind in which they propagate, Burlaga et al., 1981)
are common to a variety of other interplanetary structures, such
as high-speed streams. What really distinguishes them is a
rotation of the magnetic field vector in the plane
perpendicular to the direction of propagation. This is due to
the presence of a flux rope (which generally all CMEs embed and
carry during their expansion, Vourlidas, 2014), a helical structure
that can be revealed as a region of space with high magnetic
helicity (anMHD quantity that measures the degree of twisting of
magnetic field lines). However, unlike the shock front of a CME,
which provides a prompt signal, in order for the flux rope-related
magnetic field rotation to be detected, the CME must have
entirely passed the spacecraft orbiting at L1, thus drastically
reducing forecasting capabilities: indeed, at least for the largest
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structures (which can have a radial extension at Earth of even
0.25 au, Klein and Burlaga, 1982, much larger than the L1 point-
Earth distance of only 0.01 au), the front may have already
impacted Earth by the time diagnostic codes based on
magnetic helicity measurements identified the presence of a
CME at L1. This issue, along with difficulties associated with
measuring the magnetic helicity (the reader is referred to Telloni
et al., 2012, 2013, for a detailed discussion) have limited the
development of now-casting methods based on in-situ L1
measurements of the solar wind for Space Weather purposes.
This lack motivated the works by Telloni et al. (2019, 2020, 2021)
(hereafter Papers I, II, and III), all appeared on The Astrophysical
Journal and based on statistical surveys of solar wind and
geomagnetic data (the period analyzed in each case covers
more than one solar cycle) with the aim of obtaining statistical
relationships, i.e., empirical laws, that can be used in the Space
Weather framework to predict the onset and the time evolution of
geomagnetic storming.

The present paper summarizes the results obtained in the
aforementioned three papers. Ideally following the title, section 2
reports the statistical results obtained in the three studies, while
section 3 discusses their applications to Space Weather science.
section 4 is devoted to future developments of the application of
statistical methods and machine learning in Space Weather
science in the framework of the Space Weather Service
Network (SWESNET) project.

2 STATISTICAL RESULTS

Paper I addressed the detection, characterization, and geo-
effectiveness likelihood of ICMEs. The localization of ICMEs
in the near-Earth space environment was accomplished by
comparing some MHD quantities measured at L1 with those
typical of the unperturbed solar wind plasma. Specifically, ICMEs
were identified as structures with a large magnetic helicity content
(representative of the embedded flux rope) that also have a total
(thermal plus magnetic) internal pressure higher than the
medium in which they propagate (Gosling et al., 1994). The
potential geo-effectiveness of the so identified ICMEs was
ascertained by looking at their energy budget: only those
ICMEs carrying an amount of kinetic and/or magnetic energy
far exceeding that characteristic of the quiet solar wind (thus
ensuring a remarkable energy transfer to the Earth’s
magnetosphere during magnetic reconnection processes) were
in fact defined as able of inducing geomagnetic perturbations. In
the 12-year period from 2005 to 2016, 106 likely geo-effective
ICMEs were thus revealed in the Wind spacecraft data by the in-
situ data-based tool developed in Paper I. The actual geomagnetic
disturbances driven by those ICMEs were verified by inspecting
the Earth’s magnetospheric activity through the Dst (disturbance
storm time) and Ap indices, both indicative (albeit at different
ground latitudes) of the intensification of ring current systems
caused by solar storms. Specifically, sustained periods of either
Dst <−50 nT (Cander and Mihajlovic, 1998) or Ap larger than
the value reflective of the quiet configuration of the
magnetosphere, identified the ICME-driven geomagnetic

perturbations. On the one hand, this allowed the estimation of
the efficiency in identifying at L1 CMEs potentially geo-effective.
It turned out that the efficiency increases with the storminess
level: from 86% for the weakest geomagnetic disturbances
(−50 nT > Dst > −100 nT), through 94% for moderate
perturbations (−100 nT > Dst > −250 nT), to as high as
100% for the most severe ones (Dst < −250 nT). On the other
hand, it allowed quantitation of the time between the in-situ
detection of the CME and the onset of the related increase in
geomagnetic activity. The distribution of the waiting times is
shown in panel (A) of Figure 1: on average, this time delay is
about 4 h and 20 min (vertical dashed red line). Overlaid is a log-
normal distribution (blue dashed curve), which allows estimation
of the confidence interval for the waiting time: it results that in
98% of instances this waiting time is between 2 and 8 h.

Paper II extended the study to any likely geo-effective solar
event (not just CMEs), focusing, in the same 2005–2006 interval,
on the relationship existing between solar wind energy and
geomagnetic activity. Panel (B) of Figure 1 displays the 2D
histogram of a dimensionless measure of the total (kinetic plus
magnetic) energy E carried by the solar wind (see Telloni et al.,
2020, for more details on how E was derived from Wind in-situ
data) and the Dst index. Superimposed are the Dst most likely
value (black solid line) and 68% probability range (gray shaded
area) for each energy bin. It appears evident that a clean statistical
correlation exists between the energy content of the solar wind
impacting Earth and the perturbation level of the magnetospheric
current system: that is, the larger the energy stored in the solar
wind plasma, the more severe the induced geomagnetic
perturbations. It follows that in the solar wind-magnetosphere
coupling, energy is to be thus regarded as a crucial parameter in
solar-terrestrial interactions.

Finally, unlike the above two papers that addressed the topic of
what triggers the geomagnetic storms, Paper III dealt with the
study of their recovery phase and specifically what determines a
slow restoration of the Earth’s magnetosphere to its equilibrium
conditions. Specifically, the aim was to establish, on a statistical
basis, the relationship between long recovery phases and
sustained periods of Alfvénic plasma streams that follow the
solar event (either recurrent, such as CIRs, or non-recurrent, such
as CMEs) driving the geomagnetic disturbance. By defining
thresholds for the magnetospheric quiet state and Alfvénicity
(i.e., the level of correlation between magnetic and velocity
fluctuations, Grappin et al., 1982, measured by the Wind
spacecraft), it was possibile to quantify the extent of
magnetospheric recovery phases (through inspection of the
SYM-H geomagnetic index, which is essentially the same as
the Dst index, but provided at a higher time resolution, ΔtSYM-

H) and concurrent Alfvénic solar wind flows (Δtρvb). Their
statistical correlation was thus proved on a period covering
16 years from 2005 to 2021: the results are shown in panel (C)
of Figure 1 as blue open circles, where they are fitted with a linear
function (red dashed line), which provides a high correlation
coefficient ρ of 0.83. It thus clearly emerges that Alfvénic
fluctuations counteract the processes involved in a rapid
restoration of the magnetospheric ring current system to its
pre-storm equilibrium condition.
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3 APPLICATIONS TO SPACE WEATHER
SCIENCE

Studies of the solar wind and its effects on Earth performed on a
statistical basis allow both a deeper understanding of the physical
processes underlying the Sun–Earth relations and an advanced
capability in forecasting geomagnetic storm events within the
framework of Space Weather science. Panel (A) of Figure 1 sheds
light, for instance, on the time delay between the CME passage
and the onset of its magnetospheric effect. This waiting time is the
combination of the time interval the CME needs to travel the
distance between L1 and Earth with the time required for the
CME to trigger the geomagnetic storm, perturbing the
magnetospheric current system. As a conclusion, Paper I
clearly pointed out that, once detected at L1, 98% of CMEs
take between 2 and 8 h to initiate the geomagnetic
disturbance, with an average time of about 4 h. This piece of
information is particularly important in Space Weather

perspective. Subtracting from this delay the CME transit time
to Earth (about 30 min (1 h) for the fastest (slowest) CMEs), it
appears that the complex (and not yet fully understood) processes
involved in intensifying the magnetospheric ring currents take on
average 3 −3 h and a half to lead the magnetosphere out of its
equilibrium configuration. This result can be easily extended to
any solar event, because it can be argued that the processes
involved in the response of the Earth’s magnetosphere to the
Sun’s activity do not depend on the particular type of solar driver
triggering the geomagnetic storm.

Another crucial question for Space Weather is: once destabilized
by a solar event how long does it take the magnetosphere to recover
its equilibrium condition? The answer, by no means straightforward
since the recovery phase is governed by multiple and competing
restoring forces, is nevertheless of paramount importance for all
those ground or space-based facilities that, in addition to being
affected by the episodic and abrupt magnetospheric reconfiguration
due to the impact (inmost cases, but not only) of CMEs onEarth, are

FIGURE 1 | (A) Distribution of the waiting times between the detection of the geo-effective CME and the onset of the induced geomagnetic storm; the arithmetic
mean (vertical dashed red line) and the best-fitting lognormal function (blue dashed curve) are also displayed. (B) E −Dst 2D distribution; the most probable Dst value and
the lower Dst threshold are marked, as a function of E, as a black solid and red dashed line, respectively; the gray dashed area denotes the 68% probability interval of Dst
per energy bin. (C) ΔtSYM−H − Δtρvb scatter-plot (blue open circles) fitted by a linear function (red dashed line) with correlation coefficient ρ = 0.83. Adapted from
Figure 4 of Telloni et al. (2021).
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equally affected by time-integrated effects throughout the whole
storm. Paper III established that a correlation between long recovery
phases of geomagnetic storms and the presence of Alfvénic turbulent
plasma flows exists on a statistical basis (Panel (C) of Figure 1).
Specifically, the duration of the recovery phase, when controlled by
Alfvénic fluctuations, is 0.88 (which is the slope inferred from the
ΔtSYM−H − Δtρvb scatter-plot) times the time length of the Alfvénic
stream. Implications for Space Weather science thus stem from the
possibility of forecasting the passage (and extent) of Alfvénic solar
wind streams (either due to their recurring nature during solar
minima or by means of the most advanced models for simulating
and predicting the Parker-spiral solar wind, such as Enlil (Odstrcil,
2003) or EUHFORIA (Pomoell and Poedts, 2018)) and, through
this, the duration of the recovery phase of any geomagnetic event
eventually arising prior to the Alfvénic flow.

However, the most important capability that any forecasting
model must have is to predict the likelihood for the solar events to
impact the Earth and, if so, the intensity of the resulting
geomagnetic storm. Paper III provided in this regard a useful
SpaceWeather diagnostic tool. From the measurement at L1 of the
energy load of the incoming solar wind, it is indeed possible to
assess not only what will be the most likely geomagnetic activity
(with the required confidence interval, black solid curve and gray
shaded area in panel (B) of Figure 1), but also and especially the
maximum response the Earth’s magnetosphere could have. In fact,
it is clear from the figure that the E − Dst distribution is bounded
on the bottom side (red dashed curve). From a physical perspective
this means that the perturbations of the ring current system are
limited and strictly related to the energy input from the Sun. From
a more predictive perspective, it instead allows the assessment of
what will be the most severe geomagnetic disturbance that can be
expected from the interaction with the magnetosphere of a solar
wind carrying an energy E; or, otherwise, whether there is no need
to provide an alert. Based on the above considerations, and because
the measurement of solar wind energy can be performed in quasi
real-time, any alert might be provided, with a confidence level of
98%, between 2 and 8 h in advance of the likely geomagnetic event.

The application of statistical methods to data acquired in situ
from space missions orbiting L1 in the Space Weather science is
being further explored and exploited in the ongoing SWESNET
project of the European Space Agency, which involves about 50
research institutes/universities throughout Europe. A brief
introduction of SWESNET and the author’s tasks in delivering
novel statistically-driven services/tools is provided in the
following section.

4 OUTLOOK: THE SWESNET PROJECT

The Space Weather Service Network (SWESNET) project aims at
the further development of the Space Weather services provided by
the European Space Agency (ESA), drawing on the results of the
Space Situational Awareness (SSA) Program. Activities include the
delivery of SpaceWeather products and toolkits, for a timely, reliable
and accurate monitoring, prediction and dissemination of Space
Weather conditions and influences, via the dedicated ESA portal
(https://swe.ssa.esa.int/web/guest/), which is the main resource for

SpaceWeather in Europe. The Heliospheric Weather Expert Service
Centre (ESC) is one of the five ESCs (along with Solar Weather,
Space Radiation, Ionospheric Weather, and Geomagnetic
Conditions) contributing to the network and deals with the
effects on the Earth’s environment of solar wind-related events,
such as high-speed streams, CIRs, and CMEs. Characterizing,
tracking, and predicting all of these interplanetary structures is
vitally important for promptly reacting to the impacts of Space
Weather events, thereby protecting critical infrastructures and
mitigating their potentially deleterious effects.

The Solar Physics group, at the Astrophysical Observatory of
Turin, part of the National Institute for Astrophysics, is one of the
expert groups involved in the SWESNET Heliospheric Weather
ESC and is in charge of developing several tools/prototype services
for real-time analysis of space data to provide results of interest to
the ESA-SSA SWESNET program and the end users. Based on the
results of the three papers reviewed in this article, the author will
lead the implementation into SWESNET of three new services: 1)
development of diagnostic code for automatic detection and
characterization of ICMEs at L1 with in-situ data acquired from
near-Earth space observatories (arising from Paper I); 2)
development of algorithm for predicting the likely geo-
effectiveness of ICMEs based on local estimation of their energy
content with in-situ data provided by spacecraft orbiting at L1
(arising from Paper II); 3) development of a tool for predicting the
length of the recovery phase of the geomagnetic storm and thus
estimating the time-integrated effects of sustained periods of albeit
low geomagnetic activity (arising from Paper III). In addition, a
preliminary investigation for the design of a machine learning-
based tool for real-time prediction of geomagnetic events from
solar wind measurements acquired in situ at L1 will be carried out,
thus approaching the challenging field of machine learning
techniques for Space Weather, which has received a significant
boost in recent years (e.g., Camporeale, 2019).

As a conclusion, this paper reports on the statistical approach
necessary to study the magnetospheric response to any solar
driver and the benefits this approach may have in Space Weather
studies. Only through statistical analyses it is indeed possible to
ascertain which solar and geomagnetic parameters are correlated
(and to what extent) in the complex solar wind-magnetosphere
interaction and, specifically, to establish empirical laws useful for
Space Weather purposes, with the final aim to improve the
prediction capabilities and increase the robustness of the ESA-
SSA SWESNET forecasting service system.
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Solar granulation is the visible signature of convective cells at the solar surface. The
granulation cellular pattern observed in the continuum intensity images is characterised by
diverse structures e.g., bright individual granules of hot rising gas or dark intergranular
lanes. Recently, the access to new instrumentation capabilities has given us the possibility
to obtain high-resolution images, which have revealed the overwhelming complexity of
granulation (e.g., exploding granules and granular lanes). In that sense, any research
focused on understanding solar small-scale phenomena on the solar surface is sustained
on the effective identification and localization of the different resolved structures. In this
work, we present the initial results of a proposed classification model of solar granulation
structures based on neural semantic segmentation. We inspect the ability of the U-net
architecture, a convolutional neural network initially proposed for biomedical image
segmentation, to be applied to the dense segmentation of solar granulation. We use
continuum intensity maps of the IMaX instrument onboard the Sunrise I balloon-borne
solar observatory and their corresponding segmented maps as a training set. The training
data have been labeled using the multiple-level technique (MLT) and also by hand. We
performed several tests of the performance and precision of this approach in order to
evaluate the versatility of the U-net architecture. We found an appealing potential of the
U-net architecture to identify cellular patterns in solar granulation images reaching an
average accuracy above 80% in the initial training experiments.

Keywords: solar physics, solar granulation, photosphere–convection, dense segmentation, deep learning–artificial
neural network

1 INTRODUCTION

The solar photosphere is the lowest visible layer of the solar atmosphere, where the solar plasma
changes from almost completely opaque to almost completely transparent, forming the so-called
solar surface (Stix, 2002). Continuum intensity images of this layer reveal the existence of the solar
granulation. It covers most of the solar surface and is characterized by a recurrent and dynamical
cellular pattern. Individual elements are called granules, which are relatively small and bright bubble-
like structures with horizontal scales in the order of megameters (103 km) evolving on timescales of
minutes (Nordlund et al., 2009). Solar granules are evidence of the overturning convection process
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occurring at the solar interior, where hot plasma rises at their
centre, then cools down and sinks downward at the edges (Stix,
2002). An intergranular region forms when the granule’s cool
plasma drives down into the solar interior. This relatively darker
narrow lane surrounding the granules is another identifiable
structure at the solar surface. (Nordlund et al., 2009).

Detailed studies of small-scale phenomena on the solar surface
have shown specific and systematic morphological patterns in the
granulation. A type of pattern that has been studied extensively is
the so-called Exploding granules. They were first described by
Carlier et al. (1968) as special types of granules with sizes
2–3 times bigger than regular ones, being a product of their
rapid horizontal expansion. Based on their morphology,
exploding granules are characterized by a reduction in the
continuum intensity in their centre, generating a “dark dot”,
which eventuality evolves by fragmenting (Kitai and Kawaguchi,
1979; Namba, 1986; Hirzberger et al., 1999). Several observational
and numerical studies revealed that exploding granules have a
close relationship with mesogranular dynamics (Domínguez
Cerdeña, 2003; Roudier et al., 2003; Roudier and Muller,
2004), small-scale magnetic field diffusion and concentration
(Roudier et al., 2016; Malherbe et al., 2018), and small-scale
magnetic flux emergence (De Pontieu, 2002; Palacios et al., 2012;
Rempel, 2018; Guglielmino et al., 2020). Another extensively
studied pattern are Bright points, point-like bright elements
localized within intergranular lanes and which can be clearly
identified in certain photospheric spectral bands such as the
Fraunhofer’s G band (Muller and Roudier, 1984). Those are
mostly related with magnetic field elements, being perfect
tracers of high magnetic field concentrations in intensity
images ((Bellot Rubio and Orozco Suárez, 2019) and
references therein). More recently, Granular lanes have been
reported as another subgranular pattern of interest (Steiner
et al., 2010). Those are arch-like signatures moving from the
boundary of a granule into the granule itself. In general, they do
not completely cover the granules and are associated with a linear
polarisation signal, which corresponds to the emergence of
horizontal magnetic fields (Fischer et al., 2020). Granular lanes
were described in simulations as signatures of underlying tubes of
vortex flow with their axis oriented parallel to the solar surface
(Steiner et al., 2010).

The capabilities of the new and upcoming solar telescopes
(Daniel K. Inouye Solar Telescope–DKIST (Rimmele et al., 2020)
or Balloon-borne telescope Sunrise III (Solanki et al., 2017)) will
provide us with large amounts of unprecedented high-resolution
images, which could reveal the next level of complexity of
granulation. The statistical study of photospheric plasma
dynamics at this level of resolution will rely on the correct
identification, classification and localization of systematic
structures. For this specific task, automatic solutions can be
implemented, for instance, Machine Learning techniques (ML)
have demonstrated promising results in classification tasks on
solar images (Armstrong and Fletcher, 2019; Love et al., 2020;
Baek et al., 2021; Chola and Benifa, 2022). The demonstrated
effectiveness of those algorithms in pattern identification tasks
has motivated us toward the exploration of Deep Learning (DL)
in semantic segmentation tasks, i.e., producing automatically

labelled maps at the pixel level in order to rapidly distinguish
diverse granulation patterns, such as described previously.

Machine Learning techniques have acquired high popularity
in resolving diverse problems in daily life during the last decade.
For instance, giving computers the ability to learn representations
without being directly programmed for a specific task has been
extensively leveraged in computer vision (Sebe et al., 2005).
Convolutional Neural Networks (CNNs) were particularly
developed for image recognition tasks (Le Cun et al., 1997;
Krizhevsky et al., 2012). Inspired by biological visual
perception, CNNs are trained to react to specific image
features, starting from simple forms, as lines or edges, and
then detecting more complex and abstract patterns in
subsequent layers (Ghosh et al., 2020). Sequentially combining
layers inside the network to progressively extract higher-level
features is the main line of the DL success (Aloysius and Geetha,
2017). Taking advantage of large amounts of data, this approach
may achieve unprecedented performance on several perception
tasks, e.g., instance classification (Simonyan and Zisserman, 2015;
Huang et al., 2017), object detection (Girshick, 2015) or optical
flow estimation (Ilg et al., 2017).

Another task that saw an important push forward with DL was
dense prediction, i.e., prediction at a pixel level in images, such as
semantic segmentation (Shelhamer et al., 2017; Chen et al., 2018),
which solves the classification problem working at pixel
resolution. More specifically, the aim is to group the pixels of
an image into categories, providing precise localization of labeled
structures. Additionally, semantic segmentation seeks to partition
the image into semantic meaningful parts (Szeliski, 2011). This
paradigm has been successfully addressed using Encoder-
Decoder architectures (Badrinarayanan et al., 2017; Yanli and
Pengpeng, 2021). Leveraging the properties of CNNs, this type of
architecture is capable of producing spatially consistent
classification maps, thus providing precise localization of
objects of interest.

In this work, we propose to train supervisedly and evaluate the
performance of a CNN to carry out solar granulation
segmentation. To this end, we apply an encoder-decoder
architecture called U-net (Ronneberger et al., 2015). This
architecture was developed for biomedical image segmentation
tasks, and it is especially interesting for our objectives since it has
been successfully applied to cellular pattern segmentation. It can
work with few training images, and it achieves high levels of
accuracy in the localization of specific structures (Ronneberger
et al., 2015).

2 METHODS

2.1 U-Net Architecture
A U-net is composed of fully CNN layers organized in an encoder-
decoder architecture (Ronneberger et al., 2015)1. The encoder part
(left side of Figure 1) is responsible for producing a low

1More information can be found at https://lmb.informatik.uni-freiburg.de/people/
ronneber/u-net/
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dimensionality dense representation of an image. In the initial stage,
the contracting network receives an image of a specific sizeH (height)
× W (width), which is downsampled by sequential layers, each
composed by the following operations:

1. Two 3 × 3 padded convolution operations each followed by a
rectified linear unit (entire operation represented by orange
arrows in the Figure 1). As the fundamental components of
the convolutional neural network, 2D convolution operations
transform the image into feature maps using a set of filters or
kernels. Those resulting feature maps then pass through a non-
linear activation function. We use a set of 64 3 × 3 kernels
generating features maps of 64 (depth) × H × W in the initial
operation. Then for the subsequent one, each kernel will have a
depth dimension, which corresponds to the feature map depth
previously generated. We used padded operations in order to not
change the size of the input map during the convolution
operations (Dumoulin and Visin, 2016). U-net convolutional
operations use a rectified linear unit (ReLU) as the default
activation function, which gives the non-linear character to the
network. This function is characterized by being linear for input
positive values and zero for input negative values. It is well-
behaved and converges fast when using the stochastic gradient
descent algorithm. Consequently, it is commonly used as an
activation function in deep neural networks (Schmidhuber, 2014).

2. A 2 × 2 max-pooling operation with stride 2, which reduces
the dimensions of the input map by computing the maximum
value of each successive 2 × 2 pixel set to produce a
downsampled map (pink arrows in Figure 1). During this
process, the spatial information is reduced by a factor of two,
while the feature information is increased by a factor of two.

When the lower level is reached, the lower feature map is
then expanded by upsampling sequential layers in the decoder
part (right side of the Figure 1), which is responsible for
recovering the initial spatial dimension. This
expanding network consists of upsampled layers, each
composed by:

1. Two 3 × 3 padded convolution operations, each followed by a
rectified linear unit (orange arrows in the Figure 1) equivalent
to the operations of the encoder part.

2. A 2 × 2 transposed convolution with stride 2 as the
upsampling operation (green arrows in Figure 1). Those
seek to reverse the encoder downsampling operations, while
broadcasting input elements via a set of 2 × 2 kernels, thereby
producing an output that is larger than the input (Dumoulin
and Visin, 2016). During this process, the spatial information
is increased by a factor of two, while the feature information is
reduced by a factor of two.

As the outstanding component of the U-net architecture,
each expansion layer is concatenated with high-resolution
features from the encoder path at the same level (see grey
blocks in Figure 1), giving the network the capacity to localize
with precision. We use five levels of contraction and
expansion, like in the original U-net model, giving it its
characteristic symmetrical shape. Finally, at the end of the
sequence, a 1 × 1 convolution operation produces probability
maps per class as output with the same sizes as the original
map. Using the configuration shown in Figure 1, our model
employs around 31 million trainable parameters or
hyperparameters.

FIGURE 1 | Schematic sketch of the U-net architecture used, going sequentially from left to right. Each blue box corresponds to a feature map. The depth of the
map is denoted on top of the box. Gray boxes represent copied feature maps. The arrows denote the different operations. We use 64 kernels (feature information) for the
initial kernel set, whose number increases sequentially in the contraction levels and decreases in the expansion levels as seen in the feature maps depth values. Based on
the intrinsic properties of a fully convolutional neural network, the height (H) and width (W) of the input images can be arbitrary numbers but must be equal (squared
maps). For the training procedure, we use input maps of sizes of 128 × 128. Sketch modified from (Ronneberger et al., 2015).
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2.2 Ground-Truth Data
2.2.1 Observational Dataset: IMaX/Sunrise
In order to train the model using supervised training, we should
provide it with a suitable set of data for the segmentation process, i.e., a
ground-truth. We are interested in classifying specific patterns in
observational images of the solar surface seen in the continuum. Based
on our requirements of high-spatial-resolution data, we select the
products of the Imaging Magnetograph eXperiment (IMaX)
(Martínez Pillet et al., 2011), the filterpolarimeter onboard the
Sunrise I balloon-borne telescope during its flight in June 2009
(Barthol et al., 2011; Solanki et al., 2010). IMaX was tuned to the
FeI at 525.02 nm highly Zeeman-sensitive line, and provided
measurements of the local continuum intensity near this line. After
phase diversity reconstruction, each map reached a spatial resolution
of around 0”.15 ≈ 100 km over the solar surface (pixel scale 0”.05) and
a field of view (FOV) of 50”× 50”≈ 35 × 35Mm (Martínez Pillet et al.,
2011). Those data products are freely accessible on https://star.mps.
mpg.de/sunrise/. We select a time series of 56min with a cadence of
30 s resulting in 113 individual frames. We selected the frames with
the highest quality and spread out in time to obtain as much as
possible a diverse data set. Due to the apodization needed for image
reconstruction, a portion of the edges was lost. Taking all the above in
consideration, our ground-truth dataset is composed of eight frames
of 768 × 768 pixels each, with a FOV of 38” × 38” (see one frame as
example in Figure 2 map A).

2.2.2 Labeling Structures
In a supervised learning approach, we need to provide an initial
truth segmentation of our selected dataset in order to properly
train the model. In previous studies, the identification and
tracking of specific granular structures have been done mostly
manually with the help of intensity multi-threshold algorithms
(Javaherian et al., 2014; Ellwarth et al., 2021). For our experiment,
we select a common multi-threshold algorithm MLT4 (Bovelet
and Wiehr, 2001; Bovelet and Wiehr, 2007) used for segmenting
photospheric structures for the initial granular identification (see
for instance (Riethmüller et al., 2008; Fischer et al., 2019;
Kaithakkal and Solanki, 2019)) which is freely available2. We
adopt this approach to assess the extent to which user

intervention affects the training process on the network. In
particular, for labeling our structures at a pixel level we follow
a procedure composed of two phases:

1. Semi-automatic granules identification: Using the Multiple-
Level Pattern Recognition algorithm–MLT4 (Bovelet and
Wiehr, 2001; Bovelet and Wiehr, 2007), we segregated the
intergranular regions and the granular pattern. This is a top-
down segmentation technique of brightness structures based
on a sequence of descending detection thresholds (Bovelet and
Wiehr, 2007). The algorithm uses the reconstructed and
normalized continuum intensity maps as input (see one
frame as an example in Figure 2 map A). The procedure
starts with an initial segmentation of features at equidistant
intensity levels as shown in map B of Figure 2, and then the
pixel brightness level is normalized within each cell to its
maximum value. Consecutively, a semi-automatic procedure
of merging over-segmented cells and (4) shrinking these
brightness-normalized cells to features of adequate sizes is
performed, resulting in maps such as map C of Figure 2.
Regarding the setup parameters used, we selected 25
descending thresholds, 0.47 as a normalized reference for
merging and 0.38 as the unitary cut threshold for
shrinking. The unitary cut threshold controls the final size
of the recognized features, initially derived from a normalized
brightness histogram for the full sample of recognized cells,
which was then tuned by visual inspection. The rest of input
parameters were set to their default value (Bovelet and Wiehr,
2001). The resulting maps are composed of several hundred
individual cells (granules) separated from the intergranular
space as shown in map D of the Figure 2.

2. Fully manual granules classification: Based on the basic
instantaneous morphological features of the granular
phenomena that we seek to classify, we propose an initial
set of granule classes characterised by the presence of a central
dot signatures or an arch-like lane signatures. For
completeness, we include two categories that refer to
extreme levels of complexity in granules: 1) morphologies
with low complexity, i.e. uniform and cleanmorphologies with
circular or ellipsoid shapes, and 2) morphologies with high
complexity, i.e. abnormal granules having combinations of
dark spots or lanes. In that sense and using the map products

FIGURE 2 | Frame example of IMaX/Sunrise during the labeling procedure. (A) Reconstructed continuum intensity map, (B) Initial segmentation results using 25
descending detection thresholds, (C) Merging and shrinking results, (D) Result map differentiating integranular lanes and granules cells as single units, (E) Manual
selection into defined categories: intergranular lane (dark violet), uniform-shaped granules (pink), granules with a dot (white), granules with a lane (light green) and
complex-shaped granules (dark green).

2All code and documentation can be found at http://wwwuser.gwdg.de/astronom/
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of the previous procedure, we classified manually the set of
individual cells into four categories: granules with a dot (cells
with dark point-shape features close to the centre of the cell),
granules with a lane (cells with a dark arch-like lane following
a bright rim mark inside the cell structure), uniform-shaped
granules (cells with uniform intensity distribution and with
elliptical or circular shapes) and complex-shaped granules (all
remaining cells). The map E of the Figure 2 shows the results
of the manual classification, where each colour corresponds to
a specific classification, equivalently to the ground-truth maps
in the Figure 4A; Figure 5A. During the selection via visual
inspection, we pursue to classify all individual granules per
class unequivocally to avoid ambiguity.

We perform this two-step procedure for all pixels of the eight
selected frames, generating one ground-truth labeled map for
each continuum intensity map. We are interested in evaluating
independently and unbiased the performance of our model and
simultaneously providing it with as many training examples as
possible, thus we split our dataset in such a way that seven frames
are used for the training set and one is used for the validation/test
set. As an example, Figure 2 shows the intermediate steps in the
complete labeling procedure for the validation/test map.

2.3 Training Strategy
Although the U-net architecture has demonstrated a good
performance even with a few per-class training examples, it is
essential to provide it with a large and diverse set of training data.
In that sense, we divided the full FOV of all available maps into
several sub-maps of a fixed size. As we are interested in predicting
the class of each granule, we select sub-maps of the size 128 × 128
pixels (~ 6.5” × 6.5”) as input, with the aim of covering entire
granules (see Figure 1). In addition, we applied a process of data
augmentation, including random rotations, random perspective
transformations and warping.

We identified a severely skewed class distribution in the
labeled data, where 85% of the pixels of all available maps are
associated to two classes (intergranular lane 40% and complex-
shaped granules 45%) and the remaining 15% of the pixels belong
to the underrepresented classes (granules with a dot 8%, granules
with a lane 3% and uniform-shaped granules 4%). This is a known
difficulty that affects all classification machine learning
algorithms because the metrics used for training assume an
equivalent proportion of examples of each class. This
assumption decreases the performance of the model for
underrepresented classes (He and Garcia, 2009; Fernández
et al., 2018). Many strategies have been developed to overcome
this issue in computer vision paradigms [see, e.g., (He et al., 2008;
He and Garcia, 2009; He and Ma, 2013; Huang et al., 2016; Khan
et al., 2017; Oksuz et al., 2020)], however, it is still an active topic
research in semantic segmentation tasks [see, e.g., (Havaei et al.,
2017; Olã Bressan et al., 2022; Zou et al., 2021)].

We addressed the imbalance-class issue in this work by
including a stratified random sub-map sampling previous to
the augmentation procedure as follows. 1) We defined
weighted pixel maps for each full image, in which the greater
weights were given to areas where underrepresented classes were

localized. 2) We applied a softmax function to compute
probability distribution maps. Those probability distributions
were included in a weighted random choice function, which
returned sub-maps centred on underrepresented classes
regions. With this method, we increased the pixel proportion
of the underrepresented classes to 22% in our training dataset. We
noticed that this proportion has an upper limit due to the size of
the sub-maps. The reason is that the surface covered by
underrepresented classes is smaller than the size of the sub-
maps, which is mostly covered by the background classes
(i.e., intergranular regions and several complex-shaped granules).

An additional strategy towards solving class imbalance is an
appropriate selection of the loss function. Neural networks
applications learn via optimization, which requires a suitable
cost/loss functions to calculate the model error. The iterative
process of hyperparameter tuning is controlled by the loss
function minimization, which, at the end of the training,
ideally provides the best model setup for the assigned task. In
particular, metrics for semantic segmentation have been
historically dominated by global approaches, like the Cross-
Entropy loss (Aggarwal, 2018). Defined as CE = − log(pt),
where pt corresponds to the estimated probability for a correct
classification for a specific class t, the cross-entropy loss evaluates
the overall proportion of the correctly classified pixels as the
precision measurement. However, these scores are dominated by
the background classes in skewed datasets. Typically, the addition
of a cost-sensitive weighting factor α is used in cross-entropy,
known as α-balance variant. This seeks to balance the importance
of well-classified over the wrong-classified examples in cases of
skewed datasets. For several classes, the α factor can be considered
as a weight vector with values inversely proportional to the
frequency of each class (Lin et al., 2017).

For our experiments, we test the accuracy and effectiveness of
two different loss functions during the network training, which
are commonly used for imbalanced data problems:

1. The Focal Loss was developed for addressing the unbalance-
class problem by adding a modulating factor (1 − pt)γ to the
cross-entropy loss. It uses the tunable focusing parameter γ ≥
0, which adjusts the rate at which background examples are
down-weighted. This modification downplays the importance
of the background classes, making the training to focus on
learning the hard examples, i.e. weakly represented classes (Lin
et al., 2017). The use of α-balance variant is also applicable in
this case.

2. The Intersection-over-Union (IoU) loss or Jaccard index was
extensively used in semantic segmentation tasks. It is focused
on determining the similarity between finite sample sets
(Jaccard, 1912). For images, the IoU measures the
agreement between any predicted region and its
corresponding ground-truth region by measuring the
intersection between the prediction and the ground-truth
normalized by their union. The IoU loss can take into
account the frequency of the classes, and thus it is
considered robust to the class imbalance problem (Leivas
Oliveira, 2019). For multi-class classification tasks like the
one we pursue here, the mean IoU (mIoU) loss function is
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often used, which initially computes the Jaccard index for each
class and then computes the average over all classes.

For comparative purposes, we computed the standard
evaluation metrics for semantic segmentation. We computed
the overall accuracy, measured as the ratio between the
correctly predicted pixels and the total number of pixels, and
the mean pixel accuracy per class measured as the average of the
correctly predicted pixels per class over the total ground-truth
pixels per class. Likewise, we compare the test performance with
performance parameters during the execution of the training. In
this sense, we monitor the average per epoch of the loss value
given its loss function (average loss) and the average overall
accuracy per epoch (accuracy).

3 RESULTS

We implemented the model and the training using the open-
source PyTorch (Paszke et al., 2019) framework3. All our training
cases have been performed with an NVIDIA GeForce 2080 Ti
GPU and anNVIDIA Tesla P100 GPU.We generated 27,000 sub-
maps in the training dataset and 3,000 sub-maps in the validation
dataset from the augmentation procedure previously described.
We used the Adam stochastic gradient algorithm (Kingma and
Ba, 2014) for optimization. In this case, the gradient is estimated
from subsets of the training dataset or batches. We used batches of
32 samples, generating around 840 subsets containing all the
training dataset, which are used to update the hyperparameters
and to computed themetric in each cycle or epoch. We considered
100 or 200 epochs depending on the loss function that we used,
thus we executed around 84,000 or 168,000 iterations in total
respectively. The learning rate was annealed from the initial value
of 0.001 with a dynamic adjustment, lowering the value by a
factor 0.9 when the minimization did not decrease in 5
consecutive epochs. We performed several training cases by
turning off some of the transformations of the data
augmentation process, changing the weight values for the
stratified random sampling maps, and changing the loss
functions and its parameters. Using this setup, each epoch
took ~ 210 s.

We present two training cases that reached the highest
accuracies from all testing that we ran. Test 1 uses the U-net
architecture with a α-balanced Focal Loss. For this experiment,
we consider a proportion of 1:100 for the background classes with
respect to the underrepresented classes to build the weighted pixel
maps for the stratified sampling selection. On the other hand,
Test 2 uses the U-net architecture using the mean IoU as the loss
function. Similarly, we consider a proportion of 1:100 for the
background classes with respect to the underrepresented classes
to build the weighted pixel maps. In both experiments, we only
used random rotations and perspective transformations as
augmentation. Figures 3A,B present the monitoring plots of

these two test cases during the training execution. These
graphs show the evolution of the performance parameters of
the selected metrics per epoch, i.e., average loss and accuracy. For
both cases, the performance parameters behave as expected for
the training dataset (see blue curves in Figures 3A,B), however,
the parameters associated with the validation dataset show
differences between each other.

For test 1, the overall pixel accuracy, the accuracy per class and
the Jaccard index for the validation dataset increase slowly over
every iteration reaching 0.84, 0.60, and 0.47 respectively, while its
corresponding loss increases heavily. We interpret that the noise
and rising trend in the loss profile are due to the accumulation of
misclassified examples, such as pixels at the edge of granules or
clusters of pixels that have features of multiple classes, which the
model slowly corrects thus improving the accuracy. The model
reaches high levels of saturation, with hints a slight overfitting
close to the end of the training (see Figure 3A).

This effect can be observed in the full map prediction and
in the predicted probability distribution per class shown in
Figures 4A,B. In the whole map, the model reaches 0.74 of
overall pixel accuracy, a mean accuracy per class of 0.52 and a
Jaccard index of 0.40. These values are slightly lower than
those achieved during training (evaluated in sub-maps of size
128 × 128) but still compatible, since they come from the same
map. Figure 4A displays the direct comparison between the
ground-truth map with the predicted map. As a first
conclusion, we highlight the efficiency of the model to
segregate granules and intergranular lanes, which
contributes mostly to the overall pixel accuracy.

Regarding the correct identification of underrepresented
morphologies, the model behaviour is different per class. Based
on the probability maps in Figure 4B, we identify that the model
develops different reliability levels depending on the class. For clean
morphologies such as uniformly shaped granules, the model is
slightly more confident as compared with more structured and
complex classes. In that sense, granules with multiple and similar
features give rise to a prediction with a high degree of uncertainty.
This is manifested in classes such as granules with a dot, granules
with a lane and complex-shaped granules.

On the other hand, test 2 shows a completely different
behaviour. As shown in Figure 3B, the performance
parameters related to the validation dataset reaches a
threshold at an early stage of training without appreciable
changes along the epochs. From the first cycle, a value of 0.87
for overall pixel accuracy and a Jaccard index of 0.52 are achieved.
However, in terms of the mean accuracy per class, the average
threshold value during the first 20 iterations is 0.64, which then
decreases and stabilizes around 0.60 correspondingly. Using this
training setup, we suggest that the model is able to learn the basic
morphological patterns from few batches, but it is unable to
extract more specific information from the full dataset provided
during the training. Signatures of over-fitting are also observed,
but the invariance of the loss for the training and validation
datasets indicates an upper limit in the learning process in the
defined training time.

Figure 5A shows the full map prediction and the predicted
probability distribution maps of the model with the lowest loss

3All codes are placed in a free access repository (https://gitlab.leibniz-kis.de/
smdiazcas/SegGranules_Unet_model.git)
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value obtained during the training (epoch 12). In the whole map,
the model reaches 0.71 of overall pixel accuracy, a mean accuracy
per class of 0.58 and a Jaccard index of 0.40. Again, these values
are slightly lower than those achieved during training (evaluated
in sub-maps of size 128 × 128) but still compatible, since they
come from the same map. A good efficiency to segregate granules
and intergranular lanes is also obtained in this test, contributing
mostly to the overall pixel accuracy as well (see the Figure 5A).

Based on the probability maps generated (see Figure 5B), we
notice that the model reproduces high levels of confidence in all
classes, managing to identify detailed morphological patterns
associated with the classes, i.e., dots, lanes or combinations
even within individual cells, which promotes the over-labelling
of structures, i.e., single granules contain pixels of different classes
as shown in the predicted map of Figure 5A.

So far, we have been referring to class-average quantities of the
performance parameters, which are biased by the well-know
imbalance between granulation structures. In Table 1, we
present a summary of the overall pixel accuracy (OPA) and
the Jaccard index per class. As we mentioned, the
identification of the intergranular lane provides the major
contribution to the effectiveness of the models, reaching
accuracy values around 0.90 in both metrics. On the other
hand, the identification of specific morphologies has a
significantly lower performance, especially for
underrepresented classes. We identify that the contribution of
precision and recall on the Jaccard index are unequal, i.e. the
models are acceptably sensitive (higher recall) in detecting the
simple shapes characteristics of each class, but those are inexact
during the ground-truth comparison.

FIGURE3 | (A) Tracking plot for the training for test 1:U-netmodel using α-balanced Focal loss with γ = 10 as training loss function. (B) Tracking training plot for test
2: U-net model using Mean IoU as training loss function.

FIGURE 4 | (A) Comparative maps using the validation full size map–Test 1: U-net model using α-balanced Focal loss with γ = 10 as training loss function. A
zoomed region is highlighted showing in detail the diverse constrains of the segmentation. (B) Probability maps per class using the validation full size map–Test 1: U-net
model using α-balanced Focal loss with γ = 10 as training loss function.
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FIGURE 5 | (A) Comparative maps using the validation full size map–Test 2: U-netmodel using Mean IoU as training loss function. A zoomed region is highlighted
showing in detail the diverse constrains of the segmentation. (B) Probability maps per class using the validation full size map–Test 2: U-net model using Mean IoU as
training loss function.

TABLE 1 | Summary of the performance parameters per class calculated for the full size verification map prediction.

IGLa UGb DGc LGd CGe

OPAf Jaccard OPA Jaccard OPA Jaccard OPA Jaccard OPA Jaccard

Test 1: Focal Loss 0.90 0.85 0.12 0.10 0.58 0.29 0.31 0.15 0.71 0.58
Test 2: mIoU 0.95 0.90 0.44 0.20 0.67 0.31 0.33 0.11 0.54 0.49

aIntergranular lane.
bUniform-shaped granules.
cGranules with a dot.
dGranules with a lane.
eComplex-shaped granules.
fOverall Pixel Accuracy.

FIGURE 6 | (A) Probability distribution at pixel level of the category prediction given its original category (confusion matrix) for test 1: U-netmodel using α-balanced
Focal loss with γ = 10 as training loss function. (B) Probability distribution at pixel level of the category prediction given its original category (confusion matrix) for test 2:
U-net model using Mean IoU as training loss function.
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Based on the multi-class confusion matrix at the pixel level for
each model shown in the Figures 6A,B, we notice specific
behavior per model. For test 1, the high uncertainty levels
generate a strong effect on the maximum probability to match
a category given the original category. In this case, granules
belonging to under-represented classes have a high tendency
to be classified as complex-shape granules due to the
homogeneous probabilities between classes in granules where
similar morphologies are shared. On the other hand, for test 2, the
over-labeling effect and the high levels of reliability, tend to
homogenize the maximum probabilities by class, negatively
affecting classes such as uniform-shaped granules and granules
with a lane.

4 DISCUSSION

In summary, we present the first attempts to classify and identify
structures in the solar granulation based on the semantic
segmentation paradigm using a deep learning method. As our
main objective, we found an interesting potential of the U-net
architecture to identify and classify cellular patterns in solar
granulation images, but modifications to the current model
should be implemented to ensure its optimal performance.
With the proposed training procedure, the model achieves
high levels of accuracy in the identification of the
intergranular network which allows the effective separation of
granular morphologies. We have also established that the
network architecture is sensitive in identifying characteristic
patterns in granules, such as granules with a dot (overall
accuracy greater than 0.5 in both tests), but it looses efficacy
when it comes to discerning between structures with combined
morphologies, i.e., granules with multiple features and complex-
shaped structures. This outcome drives high uncertainty levels
(test 1) or an over-labeling effect in single granules (test 2).

During our experiments, we have identified recurrent hints of
overfitting in all performed tests, meeting the highest accuracy for
the tests presented here. We implemented some functional
strategies such as the Dropout regularization and
hyperparameters scaling but without obtaining any
improvement. Going further, we identified that the
preparation of the ground-truth dataset played a crucial role
in the model generalization ability. The semi-manual and manual
labeling process introduced unwanted constraints, e.g., over-
merging, poor contours separation and small incorrect areas.
Moreover, we noted the difficulty in defining closed classification
criteria, which would allow us to represent the samples of each
category unambiguously. Labeling structures of this specific
phenomenon is a complex task, even for human classifications.
The phenomena in the photosphere are so diverse that it is
effectively easy to under-classify or over-classify morphologies.
Thus, it is fundamental to improve the initial labeling for future
supervised testing including the use of ground-truth
segmentation methods that involve the least amount of user
intervention in order to reduce ambiguity.

Another source of over-fitting may be related to the
augmentation process, which is highly affected by the

wrong-labeled data. In this case, the geometric
transformations applied in the limited available labeled
samples, especially for the underrepresented classes, can
induce over-fitting (Shorten and Khoshgoftaar, 2019).
Granules, as individual elements, are unique at a very
detailed level, i.e., in super-high-resolution images.
However, as we have already mentioned, they share similar
phenomenologies that makes it possible to classify them into
groups with comparable patterns at basic levels of similarity.
Therefore, the use of extensive and random geometric
transformations can produce non-deterministic effects,
negatively affecting the training performance. Other
strategies exist in the literature to prevent overfitting in
skewed data, i.e. transfer learning (Weiss et al., 2016), pre-
training (Singh Punn and Agarwal, 2021) or one-shot and
zero-shot learning (Xian et al., 2017), which we plan to study
in future works.

We extensively highlight these initial experiments as a starting
point for further investigation. As this research is still under
development, we seek to improve the levels of sensitivity and
precision as much as possible to unequivocally detect the existing
phenomenologies in solar granulation. We anticipate that
extending our approach to include time-series, i.e., video
segmentation, and other physical observables such as
polarization and Doppler maps can be fruitful. This additional
information would reveal other characteristics associated with the
considered phenomena, allowing the definition of precise
selection criteria, e.g., granular lane cases have been
unambiguously detected based on the host granule evolution.
Besides, the exploration of self-supervised or unsupervised
methods is in our sights for further studies.

5 RESOURCE IDENTIFICATION INITIATIVE

All code of the model was constructed based on Python
Programming Language, RRID:SCR_008394 version 3.9.7, and
PyTorch libraries, RRID: SCR_018536 version 1.10.0.
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Solar flare prediction is a central problem in space weather forecasting and has

captivated the attention of a wide spectrum of researchers due to recent advances

in both remote sensing as well as machine learning and deep learning approaches.

The experimental findings basedonbothmachine anddeep learningmodels reveal

significant performance improvements for task specific datasets. Along with

building models, the practice of deploying such models to production

environments under operational settings is a more complex and often time-

consuming process which is often not addressed directly in research settings.

We present a set of new heuristic approaches to train and deploy an operational

solar flare prediction system for ≥M1.0-class flares with two predictionmodes: full-

disk and active region-based. In full-disk mode, predictions are performed on full-

disk line-of-sight magnetograms using deep learning models whereas in active

region-based models, predictions are issued for each active region individually

using multivariate time series data instances. The outputs from individual active

region forecasts and full-disk predictors are combined to a final full-disk prediction

result with a meta-model. We utilized an equal weighted average ensemble of two

base learners’ flare probabilities as our baseline meta learner and improved the

capabilities of our two base learners by training a logistic regression model. The

major findings of this study are: 1) We successfully coupled two heterogeneous

flare prediction models trained with different datasets and model architecture to

predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling

model, i.e., logistic regression, improves on the predictive performance of twobase

learners and the baseline meta learner measured in terms of two widely used

metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result

analysis suggests that the logistic regression-based ensemble (Meta-FP) improves

on the full-diskmodel (base learner) by ~9% in terms TSS and ~10% in terms of HSS.

Similarly, it improves on the AR-based model (base learner) by ~17% and ~20% in

terms of TSS and HSS respectively. Finally, when compared to the baseline meta

model, it improves on TSS by ~10% and HSS by ~15%.
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1 Introduction

A solar flare is an intense burst of electromagnetic radiation

through magnetic reconnection and plasma instability coming

from the release of magnetic energy associated with active

regions (AR) and they transpire as a sudden brightening of

light on the Sun’s corona Toriumi and Wang (2019). Coronal

mass ejections (CMEs), which are often associated with solar

flares, have comparable energies, and can release large amounts

of mass resulting into major geomagnetic storms which creates

intense currents in the Earth’s magnetosphere, changes in the

radiation belts, and in the ionosphere Feng et al. (2020). When

particles emitted by the Sun are accelerated during a flare or by a

CME event and reach the Earth along interplanetary magnetic

field lines, Solar energetic particle (SEP) events are produced

Núñez and Paul-Pena (2020). Primarily, solar flares are

considered to be the central phenomena in space weather

forecasting, and this paper discusses on the predictive models

for solar flares. Solar flares can induce intense variation in Earth’s

magnetic field, causing potential disruptions to many

stakeholders such as the electricity supply chain, airlines

industry, astronauts in space, and communication systems

including satellites and radio. Forecasting solar flares has been

a major challenge in heliophysics owing to the yet unsolved

fundamental cause of this phenomenon which makes it difficult

to predict the exact occurrence of a flare, especially for relatively

large ones. However, recent advancements in machine learning

and deep learning methods have demonstrated great

experimental success and catalyzed the efforts in prediction of

solar flares, which captivated the interest of many

interdisciplinary researchers Li et al. (2020); Nishizuka et al.

(2018); Huang et al. (2018). Developing predictive models for

flare prediction is limited to the nature, quantity, and quality of

flaring instances as well as the inductive bias of learning

algorithms when predicting such flare events. As a

consequence of the intrinsic limitations pre-incorporated by

the predictive models during problem formulation or model

selection or utilizing different data products, an individual

flare prediction model is limited in performance. Although all

the models built so far for flare forecasting have limitations,

different comprehensions and insights on data distribution are

still valuable for making the final decision in an operational flare

forecasting system. Therefore, it is intuitive to use as many pieces

of information that can be gathered from different sets of models

such as machine learning or deep learning models obtained from

different data modalities in terms of active region magnetogram

patches, full-disk magnetograms or magnetogram’s metadata

(magnetic field parameters) to issue a reduced risk prediction.

In active region-based models, predictions are issued for

certain areas on the Sun with greatly enhanced magnetic flux,

known as active regions. Active regions have lifetimes of days to

month, feature strong and entangled magnetic fields and are the

exclusive locations of strong flares and major eruptions,

including fast coronal mass ejections (CMEs). This said, only

a slim minority (10% or less) of active regions appearing in a

given solar cycle provide flares of GOES class ≥M1.0 and fast

CMEs [e.g., Georgoulis et al. (2019); Toriumi and Wang (2019)].

These regions can host solar eruptions. To employ active region-

based models in an operational setting, individual active region

forecasts are aggregated by computing the probability of flare

from at least one active region assuming conditional

independence and then these flare probabilities are used to

compute a full-disk flare occurrence probability. However, for

an operational system, working with near-real time data and

issuing near-real time predictions, active region-based models

relying on magnetic field observations possess a limited

forecasting ability as they restrict the training datasets within

central regions (±70°) due to severe projection effects Hoeksema

et al. (2014). Besides the unreliable measurements,

foreshortening closer to the solar limbs greatly impacts the

operational use of magnetic field data. This leads to reduction

in significant information required to make reliable flare

predictions in active regions. Moreover, predictions from

active region-based models often rely on sampled subset of

statistical features that were used to train the model and

therefore when examining forecasts from different subsets of

features, it is common to observe that for the similar condition of

the photospheric magnetic field, they can give varying values for

prediction probabilities of a particular flare to happen.

To account for the limitations of active region-based flare

predictors, full-disk prediction models provide a complementary

approach for operational flare forecasting systems Pandey et al.

(2021). The full-disk model utilize the compressed line-of-sight

magnetograms and these magnetograms are used for shape based

parameters (such as size, directionality, borders of sunspots) and

do not possess the magnetic field properties as in the

magnetogram rasters which is advantageous over the active

region-based models where individual active region magnetic

field parameters used near the limb are more prone to projection

effects. The significant part of an operational flare forecasting

model is to issue a reliable forecast for which we use a

heterogeneous ensemble that combines two different base

learners. In addition, to address the operational aspect of our

system, we consider two essential system-level criteria: 1) near-

real-time availability of input data is ensured given that both of

our base learners are trained with line-of-sight magnetograms

and physical parameters obtained from a line-of-sight

magnetograms and vector magnetograms available at a

cadence of 12 min, and 2) our proposed system is scalable in

a sense that it allows the flexibility of adding a new base learner (if

needed in the future) in the system as it will be one step away

from retraining the ensemble and deploying it back to our

forecasting system.

In this work, to issue more reliable forecasts in an operational

settings, we propose a heuristic ensemble approach which

consolidates the predictive results of the two aforementioned
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prediction modalities into one combined solar flare forecast. The

major contributions of this paper are following: we present a

methodology on how to train and validate an ensemble flare

predictionmodel in regard to its operations-ready characteristics.

The ensemble combines the predictions from two base learners:

1) a deep learning-based full-disk flare predictor using SDO/HMI

images and 2) a set of probabilistic predictions from a time series

classifier utilizing active region patches’ magnetic field metadata

in the form of multivariate time series. For both base learners, we

use the similar time-segmented tri-monthly data partitioning

strategy Pandey et al. (2021) to perform 3-fold cross-validation

experiments. Finally, we use the probability scores of these two

base learners obtained from the validation and test partitions to

train and validate our proposed meta-learner which converges to

a more robust full-disk flare predictor.

The remainder of this paper is organized as follows. In

Section 2, we present the related work on ensemble solar flare

forecasting models. In Section 3, we provide a detailed workflow

of our methodology. In Section 4, we present our detailed

experimental evaluation with settings and results. In Section 5

we present a discussion on the ensembles created and, lastly, in

Section 6, we present our conclusions and discuss future work.

2 Related works

The idea of automatically extracting forecast patterns from

the large volume of intrinsic magnetic field data on the

photosphere of the sun using machine learning methods has

begun from the early 1990’s Aso et al. (1994). Since then, with the

rapid development in machine learning and deep learning

approaches, a number of research groups Nishizuka et al.

(2018); Huang et al. (2018); Li et al. (2020), Nishizuka et al.

(2021), and references therein present their efforts in applying

such methods to build flare forecasting models.

In recent years, Li et al. (2020); Huang et al. (2018) used a

deep learning model based on CNN with different data products

for flare forecasting. Although they show an impressive

performance on flare classification, they limit the scope of the

prediction to smaller areas by using active region-based data

within ± 30°–45° of the central meridian of the Sun which may

counter their performance for true operational forecasting. In

addition, Florios et al. (2018) calculated physical features of

flaring and non-flaring ARs obtained from the SDO/HMI’s

near-real-time vector magnetogram data and trained SVMs,

multilayer perceptrons (MLPs), and decision tree algorithms

to predict occurrences of ≥M1.0-class and ≥C1.0-class flares

with a forecast horizon of 24 h. In Benvenuto et al. (2018), a

combination of supervised lasso regression for identifying the

significant features and then an unsupervised fuzzy clustering is

used for the classification of ≥M1.0-class and ≥C1.0-class flares.
Furthermore, Park et al. (2018); Pandey et al. (2021) uses full-disk

magnetograms data as a point in time observation with CNN

based deep learning models, which have limitations in capturing

the evolution of solar flares and they do not account for flares that

are on the eastern-limb of the Sun. Overall, some methods are

appropriate for constructing prediction models for the temporal

data variation, whereas others are beneficial for spatial data

variation, which demands a need for a coupled hybrid model

that can exploit the gains of multiple models.

Jonas et al. (2018) designed a time series data set using

photospheric and coronal images from HMI/SDO and AIA/SDO

instruments to forecast ≥M1.0-class flares within the next 24 h.

They utilize random partitioning of datasets into 80 and 20% for

training and testing the linear classifier. Apart from devising flare

forecasting as a binary classification task, Abduallah et al. (2021)

formulates it as a multiclass classification problem to classify B-,

C-, M- and X-class flares by utilizing the physical parameters

within ± 70° provided by the SHARP series of HMI/SDO. Finally,

the author uses majority voting as an ensemble to issue a final

flare forecast from three different models trained on the same

data. The training procedure in their work uses random 10-fold

cross-validation.

Instead of using a single prediction model, ensembles use a

set of predictions and combine these results to improve on a

single-model prediction. In addition, an ensemble can be created

with a single model itself by perturbing its initial conditions or

parameter settings to produce multiple results and then combine

those results into one called homogeneous ensembles Breiman

(1996); Freund and Schapire (1996). Flare forecasting problems

also make use of decision tree-based homogeneous ensembles.

Liu C. et al. (2017) apply random forest (RF) Breiman (2001)—a

meta-algorithm that fits a number of decision tree classifiers on

different sub-samples of a dataset and utilizes averaging to

improve the model’s performance. Similarly, Nishizuka et al.

(2017) employed an extremely randomized tree (ERT) classifier

Geurts et al. (2006) by fitting several decision-tree classifiers on a

random subset of features with a randomly defined threshold to

prevent overfitting. While RF and ERT are meta-algorithms

based on the bagging technique, XGBoost Chen and Guestrin

(2016) follows boosting approach to ensemble construction and

focuses on incorrect predictions. It varies from Random Forest

such that XGBoost always prioritizes functional space while

reducing the cost of a model, whereas Random Forest tries to

prioritize hyperparameters when optimizing the model. McGuire

et al. (2019) uses XGBoost for window-based feature extraction

from time series of physical parameters to classify solar flares.

However the aforementioned ensembles can optimize on one set

of data modality.

Besides decision trees, different models trained with different

algorithms but with same data modalities can also be used in an

ensemble as in Liu J.-F. et al. (2017). However, they only included

magnetograms with ARs within ± 30° of the central meridian of

the Sun for ≥C1.0-class flares and then designed a multimodel

integrated learner (MIM) by fitting several distinct base learners,

such as neural networks, naive classifiers, and SVMs. Finally, the
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outputs of base learners were combined by a genetic algorithm.

Similar efforts for ≥C1.0-class flares forecasting can be seen in

Campi et al. (2019) where ARs extracted from SDO/HMI images

from 2012 September 14 and 2016 April 30 are used and two-

third of the instances are randomly selected for training and one-

third for testing their models. Furthermore, in Domijan et al.

(2019) they study the predictive capabilities of magnetic-feature

properties located within ± 45° from the solar central meridian

and detected using Solar Monitor Active Region Tracker Higgins

et al. (2011) in Michelson Doppler Imager (MDI) magnetograms

and analyze the features to predict ≥C1.0-class flares within the

24 h following the observation. In this data-driven era of

predictive models, complex models can bring on higher

accuracy, but also ensembles allow many weak models to be

combined to produce a meta model that can compete with the

state-of-the-art research efforts Murray (2018).

In recent years, the usage of ensembles have become a more

popular research topic in space weather forecasting. Guerra et al.

(2015) created a multi-model ensemble from four base learners

for ≥M1.0-class flare prediction, finding an improved forecast

output compared to any one single model. Similarly, Schunk et al.

(2016) built an ionosphere-thermosphere-electrodynamics

multimodel ensemble prediction system based on seven

physics-based data assimilation models. Furthermore, in

Guerra et al. (2020), full-disk probabilistic forecasts from six

operational forecastingmethods are converted to an ensemble for

≥M1.0-class flares by a linear classifier and create a total of

28 ensembles to show the improvement of such a technique over

individual model forecasts. Although, ensemble methods are

increasingly being used by space weather researchers, much of

this research has yet to be implemented into operations, where

transitioning comes with issues of model compatibility.

It is worth noting that using a flare forecasting model in

operational settings, generally it is preferred to use more

simplistic robust methods. Diving into meteorology’s scenario,

The NASA Community Coordinated Modeling Center’s

(CCMC) CME Scoreboard 1) and solar flare Scoreboard 2)

provide an weighted and equi-weight average of multiple forecast

scores. Using an equal weighted average of multiple forecasts can be

used as a reliable first guess over a more complex model runs or

deciding on one specific forecast out of several in operationsMurray

(2018), however, an ensemble derived from a linear combination of

multiple models can add to the decision making capabilities on one

final forecast leveraging the advantage of simplicity and hence

making it more reliable to trust its decision while in operation.

To evaluate a flare forecasting system in an operational scenario,

Cinto et al. (2020) provides a set of criteria that are worth

considering and can be used to distinguish a non-operationally

evaluated system: 1) model evaluation without truly unseen data, 2)

using active region (AR) magnetograms only near the center of the

solar disk, 3) only using AR magnetograms linked to ≥C1.0-class
flares, and 4) using insufficient data instances. The author argues

that the non-operationally evaluated system are evaluated under

certain bias and that does not make them wrong, however,

evaluating under such specific conditions might impair their

predictive capabilities in real operational settings. In addition to

these guidelines, it is essential to note that, most of the studies, create

a cross-validation dataset by randomizing the process of data

splitting. While such data splitting leads to higher experimental

accuracy scores, it often fails to deliver similarly real-time

performance as discussed in Ahmadzadeh et al. (2021). We build

our models that meet the standard of the aforementioned criteria as

they can address the near-limb events with the full-disk base learner,

they are trained and tested with a time-segmented partitioning of

data from solar cycle 24, and we evaluate our models using data

instances that were not presented to the models during training to

address the operational settings of flare forecasting.

In this work, we combine the prediction probabilities of two

types of base learners by the means of a linear classifier based on

logistic regression. Our first base learner, which is a deep learning

based model which focuses on spatial variation of a full-disk

magnetogram. Similarly, our second base learner is a heuristic-

based aggregation model which outputs full disk probability

using the results from active region-based multivariate time

series classifiers. We train and validate an operations-ready

ensemble flare prediction model which optimizes the

predictive performance of both our base learners and provides

a better confidence while issuing a flare forecast.

3 Methodology

Ensemble approaches integrate multiple forecasts into a

single prediction by combining the predictions from multiple

base learners. A simplistic way of integrating the forecasts is to

use an equal weighting for each forecast and combine to improve

on a single-model prediction which we use as our baseline meta-

model. As mentioned earlier, we attempt to combine the

predictions of two base learners: 1) a deep learning-based full-

disk flare predictor using Helioseismic and Magnetic Imager

(HMI) instrument onboard Solar Dynamics Observatory (SDO)

images and 2) a multivariate time series classifier utilizing

magnetic field metadata to issue one combined full-disk flare

forecast.

3.1 Base learners

3.1.1 Time-series forest
Our active region-based prediction model is a multivariate

Time Series Forest (TSF), trained with Space Weather Analytics

1 https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/.

2 https://ccmc.gsfc.nasa.gov/challenges/flare.php.
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benchmark dataset for solar flare prediction (SWAN-SF)

Angryk et al. (2020a,b) to predict the occurrence of ≥M1.0-

class flares within the next 24 h by using an observation window

of 12 h. The SWAN-SF is an open source multivariate time

series (MVTS) dataset that provides time series instances for a

collection of space weather related physical parameters within ±

70° primarily calculated for each active regions from solar

photospheric magnetograms. The TSF model is trained by

utilizing six magnetic-field parameters: 1) TOTUSJH (Total

unsigned current helicity), 2) TOTPOT (Total photospheric

magnetic free energy density), 3) TOTUSJZ (Total unsigned

vertical current), 4) ABSNJZH (Absolute value of the net

current helicity), 5) SAVNCPP (Sum of the modulus of the

net current per polarity), and 6) USFLUX (Total unsigned flux)

from the suggested list of 13 parameters in Bobra and Couvidat

(2015) as these are available in near-real time, which is a

necessity for an operational system. The model outputs the

flaring probability for an individual active region and the

implementation of this model is based on Ji et al. (2020).

3.1.2 Deep learning model
We trained an AlexNet-based Krizhevsky et al. (2012)

Convolutional Neural Network to perform full-disk binary

flare prediction for ≥M1.0-class flares. Similar to the active

region-based counterparts, the full-disk model assumes a 24 h

prediction window, but uses a single image (point-in-time

observation) to perform the predictions. For this task, we

collected compressed 8-bit images created from full-disk line-

of-sight magnetograms provided by HMI/SDO.We collected two

compressed magnetogram images per day (bi-daily image

samples) at 00:00 UT and 12:00 UT from December 2010 to

December 2018 using Helioviewer API Muller et al. (2009) and

labeled them based on maximum of GOES peak X-ray flux

converted to NOAA/GOES flare classes observed in next 24 h

as shown in Figure 1. Unlike the TSF model, this deep learning

model outputs flaring probability for the entire full-disk and its

implementation is based on Pandey et al. (2021).

We used trimonthly partitioning for training our models,

which is non-chronological time-segmented partitioning

FIGURE 1
A timeline diagram to present the problem formulation of our deep learning-based full-disk flare prediction model using bi-daily observations
of full-disk line-of-sight magnetograms and prediction window of 24 h considered to label the magnetogram instances.

Frontiers in Astronomy and Space Sciences frontiersin.org05

Pandey et al. 10.3389/fspas.2022.897301

177

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.897301


strategy, where Partition-1 contains data from January to March,

Partition-2 from April to June, Partition-3 from July to

September, and Partition-4 from October to December in a

timeline from 2010 to 2018. The AR-based model also uses

the same partitioning for aligning our training partitions and

avoiding the penetration of training partitions into testing data in

different prediction modalities to ensure the fair comparisons

and avoid partial memorization through temporal coherence

Ahmadzadeh et al. (2021).

3.2 Flare prediction ensemble

Our active region-based model outputs probabilities of flare

(PFL) for each active region which we then aggregate to obtain a

restricted full-disk flaring probability (i.e., from active regions in

central locations). We use the following heuristic function in Eq.

1 to determine aggregated active region flaring probability3.

Paggregated � 1 −∏
i

1 − PFL ARi( )[ ] (1)

where PFL (ARi) is the flaring probability of an active region, and

the aggregated result calculates the probability of having at least

one flaring active region, assuming the flaring events from active

regions are conditionally independent. The product term

calculates the probability of having no flaring active regions.

These aggregated results from the active-region based model

are then concatenated with full-disk model’s output. The

aggregation procedure searches for most-recent valid active-

region predictions up to 6 h prior to the designated forecast

issue time. These gathered predictions from full-disk and

aggregated full-disk probabilities are then combined to issue a

final flare forecast using an ensemble. In this work, while preparing

our final dataset for the full-disk model, we do not include

magnetogram images where the observation time of the

available image and requested image timestamp is more than

6 hours. Therefore due to data unavailability through helioviewer,

we have used a total of 4,235 data instances, where 3,502 are No

Flare (NF) instances and 733 are Flare (FL) instances. The detailed

distribution of the dataset for each tri-monthly partition is shown

in Figure 2 and the class imbalance ratios across the partitions are

generally consistent from ~ 12–22% ( ~3.6:1 to ~7.2:1).

In our baseline meta-model approach, we use equal weighted

averaging of flare probabilities from aggregated active-regions and

full-disk flaring probabilities for issuing a final forecast. In other

words, given two flaring probabilities from two approaches, the

baseline approach is to compute the arithmetic average of the

probabilities, assuming equal importance. This simplistic

combination of flare probabilities will serve as our baseline,

although it is a naive approach that does not consider the intrinsic

characteristics of long-term diagnostic results from the models.

Our alternative approach to the baseline meta-model is logistic

regression-based classifier that is trained with flaring probabilities

from the base learners. As we already use two powerful algorithms to

train our base learner to extract the complex dynamics of the datasets,

we chose a linear model, logistic regression, because of its simplicity

and computational efficiency for the final prediction result. The

infrastructure of our complete flare prediction system design is

presented in Figure 3 which shows our overall methodology for

creating an ensemble using two heterogeneous base learners that

outputs a full-disk flare forecast.

Given the flare probability scores of two base learners which

we utilize as two input features—PFL (FD) and PFL (Aggregated),

and one binary (0/1) target feature (y) where 0 is used for No flare

(NF) and 1 is used for Flare (FL). Logistic Regression aim to

optimize the weights (w1, w2, and b), such that:

Z � w1 × PFL FD( ) + w2 × PFL Aggregated( ) + b (2)
ŷ � σ Z( ) (3)

where, Z in Eq. ( 2) is the linear combination of two base

learners’ output, σ is the sigmoid activation function, and ŷ is

the predicted output as shown in Eq. ( 3). The above problem

of finding the optimized weights w1, w2 for two base learners is

formulated as an optimization problem where the loss is

minimized to get the better values of weights using a

logistic loss function as shown in Eq. (4).

loss L( ) � − 1
N

∑
N

i�1
yi · log ŷi( )( ) + 1 − yi( ) · log 1 − ŷi( )( )[ ] (4)

FIGURE 2
Total number of Flare and No Flare instances across
4 trimonthly partitions used in this work3.

3 We note that, while aggregating active regions based outputs to
full-disk probabilities, there were instances that were not available
even when we search for most-recent valid active-region predictions
up to 6 h prior to the designated forecast. Therefore, such instances
are also removed from full-disk models for consistency.
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We use stochastic gradient descent (SGD) as our solver for the

optimization with hyperparameter tuning. The hyperparameters we

considered are learning rate and different regularization parameters

which includes L1 loss Tibshirani (1996), L2 loss Hoerl and Kennard

(1970), and linear mixings of L1 and L2 loss Zou and Hastie (2005).

And As we will describe later on Section 4, we employ 2-fold cross-

validation for our meta-model where we use one of the test partition

scores of the base learners to train and another for testing our meta

model, referred to as Meta-FP, interchangeably. We note that we aim

to provide full-disk forecasts by computing the aggregated flare

probability scores from active regions to make it compatible with

the full-disk model using the probabilistic heuristic shown in Eq. (1).

4 Experimental evaluation

4.1 Experimental settings

In this work, we trained two base learners for flare prediction (

≥M1.0-class flares) with two different dataset and model

configurations and architectures. Although our two base learners

utilize two different data modalities (i.e., point-in-time image and

multivariate time series), we used time-segmented tri-monthly

partitioning when training both of these models. We divided our

datasets into four partitions to ready our 3-fold holdout cross-

validation dataset. The data in Partition-1 contains images from the

months of January toMarch, Partition-2 fromApril to June, Partition-

3 from July to September, and Partition-4 fromOctober to December.

Here, this partitioning of the dataset is created by dividing the data

timeline fromDec 2010 toDec 2018 into four partitions on the basis of

months rather than chronological partitioning, to incorporate

approximately equal distribution of flaring instances in every fold

for training, validating, and testing the model. Furthermore, such a

partitioning strategy diversify the data instances in both the training

and testing phase of our models as it considers instances during solar

maxima and minima of solar cycle 24 used in this work.

We create three sets of base learner models from 3-fold cross-

validation experiments as our base learnerswherewe use Partition-3 as

our hold-out test set (i.e., never used in training and validation). Then,

• In Fold-1, we trained both of our base learners with

Partition-1 and Partition-2 and validated on Partition-4

• In Fold-2, we trained both of our base learners with

Partition-1 and Partition-4 and validated on Partition-2

• In Fold-3, we trained both of our base learners with

Partition-2 and Partition-4 and validated on Partition-1.

All of these three base learners are tested on Partition-3. Partition-

3 as a test differs from the validation sets in each fold such that, we

used the validation set in every epoch to track the performance of our

model whereas the test set, Partition-3, is used only once to confirm

the performance of the trained models and meta-models at the end.

To train and validate ourMeta-FP, we create our dataset based on

the probability scores of our three base learner sets obtained from 3-

FIGURE 3
An illustration of our ensemble flare prediction pipeline showing two base learners (AR-based FP) and (Full-disk FP) and the ensemble (Meta-FP)
followed by full-disk aggregation of AR-based FP’s flare probabilities.
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Fold cross validation experiments. The details of our experimental

design is shown in Figure 4.We used the flare probability scores from

the validation set and test set used in respective base learners

interchangeably to train and validate our Meta-FP model which is

a general linear model i.e., logistic regression (LR). The experiments

for Meta-FP are performed in such way that:

• In Expt. 1, we performed 2-fold cross validation with

Partition-4 and Partition-3.

• In Expt. 2, we performed 2-fold cross validation with

Partition-2 and Partition-3.

• In Expt. 3, we performed 2-fold cross validation with

Partition-1 and Partition-3.

In doing so, we trained six Meta-FP models based on logistic

regression and compared our results with a baseline Meta-FP

which is an equal weighted average of two base learners.

To evaluate the performance of our models, we create a

contingency matrix, which includes information on True

Positives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN) to evaluate the performance of our base

learners and Meta-FP. Note that, in the context of our flare

FIGURE 4
An experimental design diagram to depict the flow of our experiments for this work. Meta-FP experiments for logistic regression (LR) are cross-
validated using each fold results of base learners. This results into 2-fold cross-validation in each experiments of Meta-FP.
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prediction task, Flare (FL) is considered as the positive outcome

while No Flare (NF) is the negative. Using these four outcomes

we use two widely used performance metrics in space weather

forecasting, True Skill Statistics [TSS, shown in Eq. ( 5)] and

Heidke Skill Score (HSS, shown in Eq. ( 6)) to evaluate our model.

TSS � TP

TP + FN
− FP

FP + TN
(5)

HSS � 2 ×
TP × TN − FN × FP

P × FN + TN( ) + TP + FP( ) × N( )( ) (6)

The values of TSS range from -1 to 1, where 1 indicates all correct

predictions, -1 represents all incorrect predictions, and 0 represents no-

skill, often transpiring as the random or one-sided (all positive/all

negative) predictions. It is defined as the difference between True

Positive Rate (TPR) and False Positive Rate (FPR) and does not

account for class-imbalance, i.e., treats false positives (FP) and false

negatives (FN) equally. Similarly, HSSmeasures the forecast skill of the

models over an imbalance-aware random prediction. It ranges from

-∞ to 1, where 1 represents the perfect skill and 0 represents no skill

gain over a random prediction. It is common practice to use HSS for

the solar flare prediction models (similar to weather predictions where

forecast skill has more value than accuracy or single-class precision),

due to the high class-imbalance ratio present in the datasets.

4.2 Evaluation

Although AR-based classifiers are better for pinpointing the

source active regions for flares and giving more accurate

estimations for forecasting flaring phenomena, the aggregated

results drop significantly in contrast to our expectation. The

results from AR-based models shows TSS = 0.82±0.02 and

HSS = 0.20±0.04 when these methods are evaluated solely on

active region based confusion matrices. However, when we

aggregate them, these models fail to reach the acceptable levels

of skill scores as they drop to TSS = 0.32±0.04 andHSS = 0.15±0.02.

The reason for these issues may stem from three reasons: 1) limb

events are not considered (beyond ± 70°) as there are no reliable

magnetic field readings, 2) these models are not optimized for full-

disk flare prediction, and/or 3) an independent, equally weighted

aggregation scenario in our heuristic approach. Furthermore, the

drop in aggregated skill scores can be attributed to the number of

high false positives, which is common in rare-event forecasting

problems and particularly in flare forecasting. The reason we

empirically observed throughout the years for these false

positives are often the models’ inability to distinguish [C4+ to

C9.9] flares from ≥M-class flares as discussed in Pandey et al.

(2022). All in all, our first observation is that for full-disk flare

prediction, our designated deep learning models are more effective

when compared to the AR aggregations as it considers the near-

limb events by using a compressed full-disk magnetogram which

are suitable to capture the shape parameters in the active regions

within and beyond ± 70° of the central meridian of the Sun.

Analyzing our results, we observed that our logistic

regression-based Meta-FP improves on both TSS and HSS

compared to two base learners and equal weighting baseline

meta learner on respective test partitions as shown in Figures

5–7. In our first experiment, we trained twoMeta-FP models that

utilizes the flare probability scores of two base learners that are

trained with Partition-1 and Partition-2 of the respective

datasets. We train and validate our Meta-FP with respect to

the unused two partitions that are Partition-3 and Partition-4 for

the first experiment as shown in Figure 5. Our other two

experiments are also consistent with making sure to only use

two such partitions that have not been used while training the

base learners as shown in Figures 6, 7. While the improvement in

terms of TSS and HSS on both the base learner and baseline

Meta-FP can be seen across all six logistic regression-basedMeta-

FP model, the maximum improvement of logistic regression over

base learners and baseline can be seen with base learners in Fold-

1 (trained with Partition-1 and Partition-2) where the Meta-FP is

trained with Partition 3 and tested on Partition-4 (right side of

the Figure 5). In this experiment, the logistic regression model

improves on full-disk (base learner) in terms of TSS by ~6% and

HSS by ~14%. Similarly, it improves on aggregated AR-based

models in terms of TSS by ~22% and HSS by ~28%. While we

used the equal weighted averaging as a baseline model, it does not

improve on the results from the full-disk base learner. However,

compared to the baseline for the same experiment (Fold-1) as

explained above, the logistic regression model improves by ~13%

and ~21% in terms of TSS and HSS respectively.

On an average, we observe that our full-disk model (base learner)

has TSS = 0.40±0.07 and HSS = 0.25±0.07 and the AR-based model

(base learner) has TSS = 0.32±0.04 and HSS = 0.15±0.02 computed

over both test and validation results from all three folds. When we

FIGURE 5
Validation Scores of base learners in Fold-1 (base learners
trained with Partitions 1 and 2) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 1).
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employed the baseline meta learner (equal-weighted average), the

average TSS = 0.39±0.05 andHSS = 0.20±0.04 is observed. Given that,

equal weighted average is used as a common way to ensemble two or

more models, it can be problematic as it could not even surpass the

scores of a base learner (full-disk model). With the logistic regression-

based meta learner (Meta-FP), the average TSS and HSS observed is

0.49±0.02 and 0.35±0.05 respectively. Therefore, we see that on an

average, the Meta-FP improves on the full-disk model by ~9% in

terms of TSS and ~10% in terms of HSS. Similarly, it improves on the

AR-based model by ~17% and ~20% in terms of TSS and HSS

respectively. Finally, when compared to the baseline meta model, it

improves on TSS by ~10% and HSS by ~15%.

5 Discussion

Ensemble methods combines multiple models to obtain

better predictive performance than could be obtained from

any of the constituent model alone. By using an ensemble

method, we learn how the single model output can be

improved based on 1) maximum voting, 2) equal weighted

averaging, and 3) weighted voting. Learning the weights in

weighted voting, in the scope of this paper, is structured as a

logistic regression problem. One usual way to create an ensemble

is to simply average the forecast probabilities of multiple models

and provide a final forecast decision, however, it is naive to

assume that all base-learners are equally good. Therefore, the

main objective of training an ensemble here is to learn and assign

better weights for two base-learner predictions by quantifying the

level of impact of individual models predictions on the final

forecast. The prediction distribution for Partition-3 and

Partition-4 used in Experiment-1 for training and testing the

ensemble alternatingly and the learned decision-boundary by

Meta-FP LR is shown in Figure 8 as an example to show how an

ensemble improves over the base-learner by coupling using a

linear classifier. The predicted probability distribution and

learned decision boundary in Experiment-2 and 3 is presented

in Supplementary Figures S1, S2 respectively. Furthermore, the

confusion matrices for base-learners predictions and for the

consequent ensembles created in all three experiments are

presented in Supplementary Tables S1–S6.

Ensemble methods defy the idea of making one model and

relying on this model as the best/most accurate predictor we can

make. It rather take a multitude of models into account, and

combine those models to produce one final model that issues a

final forecast. At this point, we do have access to very complex

machine learning paradigms that have proven to be very effective in

several areas, such as computer vision and image classification.

However, relying on the forecast of a singlemodel for rare events like

major solar flares might be critical for a system in operation. The

model thus obtainedmight be biased on the dataset used to train the

model and can be just as good as the curated dataset used to create

themodel. Therefore, it is essential to have a reliable flare forecasting

model obtained by assembling multiple models with different data

modalities to leverage the most with coupling.

6 Conclusion and future work

In this work, we trained a logistic regression-based meta

learner for flare prediction that combines the probabilities of

two flare prediction models trained with different datasets and

machine learning paradigms. While we have two models (base

learners) with their own advantages in prediction capabilities,

we observed that for base learners, full disk models have better

performance for full disk flare forecasting compared to AR-

aggregation. Therefore, with a motive of further improving the

FIGURE 6
Validation Scores of base learners in Fold-2 (base learners
trained with Partitions 1 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 2).

FIGURE 7
Validation Scores of base learners in Fold-3 (base learners
trained with Partitions 2 and 4) and the corresponding validation
scores of Meta-FP (meta models trained in Expt. 3).
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FIGURE 8
The figure shows the distribution of predicted probability scores for all the data instances used in Experiment-1 and the decision boundary
learned by the trained logistic regression classifier for both the partitions: (A) Distribution of probabilities scores in partition-3 of two base learner
mapping to actual ouput. (B)Distribution of probabilities scores in partition-4 of two base learner mapping to actual ouput. (C) The learned-decision
boundary by Meta-FP LR while training on partition-4. (D) The learned-decision boundary by Meta-FP LR while training on partition-3. (E) The
learned-decision boundary by Meta-FP LR validated on partition-3. (F) The learned-decision boundary by Meta-FP LR validated on partition-4.
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performance of base learners, we explored a simplest way to

combine them by training an ensemble flare predictor which

automates the task of assigning weights to the outputs of our

base learners, thus improving the overall performance of our

models and adding robustness to the prediction task

compared to equal weighted ensembling.

Furthermore, considering that we only used bi-daily

observations, the shape parameters considered in compressed

magnetograms proves to be actually powerful. AR-based models

on the other hand, using magnetic field data, either as images or

derived products, as they are now, will have limited capability

although they have higher sensitivity per active region. Therefore,

a complementary approach is necessary that does not only rely

directly on magnetic field rasters and this work introduces a

technique which considers both the magnetic-field parameters

and shape-based parameters to obtain flare forecasting models

with their own essence and abilities. Finally, we combine these

two heterogeneous models into one coupled model using a linear

ensemble to improve overall performance. Although we see

significant improvements in skill scores after ensembling, our

coupledmodels are not without limitations that are also inherited

from our full-disk based model trained with point-in-time bi-

daily observations, which overlooks the temporal evolution of

magnetic-field parameters of the active regions which can limit

the predictive capabilities of full-disk flare predictors. Therefore,

our next goal is to formulate the flare prediction task as a video

classification problem using full-cadence image sequences that

will account for the temporal evolution of active regions.

Furthermore, there are several other directions that can be

explored such as using a basis function on the aggregated

active region prediction probabilities, finding other better

aggregation strategies that could boost the performance of

AR-based models while computing a full-disk probability and

elaborate the ensemble using more sophisticated classifiers,

aiming to further improve the predictive capabilities of our

models.
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Certification of machine learning
algorithms for safe-life
assessment of landing gear

Haroun El Mir* and Suresh Perinpanayagam

Integrated Vehicle Health Management Centre, Cranfield University, Cranfield, United Kingdom

This paper provides information on current certification of landing gear

available for use in the aerospace industry. Moving forward, machine

learning is part of structural health monitoring, which is being used by the

aircraft industry. The non-deterministic nature of deep learning algorithms is

regarded as a hurdle for certification and verification for use in the highly-

regulated aerospace industry. This paper brings forth its regulation

requirements and the emergence of standardisation efforts. To be able to

validate machine learning for safety critical applications such as landing gear,

the safe-life fatigue assessment needs to be certified such that the remaining

useful life may be accurately predicted and trusted. A coverage of future

certification for the usage of machine learning in safety-critical aerospace

systems is provided, taking into consideration both the risk management

and explainability for different end user categories involved in the

certification process. Additionally, provisional use case scenarios are

demonstrated, in which risk assessments and uncertainties are incorporated

for the implementation of a proposed certification approach targeting offline

machine learning models and their explainable usage for predicting the

remaining useful life of landing gear systems based on the safe-life method.

KEYWORDS

explainable AI, landing gear systems, certification, risk management, safe-life design

1 Introduction

The aircraft maintenance, repair and operations (MRO) industry is seeing a rise in

demand for new aircraft, as well as an increased need for seamless integration and cost-

effective maintenance digitisation. Digital, or avionics systems, are rooted as a

progressively-important part of the predictive maintenance processes used in aircraft.

Examples of such systems are a division of structural health monitoring (SHM), named

damage monitoring systems. It consists of load monitoring, also known as operational

loads monitoring (OLM), and fatigue monitoring (Staszewski and Boller, 2004). With the

advancement in processing power, computing capabilities of onboard systems are

rendered able to effortlessly accommodate improved and more demanding loads

monitoring sensors and software. This paper explores the improvement of fatigue

monitoring systems for landing gear (LG). LG are certified for usage on aircraft using
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the safe-life fatigue approach. This approach attributes each

component of the LG with a predefined and unchanging

service life, after which the component is either:

1) Used as a replacement to a similar component onto the LG

assembly of another aircraft, wherein it is certified for a longer

life span due to the less impactful load profile on the aircraft in

which it will be used.

2) Scrapped and deemed unworthy of service.

The safe-life calculation consists of a load spectrum assigned

to the aircraft LG, which consists of an assumption that forms a

safety factor. This load spectrum estimation can accommodate

improvements, due to its high safety factors. The loads applied

in-service are highly probable to be less impactful on the life of

the part than what is proposed by the safe-life estimation. The

assigned service life may therefore be extended if the loads are

monitored with OLM equipment. The disparity in stress-life

(S-N) curves also contributes to the value of the safety factor

applied when setting the safe-life of the component (Irving et al.,

1999).

The safe-life method assumes a set of load profiles to result

with a number of trips that the LG will be safely able to travel.

Instead, basing the replacement of the LG on the amount and

severity of loads encountered can be accomplished by

collecting data with the use of sensors, thereby allowing for

the quantification and classification of the factors causing

imminent fatigue failure. Currently, such an ideology is

approached by a form of OLM systems, which consists of

strain gauges placed on military aircraft (Hunt and Hebden,

2001; Dziendzikowski et al., 2021) wherein the strain output is

transformed into digital signals that are thereby converted

into stress histories, resulting in a loading sequence.

Nevertheless, this method of fatigue assessment is

inadequate for structural damage detection, by virtue of

leaving out “a factor of two to three in fatigue life to be

gained if damage could be monitored more adequately”

(Staszewski and Boller, 2004). Furthermore, placing

additional devices for measuring such parameters invites

more reliability issues and an increase in maintenance costs

(Cross et al., 2012).

This has, in turn, given birth to the use of Artificial

Intelligence (AI)-handled solutions, with an expected growth

due to commercial demands, closing the gap where safety-critical

applications and the novelty of machine learning (ML)

algorithms are deemed to ultimately collide and remould the

way that the MRO industry has been assessing aircraft structural

health. Successively, the emergency of placing a basis for the

certification and risk management of such approaches arises,

ranging from the ML explainability levels to the uncertainties in

data exchange and collection in-service, due to the non-

deterministic qualities of ML when compared to currently-

used avionics software and equipment.

Aerospace industry regulators have put forward their interest

in the use of ML, for its data-driven benefits, in digital systems

related to all levels of the aircraft development cycle, from design

to manufacturing, maintenance and operation to

communication, by assigning committees and publishing

recommendations. EUROCAE created working group WG-

114, and SAE started committee G-34, both working in

conjunction with the aim of certifying AI for the safe

operation of aerospace vehicles and systems, including

Unmanned Air Systems. Their published work so far has been

the “SAE AIR6988 & EUROCAE ER-022 Artificial Intelligence in

Aeronautical Systems: Statement of Concerns” (SAE

International, 2021a; EUROCAE, 2021). It critically assesses

current aeronautical systems encompassing the whole lifecycle

of airborne vehicles and equipment and how they fall short of

covering AI and, more specifically, ML challenges.

A coverage of upcoming certification requirements for the

usage and collection of data from aircraft sensors to predict LG

remaining useful life (RUL) is employed in this paper. It is

based on:

1) The WG-114/G-34 SAE AIR6988 document (SAE

International, 2021a).

2) EASA AI Roadmap (EASA, 2020).

3) EASA CoDANN & CoDANN II reports (EASA and

Daedalean AG, 2020, 2021).

4) EASA Concept Paper: First Usable Guidance for L1 ML

Applications (EASA, 2021).

These documents have been chosen due to their relevance to

the subject of this paper. Nevertheless, the documents also

incorporate previous standardisation requirements (such as

ARP4754A and DO-178C, DO-254) and guidance by means

of addressing their limitations in light of AI requirements for

avionics applications. For a survey and taxonomy of the recently-

published proposals and guidance papers on practical ML

application for use in aviation, the article by the subgroups of

the SAE G-34/EUROCAE WG-114 standardisation working

group on ML lifecycle development (Kaakai et al., 2022) is

recommended to the reader. It sets out the ML development

lifecycle guidelines for certification in aeronautics, that are to be

the core of the forthcoming publication by SAE: the “

AS6983 Process Standard for Development and Certification/

Approval of Aeronautical Safety-Related Products

Implementing AI”.

2 Paper contribution

This paper encapsulates the certification approaches and

requirements currently available for landing gear (LG) and AI

applications in the aerospace industry, to cover all issues related

tomachine learning (ML) and safe-life, which will eventually lead

Frontiers in Astronomy and Space Sciences frontiersin.org02

El Mir and Perinpanayagam 10.3389/fspas.2022.896877

187

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896877


to a philosophy for the certification of ML for LG, and whether it

may be employed using AI in the next decade. Major issues

related to AI that affect the LG environment will have been

identified by the reader. It is important to note that the goal of

this paper is to illuminate and ease the process of the

development of a certification methodology, where a ML

algorithm/set of algorithms are to be used for the purpose of

LG remaining useful life (RUL) prediction. The paper does so by

assisting with confusions a newcomer to this field may have, as

the area of certification is quite tough to manoeuvre. The reader

may then form a method with which to begin and is guided along

the way with the allocation of their requirements through the

elimination of current standards and allocation of assurance case

tools available, as well as building, block by block, a clearer image

of where they stand in the process of complying with those

standards, in order to develop adequate use case scenarios.

3 Current Safe-Life Assessment

Safe-life fatigue analysis of aircraft structures is a principle of

design in which an estimation is placed prior to the first

operation of a component in-service. This estimation is based

on the evaluation of the structure’s ability to sustain its original

crack-free status while being exposed to cyclic loads in-service,

such as landing, take-off, and taxiing, which all contribute to

impacting the fatigue life of the LG components (Ladda and

Struck, 1991). The safe-life analysis places a value of operational

hours for the part in question in which it would be replaced

afterwards, regardless of whether visible fatigue cracks form in

the structure. This approach therefore deems the part inoperable

and unsafe for use on the aircraft after those specified hours or

cycles. Looking towards how this approach begins, the

component’s lifecycle and its workarounds, as well as how

they fit into the whole aircraft’s production plan, come into

question.

3.1 Aircraft testing lifecycle

The life cycle and process of testing for aircraft components

begins, generally, with the pre-design (non-specific) phase,

consisting of material coupon and element testing. The

process may be compared to stages, or levels, where the

testing of each stage, with its corresponding attribute, is

required to be completed successfully in order for the next,

upper, and more structurally complicated stage to begin. At

the bottom of the pyramid in Figure 1, a coupon is stress-

tested physically; a specimen of material tested for the nature

of its properties. Then, to be more representative of the part used,

elements with a similar surface finish and treatment, in addition

to including notches characteristic of the part in question, are

tested. At the post-design phase, sub-component and component

physical testing, which considers the impact of environmental

conditions and key features of the LG e.g. piston-cylinder

assembly performance, leads to FSFT tests, where the whole

structure, or its vital system component sets, such as the shock

absorber system, steering system, and wheel and braking system

are flight-simulated. Finally, the structure is tested on-ground

and in-flight (Ball et al., 2006). The process shown in the figure is

also known as the “building block” test approach (Wanhill,

2018). The post-design phase is directly connected to

airworthiness certification due to the phase containing

components and parts of the aircraft ready for use and in

their final stage of design (Ball et al., 2006). Compliance with

airworthiness standards demands the identification of loads

encountered and the load cycles in order to schedule

corresponding component visual check-ups (Wong et al., 2018).

3.2 Safe-life requirements

Currently, the only components in the aircraft to which this

safe-life fatigue estimation may be applied are the LG. The LG’s

incapability of accommodating crack initiation and expansion is

due to its components consisting of high-strength alloys that

FIGURE 1
The life cycle and process of testing for aircraft components
begins, generally, with the pre-design (non-specific) phase,
consisting of material coupon and element testing. The process
may be compared to stages, or levels, where the testing of
each stage, with its corresponding attribute, is required to be
completed successfully in order for the next, upper, and more
structurally complicated stage to begin. At the bottom of the
pyramid, a coupon is stress-tested physically; a specimen of
material tested for the nature of its properties. Then, to be more
representative of the part used, elements with a similar surface
finish and treatment, in addition to including notches
characteristic of the part in question, are tested. At the post-design
phase, sub-component and component physical testing, which
considers the impact of environmental conditions and key features
of the LG e.g., piston-cylinder assembly performance, leads to
FSFT tests, where the whole structure, or its vital system
component sets, such as the shock absorber system, steering
system, and wheel and braking system are flight-simulated. Finally,
the structure is tested on-ground and in-flight. The process shown
in the figure is also known as the “building block” test approach.
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motivate rapid crack propagation. Two fatigue detection

approaches may be used for the safe-life fatigue analysis of a

metallic aircraft component: the stress-life approach and the

strain-life approach (Wanhill, 2018). The ways in which a safe-

life is specified to obtain certification allowing the use of the

component on large aircraft requires:

1) Full-scale fatigue tests (FSFT) encompassing the whole

structure physically being tested with methods, such as

strain gauges mounted to localise and quantify strain

(Dziendzikowski et al., 2021).

2) The testing of specific components of that structure in

question–in the case of LG, that would be its individual

components each tested separately for fatigue resistance.

3) The use of hypotheses and the stress-life approach viaMiner’s

rule for damage accumulation, whereby damage fixated by

each repetition of stress due to load applications is assumed

equal (Federal Aviation Administration, 2005). The Miner’s

rule, also referred to as the Palmgren-Miner linear

accumulation hypothesis, states that the damage due to

fatigue is equal to a singular value of “one” as long as

cyclic application of this load has reached an amount

validating its appearance on the fatigue curve (Schmidt,

2021).

The LG encounters multiple loads in succession, contributing

to high cycle fatigue (HCF). Low cycle fatigue, which is correlated

with strain life curves, is characterized by plastic strain. Stress-life

curves, on the other hand, are used in high cycle fatigue, where

fatigue is mostly in the elastic region and plasticity can be

neglected. Landing gear stresses do not reach the plastic

deformation region of the material in each of its components,

which is why the stress-life fatigue approach is used. There is an

abundance of available data for the stress-life approach, and it is

applicable specifically to HCF. In addition to the pre-design

nature of the landing gear structural CS-25 airworthiness

certification requirements for large airplanes, the safe-life

fatigue analysis that is currently used in the LG certification

process utilises Miner’s rule for damage accumulation, using S-N

curves. These curves conform to a certain material coupon, where

the material must be the same as that used in the component in

question. As Pascual andMeeker (1999) discuss, an S-N curve for

a certain material is a representation of the fatigue data of a

coupon of that material, in the form of a log-log plot containing

cyclic stress ‘S’ values versus ‘N’, the median fatigue life

articulated in cycles to failure. It is key to note that S-N

curves are derived from a specific stress-ratio. They also

contain scatter, which is an uncertainty associated with failure

in fatigue. Additionally, two factors parametrise S-N curves:

probability of survival and probability of failure. Both

introduce uncertainty factors to be applied for the final

prediction of a component life. Fatigue is non-deterministic,

as opposed to static loads, e.g. Component A tested for fatigue

using the identical test parameters as Component B will result

with a fatigue life significantly different than that of its

proponent. This introduces scatter in S-N curves used for

fatigue prediction.

Required in addition to these curves is the fatigue spectrum:

data on the applied loads, how frequently they manifest, and how

their occurrence fits in the grand scheme of load sets applied, in

terms of their timing and repetitions. Flight profiles are a set of

load variances, representative of a certain flight block. These

profiles add up to form a spectrum for fatigue prediction

(Schmidt, 2021). The spectrum may also consist of flight

hours in addition to flight cycles if the nature of the mission

of the aircraft is mixed in terms of range duration. Established

design lives can be divided into three categories with their

corresponding cycle ranges:

1) 50,000 cycles for short-haul flight aircraft, e.g. A320.

2) 25,000 cycles for long-haul aircraft, e.g. A350.

3) 10,000 cycles for tactical aircraft.

The steps for safe-life fatigue analysis of LG are as follows,

summarised in Figure 2:

Step 1. S-N curves are generated by performing uniaxial

cyclic stress amplitude loads on numerous material samples until

failure. This material data may also be extracted from readily-

available scatter data and must comply with the 99/95 standard,

with an applied scatter factor of 3 at a minimum (Fatemi and

Vangt, 1998) The curves are also altered according to the in-

service factors of the landing gear environment, which are not

experienced by the coupons tested in monitored conditions. The

resulting curves are referred to as “working curves” (Wanhill,

2018).

Step 2. Meanwhile, a stress-time history plot is derived from a

load-time history plot for the LG component by referring to the

geometry of the component.

Step 3. Methods such as Bathtub/Rainflow counting are

performed on the load-time history plot which is a stress-time

history plot after Step 2, to result in stress cycles and amean stress

value for each cycle count (Le-The, 2016).

Step 4. The cycles are converted with their mean values to

fully-reversed stress cycles in order to extract equivalent data

when referring to the S-N curves for the material used in the

component of the LG (for data compatibility purposes). This is

done via mean stress correction techniques, such as the

Goodman mean stress correction Eq. 1. (σ0), as discussed by

Hoole (2020), is the value of the fully-reversed stress cycles. (σa)
is the stress amplitude value of those stress cycles, (σm) is their
mean stress level, and (σUTS) is the material’s defined ultimate

tensile strength.

Step 5. Fatigue damage (d) accrued by each applied cyclic

stress amplitude (σ0) is formulated using Miner’s rule. As per

Equation 2 (n) is the frequency at which (σ0) is applied, and

(Nf) is the number of cycles to failure. (DT) is total damage

Frontiers in Astronomy and Space Sciences frontiersin.org04

El Mir and Perinpanayagam 10.3389/fspas.2022.896877

189

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896877


accumulated from the stress formed by the cycles. As (Hoole,

2020) mentions, a value of 1 for (DT) signifies failure of the part
in question, meaning it has reached the end of its fatigue life, and

representing failure Eq. 3.

Equation 1 Goodman mean stress correction

σ0 � σa

1 − σm
σUTS

(1)

Equation 2 Fatigue damage, Miner’s rule

d � n

Nf
(2)

Equation 3 Total damage, Miner’s rule

DT � ∑ d (3)

3.3 Machine learning for safe-life
prediction

Studies performed by Holmes et al. (2016) attempt to form a

correlation between flight parameters and loads applied to a LG

structure attached to a drop test rig, via the use of two types of

nonlinear regression models as part of their ML approach: multi-

layer perceptron (MLP), and Bayesian MLP. The data

accumulated consists of inputs, such as wheel speed,

accelerations in the LG, and similar flight variables, consisting

of kinematic approaches; related with changes in velocity and

displacement, in order to result in load induced on the LG. Since

the MLP is Bayesian, it requires a specification of a prior. A

gaussian prior distributions was used. The functional efficiency of

the used neural network (NN) is calculated by acquiring the

mean-square error between the predictions formed by the model

and the measured targets. Optimising the NN is done using

gradient descent. As for the weight uncertainty of the NN, it is

reduced by assigning each weight a probability distribution.

Additionally, the input datasets were filtered due to noise in

acceleration measurements being higher than actual load values

recorded through strain. The physical test of the LG rig included

assumptions made to simulate a landing environment via

spinning the wheels before impact, changing the angle of

impact of the LG, and dropping the structure from variable

heights. These impacts were then measured using strain gauges

placed on the LG rig components and load cells placed on the

platform on which the LG drops. Another method used for data

collection and prediction included the use of Greedy algorithms

and Gaussian process (GP) regression; a class of Bayesian non-

parametric models. With the use of flight test data parameters to

predict landing gear vertical load. GP was used as it trains faster

than MLP, and the computations necessary for GP regression are

simplified by the fact that a distribution directly over candidate

functions can be defined, rather than over the parameters of a

predefined function (as would be necessary for a Bayesian neural

network for example). They are likewise compact. Cross et al.

(2013) found correlations with the general trend of data

prediction. Later studies put forth the requirement of physics-

informed data to predict landing gear loads to a usable level.

These ML approaches result in models that are able to predict

loads, where a model requires that it be aircraft-specific.

Nonetheless, different surfaces on which the physics-informed

ML model (using both LG drop test data and flight test data) was

used on still produced acceptable outcomes.

4 Machine learning techniques

As a branch of AI, ML is a computing field that operates with

the use of computational methods related to statistics,

probability, and computing theory. ML is used by systems to

FIGURE 2
Steps for safe-life fatigue analysis of landing gear.
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learn patterns or monitor data input and apply statistical

algorithms to infer the required output depending on the

type of algorithm being used. The method by which models

of ML operate may be described as follows: “a computer

program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its

performance at tasks in T, measured by P, improves with

experience E” (Mitchell, 1997). An example is the use of

statistical methods, where algorithms classify or foresee

similarities in data being extracted to suggest a best-case

scenario. The input data used to build the ML model, through

the stages of its creation, are categorised into three common

datasets, forming the ML algorithm: training, validation and

testing. Furthermore, ML may be categorised into four types

in terms of the method with which it learns: supervised,

unsupervised, semi-supervised and reinforcement learning.

These reflect the types of feedback-input relationships.

Supervised learning occurs when input and output pairs of

labelled data are monitored and a function is learned as a

result, mapping input and output accordingly. In

unsupervised learning, the unlabelled data input is studied

without any feedback and patterns are found within that

input. Semi-supervised learning trains on labelled and

unlabelled data, improving model accuracy when

compared to a supervised learning algorithm. As for

reinforcement learning, the algorithm is given a response

at the end of each set of decisions made, as part of each step in

its decision process. Its aim is twofold: the initial

improvement of performance due to learning from

previous action-result combinations, and the eventual

output of the most optimal long-term reward that it may

be assigned, e.g. lengthening the duration of a game in order

to win eventually instead of winning over an opponent earlier

on only to ultimately lose in a game of checkers (Russell and

Norvig, 2022).

4.1 Artificial neural networks

When ML involves layers of computing segments that are

adaptable and unembellished, that is the term known as deep

learning. Deep neural networks (DNN), a subset of ML, are the

most common form of deep learning. They are based on one or

more layers adapted for large data input sizes. When containing

less than 3 layers, the term neural networks is used. Figure 3 is a

demonstration of how a DNN may relate to shallower ML

models. A linear model (a) such as linear or logistic

regression is able to compute and take in a high number of

variables for input. Nevertheless, the path from input to output is

relatively short due to all of the variables being multiplied by a

single weight, in addition to the principle that these input

variables are not capable of communicating within themselves.

This renders them able to only act for linear functions and

boundaries related to the input space. Decision lists (b) allow for

these long paths of computation to occur, but depends on the

input variables being of a similar size to the output variables.

Neural networks (c) merge these two methods together, allowing

for the input variable interactions to be complex and incorporate

long computation paths. The benefit of this model is the ability to

represent applications, such as speech, photo and text

recognition (Russell and Norvig, 2022). DNN, which are

characterized by multiple layers instead of one (usually three

FIGURE 3
Neural networks in comparison to linear regression and decision lists. A linear model (A) such as linear or logistic regression is able to compute
and take in a high number of variables for input. Nevertheless, the path from input to output is relatively short due to all variables beingmultiplied by a
single weight, in addition to the principle that these input variables are not capable of communicating within themselves. This renders them able to
only act for linear functions and boundaries related to the input space. Decision lists (B) allow for these long paths of computation to occur, but
depends on the input variables being of a similar size to the output variables. Neural networks (C) merge these two methods together, allowing for
the input variable interactions to be complex and incorporate long computation paths. The benefit of this model is the ability to represent
applications, such as speech, photo and text recognition.
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layers or more), tend to be more accurate and effective in task

purveyance. A term commonly found when dealing with the

inexplicability of DNN, the black-box is scientifically associated

with a system of known and observable inputs and outputs, and

no knowledge or observation to be made on how the inner

mechanisms of that systemmay be. In the case of a NN, although

the code may be observed, it is functionally referred to as a black-

box due to the nature of constant reorganization of the

computational NN layers. Modelled based on the workings of

the brain; firing neurons with correlated weights to result with

decisions, the black-box model and nature of DNN has recently

been subjected to theories attempting to explain its method of

operation, some attempting to generalize to all types of DNN

modes of operations (Alain and Bengio, 2016; Zhang et al., 2016;

Schwartz-Ziv and Tishby, 2017; Poggio et al., 2020), and others

focusing on certain NN methods and the available interpretation

approaches (Guidotti et al., 2018; Montavon et al., 2018; Azodi

et al., 2020).

4.2 Machine learning challenges

In health monitoring of aerospace structures, an advisory

system provides recommendations that are backed up with

evidence, which are in the form of:

1) Sensor output from damage monitoring systems, which

consists of direct measurements from the aircraft

component/s in question.

2) Flight parameter and environmental conditions derived

outputs, that are indirect measurements. These materialize

in the form of operational monitoring systems (OMS).

The OMS is a sub-component of SHM, and a system similar

to damage monitoring, with the difference being that its

measurements are of a derived nature (SAE International,

2021b). The former is the system most useful for the purpose

of sensor replacement purposes. Nevertheless, MLmay be used as

a part of both damage monitoring and OMS. Requirement-wise,

the software that provides an envelope around the ML tool needs

to be developed to a defined quality process, according to a

distinct software control method. That occurs when embedding

the software. In addition, it must be demonstrated that the ML

black-box may be used in a reliable and robust manner.

Questions important for the setting of requirements in the

ML uncertainties capture are:

1) ‘Is it using recognized libraries?‘; code pre-written for

repeated usage. The reader is referred to (Nguyen et al.,

2019) for a description and comparison of current ML

libraries and frameworks.

2) ‘What was the quality process used in creating that software?’

A framework by Murphy, Kaiser and Arias (2006) proposes a

ranking for supervised ML algorithms, consisting of “tools to

compare the output models and rankings, several trace

options inserted into the ML implementations, and utilities

to help analyse the traces to aid in debugging”.

3) ‘What is the validation process of the model itself (the data-

driven part of the training)?’

Just as important, the training, testing and validation

processes must be robust and contain a level of assurance

that provides accurate predictions when implemented live, in

order to be moved from an advisory status to a fully-trusted

status. What data is used, its source, reliability, coverage

provided by the data (e.g., whether it covers all types of

landing for the aircraft type in question), and all operational

cases (e.g., heavy landing, light landing, crosswind

conditions, icy conditions on runway) are questions to be

asked when formulating a data-based rigorous selection

process. Moreover, whether the validation data is based on

physics data from finite element (FE) models, or testing rig

scenarios, plays a significant role in the assurance process.

Deep learning encounters challenges pertaining to its data in

which features are represented, specifically with the initial step of

obtaining that data, wherein labelling is required (Khan and

Yairi, 2018). Furthermore, challenges introduce themselves,

according to Khan and Yairi (2018) in the following aspects

and identifiers of the deep learning bubble:

1) Specific deep learning architectures and their categorisations

into the most suitable pertaining applications have not been

yet solidified due to researchers’ inadequate justifications of

why they used those specific methods and as to why a certain

number of layers was most suitable for their applications.

2) Comparison of the architectures has not been standardised,

whether it be in terms of time consumption, resource

management, computational requirements, or data loss.

3) With regard to structural health management, deep learning

applications will have to recognise the failures or faults

according to their corresponding environments and be able

to diagnose issues, such as no fault found (Khan et al., 2014a;

2014b).

Of the problems faced, imbalanced data issues arise. As

discussed by Liu et al. (2009), the cause of imbalanced data

results while learning is due to classification and clustering

situations, as a result of the classes being learned having

considerably more data when compared to their counterparts.

Furthermore, cases which are uneven occur due to the intrinsic

nature of those events, as well as the additional expense that may

result from obtaining these examples for learning in the

algorithm. These imbalanced data classification issues may be

overcome with the following approaches: pre-processing, cost-

sensitive learning, algorithm-centred, and hybrid methods (Kaur

et al., 2019).

Frontiers in Astronomy and Space Sciences frontiersin.org07

El Mir and Perinpanayagam 10.3389/fspas.2022.896877

192

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896877


The data used for training an algorithm may be improved

with pre-processing methods, when the algorithm faces a class of

data containing an abundant number of examples while the other

class contains a lower amount. Due to the accuracy of

classification being negatively affected if not for sampling

methods, they represent an important step towards avoiding

bias (Barandela et al., 2004). The aim of these methods is to

balance the classes of data and result with less bias via either over-

sampling or under-sampling. These two methods operate by

manipulating the training data space.

Over-sampling: Of the classes available in pre-processing

data, the minority class that happens to bias the data is duplicated

in sample packets and the data is therefore balanced in terms of

the final dataset. Under-sampling, on the other hand, performs

the opposite by randomly extracting samples from the major

class (leading to the probable negative aspect of deleting

important data) in order to result in equal amounts of the

minor and major class. Over- and under-sampling may be

combined to form the hybrid sampling method, where they

are both used to result with balanced data for pre-processing

(Xu et al., 2020).

Bias and variance are concluded to be the key issues in ML

applications. They are to be addressed, according to (EASA and

Daedalean AG, 2020), based on the following twomethodologies:

1) Datasets with bias and variance need to be distinguished from

opposing datasets and effort shall be put into reducing such

bias and variance within the data itself.

2) The bias and variance need to be evaluated based on the level

of risk they impose upon the ML model.

Feature selection and extraction are another means of

selecting features more suitable for the classification at hand

at the pre-processing stage (Kursa and Rudnicki, 2011). The

classes of feature selection would be the filter method, wrapper

method, and embedded methods (Guyon and Elisseeff, 2003).

4.3 ML risk management

A ML workspace is a framework in which the algorithm’s

training takes place. The workspace allows for the specification of

the coding language package to be used, its training preferences,

and the workspace variables. According to SAE AIR6988, as part

of the advised requirements to forming certification standards for

the data selection and validation of ML systems, the workspace

should be covered with a certain level of protection to prevent

“data poisoning or tampering”, whether it be intentional or not,

by the workspace user or intruder. The effects of such an

intrusion would include false outputs and algorithm decisions,

e.g., importing additional data into the training dataset which

cause the algorithm to develop a deceptive result while assuming

that the training process is untampered with. Moreover, any non-

complying data must be detected and removed from the dataset

after the validation step. Additionally, the “probabilistic nature of

ML applications” must be taken critically when assessing and

forming the safety process analysis.

For the certification of the method in which data is selected

and validated, validation for ML would partition a block of data,

representing the entire operational profile of a landing system,

into 3 types:

1) Training, in which the model in this cycle is trained and

compared with the results from an independent dataset which

would be the validation set, and a decision is formulated: is

this model good enough or does it require further refinement?

This decision set is part of the training cycle, clarifying the

need for the validation set to be independent of the

training set.

2) Testing, where each of these datasets needs to conform with

IID (Independent Identity Distributed) and be of good

coverage. For example, in a scenario where hard landings

are part of the data input, a similar number of hard landings

in each of those three datasets must be clearly present in order

to avoid the inevitability of bias.

3) The validation process of the model itself, in which the safe-

life approach for LG RUL assessment would be the

benchmark for this paper’s purposes. The model’s

performance in this step is evaluated by means of using

the validation dataset (set aside and unused, as part of the

data partitioning procedure done beforehand) and observing

the output to decide whether it is acceptable, signalling the

readiness of the ML algorithm for use in a real-life scenario,

if so.

Risks in ML are categorised, in terms of robustness, into two

kinds (EASA and Daedalean AG, 2021):

1) Algorithm robustness, where the algorithm used for learning

is tested for robustness as the training dataset is changed.

2) Model robustness, in which perturbations in the input to the

algorithm are used for the identification and quantification of

the robustness of the training model.

As pointed out in AIRC6988, the traditional form of safety

assessment has always been to realise the orders of system failure

by means of its own component-level intercommunication with

other systems. This could be improved for the case of AI

applications due to their complicated ecosystem interactions.

The interaction of the system with “external factors” is one

improvement to be noticeably important, due to its

probability of forming failure conditions in the case of AI

applications. Such a safety approach already exists as part of

the SOTIF_ISO 21448 document for certification based on the

automotive industry’s “advanced algorithms” system inclusions.

This approach assesses the following:
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1) Both the system and sub-system levels of AI are tested for

functionality and performance.

2) The probable sources of failures mitigated by the functional

aspect of the system must be pointed out and their causes

reassessed.

3) These probable failures must be avoided by the means of

“functional modifications”.

Putting these advisories into effect, in the case of issues that

will arise due to the usage of black-box ML models in order to

model fatigue life, an advisory example is shown in Table 1. A

high-level mitigation, or requirement, is set up for each ML data

issue.

Certain ML infrastructures, such as continual learning

pipelines, allow for the ability to add continuous data points

in a well-formulated algorithm, allowing for the data output to be

optimised in terms of the assessment of structural integrity and

maintenance scheduling. This is deemed an improvement for

data collection purposes, but increases the risks for uncertainties

specifically when considering external data collection factors,

where the potential sources of data in the case of LG fatigue

detection include:

1) Fatigue tests implemented physically on the parts themselves

in a controlled environment.

2) Flight data of the same aircraft and landing gear from other

operators.

3) Maintenance observations.

4) IVHM data, including output from strain gauges on-board

the aircraft and LG assembly.

4.4 Explainability

Certification for ML applications in LG may be applied via

explainability, by the means of connecting data point values from

features; values and properties of a monitored process (Bishop,

2006). Among the important requirements for the acceptance of

a ML algorithm for use in an industry that is to accept AI

solutions over the coming years, trust reappears as a main

question at hand, which is where explainability comes into

play. Applications and methods for instilling trust into a

certain AI approach are reflected in the currently-adopted

Intelligence Community Directive (ICD 203) and the SAE

AIR6988 documents. These both serve the purpose of

proposing the standards required for the application of AI in

the aerospace industry, as well as emphasising the need for

explainability (Blasch et al., 2019). Additionally, explainability

is a part of the four building blocks of the framework in EASA’s

guidance for ML applications paper (EASA, 2021), in addition to

the DEEL white paper (DEEL Certification Workgroup, 2021)

that concentrates on the properties an ML system should have,

and specifies those to be “auditability, data quality, explainability,

maintainability, resilience, robustness, specifiability, and

verifiability” (Kaakai et al., 2022).

Explainability is a method by which the transparency of a ML

black-box may be improved, where the ML model being

explained gets its model prediction uncertainties specified by

the user, as well as the clarification of the method with which the

feedback of the model is interpreted takes place. Such explainable

methods have already been achieved by the means of the research

done by Smith-Renner et al. (2020):

1) Ensuring fairness in the model with which the end users may

interpret the meaning of the results in a language that

conforms with their own specific knowledge and

terminologies, while assessing bias in the meantime

(Dodge et al., 2019).

2) Adjusting the expectancies of end users to comply with the

end results of the explainable AI method being used in which

uncertainties in the ML model itself are incorporated for the

user to be prepared in terms of the model perception

(Kocielnik et al., 2019).

3) Enclose trust of an explainable AI agent in order for users to

return to such anML algorithm repeatedly for similar use case

scenarios encompassing the model’s features of its system, its

agents’ reliability, and the intentions with which trust is to be

instilled (Pu and Chen, 2006).

4) Improve the recommendation rigor of the explainability of

the black-box ML model by means of clarifying to the user

TABLE 1 RUL ML black-box issues and proposed mitigations.

RUL ML black-box issue Corresponding mitigation

ML models need to cater to the varying nature of fatigue life scatter in data points in
order to appropriately “characterise the probabilistic property of fatigue lives given a
specific condition”

Certification requirements must capture fatigue life scatter data and be able to predict
fatigue life probabilistically

ML models learn correlations between data input and output via the means of data
extraction, leading to the possibility of contradicting physics principles

Certification requirements must adapt to models trained with different datasets

Using a model trained on one data range may result inaccurately when the same
model is implemented on a different framework due to the possibility of data
overfitting

Certification requirements need to incorporate vital landing gear operational
uncertainties, such as hard landings, as well as temperature and environmental
variations
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which parts of the model are the most important for the use

case scenario at hand while referring to the conceptual model

in the user’s mindset (Herlocker et al., 2000).

Furthermore, explainability may be organised in regard to

its approach to the ML algorithm, in which feature selection

and feature extraction are two distinguished methods. Feature

extraction creates non-detectable features from those that

have already been found in the algorithm (Guyon et al.,

2006),whereas feature selection evaluates each and every

feature in the model after which these features are deemed

either adequate or inconsistent for use in the model (Guyon

and Elisseeff, 2003).

Another term important to the explainability approach is

whether it is local or global in reach. If local, when provided with

a conditional distribution, the input clusters of small regions of

that distribution lead to how the ML model’s predictions are

interpreted by the explainable method. As for the case of it being

global, average values are the lead source taken for interpretation

of distributions fully encompassing the model’s condition (Hall

et al., 2017).

The method of adopting a ML model’s features depends

on both the ML model being used, as well as the fatigue

failure model being implemented, resulting in the

dependence on the sensor data taken ultimately during

flight, take-off, and manoeuvres on the landing strip. The

usage of features has been resorted to due to the nature of the

way in which an ML model operates; by operating on ‘single

values per case’ (Ten Zeldam, 2018). As the ML model

formulated to operate on failure diagnosis trains on

maintenance data and usage data, while simultaneously

filtering outliers, and labelling each feature for the

readiness of the model, these labelled features will then

need to be categorised based on their relative importance

to the fatigue failure of the LG components being studied.

These values are compared to predefined value ranges that

dictate whether a component’s stress reactions qualify it as

leading to fatigue failure due to the likely repeatability of this

value and its cycling resulting in a HCF failure. The values

shall include tyre wear, side-stay loads, impact loads, shock

absorber travel distance, as well as distance travelled by the

wheel, in addition to forces applied on the axle of the LG. The

features are then transferred to classes, or diagnoses (Ten

Zeldam, 2018). This methodology does result in relative

feature importance, informing the end user of how critical

a feature is by relating its likelihood of occurrence to the

results of a simulated model.

The need for explainability in certification-required

applications is bringing forth work such as that by Viaña

et al. (2022), where an algorithm is formed of explainable

layers; using clustering for parameter initialisation,

overcoming state-of the-art algorithms when it comes to fuzzy

system-based combinations.

5 Certification and its challenges

Commercial avionics systems and equipment are composed

of software and hardware components, developed to comply with

their corresponding design standards. These standards are

covered by the two leading documents that the FAA and

EASA certification authorities refer to for the approval of the

systems in question: DO-178C/ED-12C for the compliance of

avionics software development with airworthiness requirements

(RTCA, 2012), and its complementary document, DO-254/ED-

80 for the design assurance of avionics equipment, consisting of

both hardware and software (RTCA, 2000). These documents

introduce an iteration of design assurance levels (DAL) that are

also used in other avionics certification requirement documents,

such as ARP4754A. DAL are measures assigned to each function

in the avionics system of an aircraft, be it software-based in the

case of DO-178C or hardware based for DO-254. The values of

these functional measures range from A to E in alphabetical

order. They correspond to cases of catastrophic effect to those of

no safety effect on the operation of the aircraft, any form of

overload on the crew, and therefore the safety of both (Fulton and

Vandermolen, 2017). ARP4754A separates DAL into two: FDAL,

function development phase, for aircraft functions and systems,

and IDAL, item development phase, for electronic hardware and

software items. The FDAL process assigns assurance cases

ranging from A to E severity levels for functions which are

allocated to items in a system. IDAL then assigns assurance levels

for each item that is a part of the function in question, as part of

electronic hardware or software. Detailed analyses examples may

be read in ARP4754A (SAE International, 2010).

Also emerging are assurance cases toolsets, such as

AdvoCATE, developed by Denney et al. (2012), offering an

alternative to the manual labour of creating safety cases, and

their linkage graphically with similar case scenarios, thus

reducing time by providing available risk and hazard options,

along with the assigning of requirements whether they be high or

low level, in a seamless manner. Furthermore, fragments of the

sources of documents for the assigned assurance cases can be

linked to each correlated node, creating an easily exportable

diagram, the software also works in coordination with

AUTOCERT, a tool that evaluates modelling-and-design-stage

flight and simulation code for safety violations, via clarifying it in

a form of wording for the purpose of certification (Denney and

Trac, 2008). “Guidance on the Assurance of Machine Learning for

Use in Autonomous Systems” (AMLAS) is provided with a tool

offered by the Institute for Safe Autonomy at the University of

York. It focuses on the development of assurance cases for the use

of ML in autonomous systems. The tool enables the addition of

objects for each ML component, and its corresponding safety

cases, while referring to AMLAS detailed means of compliance

(Hawkins et al., 2021).

The limitations of ML algorithms require a scope to be

identified within, and since they can handle non-deterministic
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behavioural scenarios, SOTIF (International Organization for

Standardization, 2022), which was developed to address the

new safety challenges that autonomous (and semi-

autonomous) vehicle software developers are facing, may be

used as part of the basis for certification application. Another

challenge for certification is the constitution of a dataset, and

whether it be sufficient for the required application and when

compared to the function in operation. In the case of

explainability, the lack of such a measure affects confidence

in the model’s learning capability. While ML is being

implemented, the deployment of such a program would not

be successful when supplied with a low-level set of tools for the

inference. New practices in the aeronautics domain for

certification encompass an initiative known as overarching

properties. Here, assurance cases, which have been

previously used in aeronautics and NN, may define

themselves as the bridge between the need to comply with

the overarching properties (which are intent, correctness and

innocuity) and the quality possession of the product being

considered by placing a strong argument. Artificial

Intelligence in Aviation workgroups (such as SAE G-34/

EUROCAE WG-114) are experimenting with the

aforementioned new practices in order to produce guidance

material for the standards being developed for ML in the

aeronautical domain.

As per EASA’s AI Roadmap, which has been formed with the

goal of placing standards for ML applications in the EASA-

related aerospace sector, seven ethical guidelines were placed for

the operation of AI deemed trustworthy, as can be seen in

Figure 4. They are subsequently managed by the four blocks

in the figure, wherein:

1) AI Trustworthiness Analysis supports the methodology on

how to approach the seven guidelines in the use case of civil

aviation.

2) Learning Assurance develops the ideology of making sure that

the ML algorithm in use is appropriate for the case at hand.

3) AI Explainabilityes focus on the reason behind why the

algorithm decides and its importance with respect to the

end user in terms of delivering the desired output.

4) AI Safety Risk Mitigation highlights the nature of how an AI

black-box may require supervision due to its

understandability and openness being limited in terms of

decisions made.

5.1 Load profile uncertainties and risk
management

Risk management for aircraft commences with following the

standards placed by regulatory bodies, such as EASA for the

European market, and the FAA in the US market. The next step

in uncertainty management would be the categorisation of failure

events and their probabilities, wherein there exists an inverse

relation between the failure condition of an aircraft and its

probability, and the resulting consequence on the aircraft and/

or its occupants. Classifications by EASA are defined as Minor,

Major, Hazardous, and Catastrophic, where they differ in their

FIGURE 4
EASA Ethical Guidelines and AI building-blocks for trustworthiness. As per EASA’s AI Roadmap, which has been formed with the goal of placing
standards for ML applications in the EASA-related aerospace sector, seven ethical guidelines were placed for the operation of AI deemed trustworthy.
They are subsequently managed by the four blocks in the figure, wherein: AI Trustworthiness Analysis supports the methodology on how to
approach the seven guidelines in the use case of civil aviation. Learning Assurance develops the ideology ofmaking sure that theML algorithm in
use is appropriate for the case at hand. AI Explainability focuses on the reason behind why the algorithm decides and its importance with respect to
the end user in terms of delivering the desired output. AI Safety Risk Mitigation highlights the nature of how an AI black-box may require supervision
due to its understandability and openness being limited in terms of decisions made.
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definitions on levels of workload and crew impairment as well as

passenger fatality probabilities. In addition, failure types must be

stated. These include (Au et al., 2022):

1) Particular Risk: Failures impacting the system from the

outside that could affect the system unfavourably.

2) CommonMode: Failure of a component as part of the system

that contains a component identical to it dictates that the

other component shall fail similarly.

3) Other Isolated Failures: The use of “undetected failures” on

systems ensures that a failure not specified explicitly is

encompassed in the placed standards and classifications,

confirming the robustness of a system, must it pass said

introduced diagnosis evaluation without any failure.

The LG operating environment consists of abrupt changes

and the electrical sensors are susceptible to such changes and

exterior elements. DO-160G covers avionics requirements in

terms of environmental test conditions and procedures

(Sweeney, 2015). For LG, these include waterproofness, shocks

and vibrations, brake temperature, atmospheric conditions,

lightning, electromagnetic emissions and susceptibility, and

contaminants, such as dust and sand (Au et al., 2022).

A LG’s components must be all tested against a “qualification test

plan” to prove its usability in the harshest of environmental conditions

(Au et al., 2022). This does not, however, include the component’s

entire life’s combinations, resulting with the need to add experience

from the industry and a “system development process” to add to the

system’s decisions in terms of verification for its use-case on-site.

Uncertainties resulting from the fatigue design process may

be realised in:

1) Material properties of the components.

2) Geometry of the components.

3) Loads applied in-service onto the components.

The process in which components are manufactured, e.g.

machining results with variations in the dimensions of the

components, thereby directly affecting stress values of the

components while in loading (Hoole, 2020). These variations

may add up and amount to a failure as was the case with an

aircraft nose landing gear strut examined by Barter et al.

(1993), failing due to the formation of a fatigue-induced

crack, as a result of an initial defect during manufacturing

that grew in-service until the part was overloaded. As for

material S-N curve datasets used for the stress-life approach,

they naturally contain variability for each stress amplitude

when compared to the cycles to failure. Furthermore, during

the aircraft manoeuvres, the changes in magnitudes of the

loads being applied, as well as when these loads occur, and the

order of these occurrences, are factors to be considered for

uncertainties. These are overcome via the use of safety factors

within the stress-life analysis.

Loads imposed on the landing gear as part of the aircraft’s life

cycle can be divided into two types:

1) High and unexpected landing loads that occur during the

aircraft’s manoeuvres on the ground e.g. touchdown (Tao

et al., 2009).

2) Loads that are repeated during the designated aircraft’s trip

and while on the ground, e.g. turning, braking, and taxiing,

and being towed.

When extracting data, the order in which landing gear loads are

applied may be inferred from load-time histories using open-source

data, e.g. Flightradar24 such as in the case of Hoole (2020). He

further categorises this variability in-service into the following:

magnitude of the load, number of manoeuvres on-ground, and

the order in which these manoeuvres occur. The latter two depend

on factors related to the airport’s structure and design, as well as the

weather conditions on the day of service, in addition to the aircraft

traffic at that point, changing the manoeuvres for an aircraft, also

based on each airport’s taxi operations locally, as well as gate

locations.

For fatigue analysis, and with referral to EASA CS-25,

(Hoole, 2020) mentions six methods that are commonly used

for RUL conservatism:

1) Safety factors placed on components directly impacting their

safe-life in order to indicate that they should be used ahead of

assumed failure.

2) A safety factor to adjust the Miner’s rule as part of the stress-

life life approach discussed previously.

3) A safety factor placed on the application of stress on the

components in order to assume that they are larger than their

actual values.

4) An S-N curve reduction derived statistically.

5) A downwards shift on the S-N curve, causing the assumed

stress required in order to reach failure for a certain number

of cycles to be decreased.

6) A shift acting to the left on the S-N curve, indicating the

assumption of a lower number of cycles needed in order for a

part to fail under the specified load.

6 Proposed scenarios

As is the case with applications that would be deemed safety-

critical, the following have requirements imposed upon them by

learning assurance standards:

1) Datasets that are important for the development of the

system.

2) The method and order in which this development takes place.

3) The behaviour of the system while both the development and

operational stages take place.
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FIGURE 5
EASA Development life-cycle in the case of ML implementation. The process begins and ends with requirements management and verification
while taking into reference ED-79A and ARP4754A documentation. In the midst of this life-cycle is data management where training, validation, and
test datasets are collected and labelled as well as validated in comparisonwith the system requirements while sustaining a reliable amount of bias and
variance within the data. Learning processmanagement then prepares themodel for training by selecting the appropriate algorithm for training,
as well as the corresponding functions required for performance maintenance, while risk-checking the frameworks being used in the training
environment. Model training merges the data management and process management steps to run the algorithm after which the data is validated
using the validation dataset to evaluate themodel’s bias, variance, and quality of execution. Learning process verification uses the test dataset only. It
evaluates the model’s quality of execution, data bias, and data variance. It is not related in any way to validation, which is the last step of the model
training stage. Model implementationmoves the trainingmodel into one thatmay be run on the hardware targeted for the use case intended and any
optimisations necessary aremade in this stage in terms of computing requirements and necessities accommodated for. Inferencemodel verification
is the process in which the performance of the final inference model is evaluated through comparisons with the trained model. Additionally,
compliance measures about software verifications are implemented according to ED-12C and DO-178C documentation.

TABLE 2 A use case advised by AIR6988. Shown is a predictive maintenance-involved system, where the ML-based system’s functionality is
summarized in the Example column, the ID column is “a unique identifier useful for reference in future work of the joint EUROCAE SAEG-34/WG-
114 committee”, theGoal details theML-based system’s functional operation is, Inputs counts the system’s sensors and type of data,Outputs returns
the message displayed as a result of the interaction between the ML-based system and the systems beneath, Details demonstrates the problems the
use case targets, and Integration narrows down the system to be used with this AI application, whereas Safety Concerns raise severity level of the
issues to be avoided for the completion of this use-case scenario.

Example ID Goal Inputs Outputs

Off-Board
Predictive
Maintenance

UC-
SC322

Predict with high-specificity and high-accuracy
an on-board failure with enough lead time to
plan an optimized reaction

Low-level time-series sensor data
collected and sent through a digital
acquisition unit or data gateway

Failure message (can be EICAS/ECAMS
message) + anticipated failure time +
confidence of failure prediction

Details Integration

Combination of existing data cleansing/ETL + ML and
other statistical methods to do big-data predictive
maintenance

Aircraft owner, maintenance operation

Safety Concerns

Minimal, assuming existing procedures + instructions for parts handling are followed,
and that scheduled maintenance is performed, as required

Example ID Goal Inputs Outputs

On-Board
Predictive
Maintenance

UC-
SC23

Predict with high-specificity and high-accuracy
an on-board failure without having to send data
to an off-board data center for analysis

Low-level time-series sensor data
managed through high-bandwidth digital
acquisition unit

EICAS/ECAMS message with predictive
notation + anticipated failure time +
confidence of failure prediction

Details Integration

Embedded NNs + other existing statistical methods
(embedded) + on-board hardware for complex analytical
processing

Aircraft owner, maintenance operation

Safety Concerns

Minimal, assuming existing procedures + instructions for parts handling are followed,
and that scheduled maintenance is performed, as required
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(EASA and Daedalean AG, 2020) placed a layout for such a

development life-cycle in the case of ML implementation, shown

in Figure 5.

The process begins and ends with requirements

management and verification while taking into reference ED-

79A and ARP4754A documentation. In the midst of this life-

cycle is data management where training, validation, and test

datasets are collected and labelled as well as validated in

comparison with the system requirements while sustaining a

reliable amount of bias and variance within the data. Learning

process management then prepares the model for training via

selecting the appropriate algorithm for training as well as the

corresponding functions required for performance

maintenance, while risk-checking the frameworks being used

in the training environment. Model training merges the data

management and process management steps to run the

algorithm after which the data is validated using the

validation dataset in order to evaluate the model’s bias,

variance, and quality of execution. Learning process

verification uses the test dataset only. It evaluates the

model’s quality of execution, data bias, and data variance.

It is not related in any way to validation, which is the last step

of the model training stage. Model implementation moves the

training model into one that may be run on the hardware

targeted for the use case intended and any optimisations

necessary are made in this stage in terms of computing

requirements and necessities accommodated for. Inference

model verification is the process in which the performance of

the final inference model is evaluated through comparisons

with the trained model. Additionally, compliance measures

with regard to software verifications are implemented

according to ED-12C and DO-178C documentation (EASA

and Daedalean AG, 2020).

The methodologies of certification discussed earlier may lead

to a suggested use case advised by AIR6988 (SAE International,

2021a). The use case in Table 2 is an example of a predictive

maintenance-involved system, where the ML-based system’s

functionality is summarized in the Example column, the ID

column is “a unique identifier useful for reference in future

work of the joint EUROCAE SAEG-34/WG-114 committee”, the

Goal details the ML-based system’s functional operation is,

Inputs counts the system’s sensors and type of data, Outputs

returns the message displayed as a result of the interaction

between the ML-based system and the systems beneath,

Details demonstrates the problems the use case targets, and

Integration narrows down the system to be used with this AI

application, whereas Safety Concerns raise severity level of the

issues to be avoided for the completion of this use-case scenario.

7 A Roadmap and further research

Additional methods of data extraction for the use of ML, such as

transfer learning, are currently being developed and seem promising

for the benefit of this paper’s direction. Transfer Learning is based on

the development of a model’s information for the use in another

model performing similar tasks, while maintaining a low

consumption of computationally-hungry processes and large

amounts of data-requiring techniques. The aim is to keep the

output and the task constant while changing the probability

distributions required for the operation that leads to these tasks

and outputs (EASA and Daedalean AG, 2020). Risks that may

arise in correlation with resorting to such an approach include the

necessity to verify the results of an empirical method-styled process,

since transfer learning does include this approach. Another risk

appears due to the requirement of transfer learning for a

FIGURE 6
The standards for ML usage in aerospace are still being introduced, with a planned completion of frameworks by 2028 set by EASA. The first
guidance development phase is to end by 2024, with the planned publication of ML use cases by the SAE workgroup, and the level 3 ML guidance
paper by EASA. The SAE AIR6988 and EASA Level 1 ML Application guidance papers shown to the left of the timeline have been discussed in this
paper.
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“representative test set for the target function” (EASA and Daedalean

AG, 2020), as a result of the source and target domain not being

adequately related, causing an extra step and risk mitigation, trying to

prevent what is known as a “negative transfer”. Additional risk is due

to uncertainty from using public dataset trained models as it may be

more difficult to confirm that they complywith the learning assurance

requirements. (Gardner et al., 2020) is an example of work in progress

in this field, where the focus is on structures that have no data on their

damage state obtained yet. The group uses data procured from an

analogous structure to inference the damage on the former structure

mentioned, using ML and non-destructive evaluation. The standards

for ML usage in aerospace are still being introduced, with a planned

completion of frameworks by 2028 set by EASA. Shown in Figure 6,

the first guidance development phase is to end by 2024, with the

planned publication of use cases by the SAE workgroup, and the level

3ML guidance paper by EASA.
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