About this Research Topic
This Research Topic will be served as a platform for researchers to share and discuss the applications of the machine learning framework in addiction research, with a focus on neuroimaging data. We expect this collection of articles to further advance our understanding of the neural mechanisms, etiology, objective diagnosis criteria, prevention, and treatment strategies for addictive behaviors and substance dependence disorders.
We welcome contributions focusing on the application of machine learning methods in experimental, clinical, and therapeutic research relating to substance addiction and non-substance addiction, including but are not limited to alcohol, drugs, nicotine, etc. abuse and behavioral addictions such as gaming/gambling, shopping, internet, smartphone, etc. Contributions to this Research Topic should fall into one of the following sub-themes:
• Potential biomarkers in addiction diagnosis and treatment
• Brain network related to cue reactivity, impulsivity, and cognitive control
• The brain pathways that regulate responses to substance or non-substance related rewards
• Impact of psychological and environmental risk factors on treatment outcomes for substance or non-substance addiction.
• New approaches (pharmacological therapy, behavioral and psychological therapies, rTMS, etc. ) for the treatment of addiction.
• Brain networks that mediate craving or relapse in patients undergoing treatment for substance or non-substance addiction
Keywords: • Addiction, Machine learning, Classification, Clustering, Multivariate pattern analysis
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.