About this Research Topic
Wheat (Triticum aestivum L.) is the major staple providing the bulk of food calories (50%) and at least 30% of Fe and Zn intake and 20% dietary energy and protein consumption worldwide; thus it is essential to improve its nutritional quality. Biofortification circumvents these problems by improving the micronutrient content of the crops themselves by increasing mineral levels and bioavailability along with reduced antinutrient levels in the edible parts. Improving crop varieties by either conventional breeding or transgenic methods to obtain nutritionally enhanced crops has the advantage of making one time investment on research and development to have sustainable products. Foliar spray of zinc has shown significant increase of grain zinc content. Owing to sustainable and cost-effective nature, conventional and molecular breeding for micronutrient enrichment of wheat is still preferred over biotechnological approach. The grain Fe and Zn concentration is negatively and positively correlated with grain yield and high grain protein content, respectively. Micronutrients bioavailability in wheat and barley is further challenged by presence of several inhibitors/anti-nutrients such as phytic acid, fibers, lignins, tannins, oxalic acid, and lectins and promoters such as ascorbic acid, citric acid, fumaric acid, sulfur containing amino acids, short chain fatty acids and selenium. Amongst all, phytic acid is major concern that strongly chelates divalent cations such as Zn2+ and Fe2+. Bioavailability can be enhanced by lowering phytic acid in low-phytic-acid mutants or by transgenic expression of phytic acid-degrading enzyme, phytase, in the seeds.
This Research Topic therefore welcomes Original Research and Review articles exploring but not limited to the following areas:
1. Wheat biofortification : A potential weapon to address global malnutrition
2. Frontier/emerging areas of agronomic, microbiological, and molecular approaches of biofortification
3. Status and opportunities in potential utilization of genetic variability
4. Potential inhibitors of biofortification and bioavailability including anti-nutritional factors
5. Emerging areas/tools/technologies to enhance the mineral bioavailability
6. Impact assessment and economic imperatives of fortification over wheat biofortification
We would also like to acknowledge that Dr. Maria Ibba (The International Maize and Wheat Improvement Center, Mexico) acted as a Topic Coordinator and has contributed to the preparation of the proposal of this Research Topic.
Keywords: Iron, Zinc, Hidden Hunger, Malnutrition, Biofortification, Wheat, Bioavailability, Anti-nutrition factors, Fortification
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.