About this Research Topic
EPIC makes from 13 in winter to 22 in summer daytime observations covering the entire sunlit part of Earth. Such high cadence of observations at planetary scale allows to characterize events and diurnal cycles of clouds, aerosols, and properties of the land surface and ocean, still unachievable with the modern fleet of the polar and geostationary space missions. Combined with good radiometric performance, continuous reliable calibration, and a rather unique combination of spectral bands, including UV and O2 A and B-bands, this makes DSCOVR EPIC a unique and innovative science mission making discoveries and serving as a pathfinder for the next generations of the Earth science missions.
Our goal is to provide a synergistic overview of the total scope of the mission and science, which can be summarized in a title: “DSCOVR EPIC/NISTAR: 5 years of Observing Earth from the first Lagrangian Point.”
The proposed Research Topic will include the following themes:
• EPIC and NISTAR radiometric characterization and calibration;
• Ozone, SO2 from volcanic eruptions and other trace gases;
• Aerosols from EPIC: algorithms and data analysis;
• Clouds from EPIC: algorithms and data analysis;
• Ocean properties from EPIC;
• Land and vegetation characterization from EPIC;
• Science with EPIC and NISTAR observations.
About twice a year the orbit of DSCOVR crosses the orbital plane of the Moon. This Research Topic's cover image was taken by DSCOVR/EPIC on October 2, 2020 (https://epic.gsfc.nasa.gov/galleries/2020/lunar_transit) when the moon was passing behind the Earth. The Topic Editors would like to acknowledge Karin Blank from NASA/GSFC who produced this image.
Keywords: aerosols, clouds, trace gases, vegetation, ocean remote sensing
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.