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Editorial on the Research Topic

DSCOVR EPIC/NISTAR: 5 Years of Observing Earth From the First Lagrangian Point

The Deep Space Climate Observatory (DSCOVR) was launched in February 2015 to a Sun-Earth
Lagrange-1 (L1) orbit, approximately 1.5 million kilometers from the sunlit side of the Earth. In many
regards, the DSCOVR is a unique mission: for the first time, it delivers well-calibrated and multi-spectral
measurements of Earth from the L1 point. This unique location allows near-hourly views of the entire
illuminated disk of the Earth, multiple times a day. The moderately high observational cadence results in
cloud-free views of nearly the entire Earth land surface and global oceanwith significantly higher frequency
than is available to the operational polar orbiters, and at a near-global scale inaccessible to geostationary
sensors.

In addition to providing continuous solar wind measurements for accurate space weather
forecasting, DSCOVR operates two Earth science instruments: the Earth Polychromatic
Imaging Camera (EPIC) and the NIST Advanced Radiometer (NISTAR). EPIC has a
2048 × 2048 pixel CCD with sensitivity to UV, visible, and near IR (NIR) wavelengths. The
filter wheel contains 10 narrow-band filters from 317.5 to 779.5 nm. The spatial resolution is
about 10 km at nadir. The Earth-observing geometry of the EPIC instrument captures a nearly
constant scattering angle between 168° and 178°. NISTAR measures the absolute irradiance
integrated over the entire sunlit face of the Earth in four broadband channels every minute
covering visible and IR wavelengths.

The unique near-backscatter view geometry of EPIC led to creation of several new Earth science
products. The diurnal course of “sunlit leaf area index” SLAI is one of them (Yang et al., 2017). It
characterizes the area of green leaves at a given time intercepting the direct sunlight and depends on canopy
structural organization. Because sunlit and shaded leaves exhibit different photosynthetic response to
incident Photosynthetically Active Radiation (400–700 nm; Mercado et al., 2009; Stenberg, 1998), SLAI is
important addition to the standard total leaf area index (LAI) that has long been provided by polar orbiting
sensors like MODIS or VIIRS. By virtue of its unique view geometry, EPIC became the first sensor
providing SLAI required for better characterization of ecosystem productivity and carbon/nitrogen cycles
(Bonan et al., 2003; Dai et al., 2004; Mercado et al., 2009; He et al., 2013).

Other new land surface products are the Directional Area Scattering Factor (DASF), the Earth Reflector
Type Index (ERTI) andCanopy Scattering Coefficient (CSC) at 443, 551, 680 and 780 nm (Knyazikhin and
Myneni, 2021). DASF provides information critical to accounting for structural contributions to
measurements of leaf biochemistry from remote sensing (Smolander and Stenberg, 2003; Knyazikhin
et al., 2013; Stenberg et al., 2016). ERTI is an estimate of the recollision probability. This index was
developed to discriminate between signals originating from clouds, cloud-free ocean, bare and vegetated
land (Song et al., 2018). SCS is an estimate of the fraction of intercepted radiation that has been reflected
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from, or diffusively transmitted through, the vegetation (Smolander
et al., 2003; Lewis and Disney, 2007). This coefficient for example is
useful to detect changes in leaf chlorophyll content of equatorial
forests (Sun et al., 2022). The land products use EPIC surface
reflectance which is provided by MAIAC atmospheric correction
algorithm along with cloud detection and aerosol retrieval (Lyapustin
et al., this issue).

Even casual glimpses at EPIC images (https://epic.gsfc.
nasa.gov/) reveal bright colorful spots near the image
center. The analysis of observation geometry and collocated
EPIC data suggests that these bright spots are caused by
specular reflection from ice crystals that float inside clouds
in a horizontal orientation (Marshak et al., 2017; Li J. -Z.et al.,
2019; Varnai et al., 2020b). Glint studies over the ocean found
that cloud glints are small but bright (Varnai et al., 2020a).
Most recently (Kostinski et al., 2021) it was found that cloud
glints were used to gauge the accuracy of geolocation in EPIC
operational products and to examine the physical processes
and instrumental considerations that affect EPIC glints
caused by specular reflection from small lakes. It has been
a general assumption that the ice crystals in the high-altitude
ice clouds are randomly orientated. Orientation of crystals
affects reflection of the incoming Sun light and its
transmission to the Earth surface, and thus an improved
understanding of the number, or proportion of oriented ice
particles has a potential to bring improvement in modeling of
the Earth cloud radiation budget. The first operational glint
product was released recently (https://epic.gsfc.nasa.gov/
science/products/glint).

EPIC and NISTAR have continuously operated until 27
June 2019, when the spacecraft was placed in an extended safe
hold due to degradation of gyroscopes. With development of
the software patch for spacecraft attitude determination based
solely on the star trackers, DSCOVR returned to full
operations on 2 March 2020. Since then, DSCOVR has
been able to maintain pointing accuracy similar to that
with gyroscopes keeping the Earth fully in the field-of-view
of EPIC. After March 2020 the range of scattering angle has
substantially increased towards backscattering reaching 178°.
This provided a unique opportunity to study angular
variations of the Earth reflectivity in the vicinity of the
exact backscattering, or hotspot (Marshak et al.). All EPIC
and NISTAR observations show a strong increase of
reflectance towards the hotspot. For NISTAR, which data
are used to study the Earth radiation budget, this limits
angular resolution of the angular distribution models to
1°–3° near the backscattering angle.

For aerosol science, a near-backscattering view geometry of EPIC
has both merits and drawbacks. Increase of the land surface
brightness at this geometry results in decreasing sensitivity of
observations to the atmospheric aerosol variations, e.g. of the
aerosol optical depth (AOD). On the other hand, the high
observational cadence and near-global coverage enhances our
capability for a high-quality characterization of the surface
reflectance, and based on that, characterization of the high-AOD
mega-events such as forest wildfires or dust storms when the surface
brightness becomes less important.

Based on well-calibrated EPIC UV-vis observations,
Lyapustin et al. developed an algorithm to simultaneously
retrieve both AOD and spectral aerosol absorption. The latter,
in turn, allows to peek into aerosol composition based on
spectrally distinct absorption properties of dominant
absorbers, namely black and brown carbon in biomass
burning smoke, and hematite and goethite in airborne
mineral dust (Go et al., 2022). The developed speciation
algorithm has been integrated in MAIAC v2 EPIC
algorithm. Thus, while the fundamentals of such
decomposition were developed earlier for AERONET
(Holben et al., 1998; Schuster et al., 2016) and later applied
for POLDER/PARASOL (Li L. et al., 2019), EPIC is becoming
the first operational imager to provide such speciation
information in support of both climate modeling and the
air quality communities.

This special issue of Frontiers in Remote Sensing titled
“DSCOVR EPIC/NISTAR: 5 years of observing Earth from the
first Lagrangian point” has 23 papers that provide an integral
holistic view of the Earth science from DSCOVR. Topics range
from the sensors’ description, data calibration, and
geolocation to the processing algorithms and official
products, to the science data analysis and applications.

There are four papers on EPIC data calibration, covering
EPIC geolocation strategies (Blank, et al.), raw data calibration
(Cede et al.) and calibration of EPIC visible and NIR channels
(Geogdzhaev et al.; Haney et al.). Eight papers describe different
official EPIC products, including ocean surface
photosynthetically available radiation (PAR) (Frouin et al.),
total and tropospheric ozone (Kramarova et al.), aerosol
height (Lu et al.), aerosol optical depth and atmospheric
correction (Lyapustin et al.; Lyapustin et al.), vegetation (Ni
et al.), clouds (Zhou et al.) and solar glint (Varnai et al.). Two
papers discuss cloud height from EPIC: Davis et al. reviews
cloud height remote sensing using atmospheric oxygen
absorption spectroscopy while Delgado-Bonal et al. talks
about daily variability in cloud height around the globe.
Variability of the Earth’s planetary albedo is investigated in
three papers by Carlson et al., Lacis et al. and Penttilä et al. If the
first two deal mostly with GCM and distribution of clouds, the
third one discusses a new method to derive the Earth spherical
albedo from EPIC data and provides it at fine temporal
resolution. Finally, Su et al. discusses the relationships
between EPIC radiances and the reflected shortwave fluxes
and compares EPIC- derived fluxes with those from CERES.

Phase angles between Sun illumination and EPIC observations
have an important effect on estimating Earth reflectance near the
backscattering (Marshak et al.). Valero et al. reviewed the history
behind the current DSCOVR mission and discussed the
opportunity of future Earth observations from Lagrange points
while Gorkavyi et al. highlighted Earth observations from theMoon
surface with an EPIC-like instrument, as a part of the futureArtemis
mission. In addition, EPIC observations were used to estimate the
reduction of spectral radiance during solar eclipse of 21 June 2020
(Wen et al.). Finally, Pisek et al. explores the
potential of retrieving clumping vegetation index using
DSCOVR EPIC data.
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Vegetation foliage clumping significantly alters the radiation environment and affects

vegetation growth as well as water, carbon cycles. The clumping index (CI) is useful in

ecological and meteorological models because it provides new structural information

in addition to the effective leaf area index. Previously generated CI maps using a

diverse set of Earth Observation multi-angle datasets across a wide range of scales

have all relied on the single approach of using the normalized difference hotspot and

darkspot (NDHD) method. We explore an alternative approach to estimate CI from space

using the unique observing configuration of the Deep Space Climate Observatory Earth

Polychromatic Imaging Camera (DSCOVR EPIC) and associated products at 10 km

resolution. The performance was evaluated with in situ measurements in five sites of

the Australian Terrestrial Ecosystem Research Network comprising a diverse range of

canopy structure from short and sparse to dense and tall forest. The DSCOVR EPIC

data can provide meaningful CI retrievals at the given spatial resolution. Independent but

comparable CI retrievals obtained with a completely different sensor and new approach

were encouraging for the general validity and compatibility of the foliage clumping

information retrievals from space. We also assessed the spatial representativeness of

the five TERN sites with respect to a particular point in time (field campaigns) for satellite

retrieval validation. Our results improve our understanding of product uncertainty both in

terms of the representativeness of the field data collected over the TERN sites and its

relationship to Earth Observation data at different spatial resolutions.

Keywords: clumping index, DSCOVR EPIC, TERN, validation, spatial analysis
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INTRODUCTION

The clumping index (CI) quantifies the level of foliage
grouping within distinct canopy structures relative to a random
distribution (Nilson, 1971; Chen and Black, 1992). It provides
best agreement between transmittance through clumped canopy
and Beer’s exponential transmission law (Nilson, 1971; Kuusk,
2018). CI equals unity with leaves completely randomly
distributed. Canopy foliage is usually clumped into various sub-
canopy structures such as crowns, branches, and twigs, thus
clumping is defined as a situation where CI < 1. Regularly
distributed foliage results in CI greater than unity. Clumping
affects the interception and distribution of solar radiation within
a canopy (Chen et al., 2003, 2005; Hill et al., 2011; Wei et al.,
2019). In addition, the distribution of foliar nutrients and canopy
evapotranspiration (ET) were found to be significantly influenced
by CI (Thomas et al., 2011). Both ground and satellite ET
estimates are greatly underestimated if CI is not considered
(Chen et al., 2016). CI is also an important parameter for accurate
canopy-level gross primary production (GPP) modeling (Ryu
et al., 2011; Chen et al., 2012).

Global and regional scale CI maps have been generated
from a diverse set of Earth Observation multi-angle datasets:
POLarization and Directionality of the Earth’s Reflectances
(POLDER) data at ∼6 km resolution (Chen et al., 2005); the
Bidirectional Reflectance Distribution Function (BRDF) product
fromModerate Resolution Imaging Spectroradiometer (MODIS)
at 500m resolution (He et al., 2012; Wei and Fang, 2016;
Jiao et al., 2018), and Multi-angle Imaging SpectroRadiometer
(MISR) data at 275m resolution (Pisek et al., 2013).

All the products listed above share the common feature
of estimating CI through a single approach—its empirical
relationship with the normalized difference between the hotspot
and darkspot (NDHD) (Chen et al., 2005; Leblanc et al., 2005a):

CI = A · NDHD+ B (1)

where A and B are coefficients determined by the linear
regression, based on a set of model simulations made with the
4-Scale model in Chen et al. (2005). The coefficients vary with
assumed crown shape and solar zenith angle [see Table 2 in Chen
et al. (2005)]. The NDHD index is defined as:

NDHD =
HS− DS

HS+ DS
(2)

where HS and DS mark the canopy reflectance at the hotspot
and darkspot, respectively (Leblanc et al., 2001). The hotspot
corresponds to the backscatter peak when the solar radiation and
view directions coincide, leading to minimum shading in that
view direction. The darkspot exists in the direction opposite to
that of the hotspot, where the maximum shadow area can be seen
leading to minimum reflectance.

This brief research report explores a new, alternative approach
to NDHD how to estimate CI from Earth Observation data.
The approach exploits unique observation data and products
from a new satellite that is quite different from traditional polar-
orbiting or geostationary satellites. The Deep Space Climate

Observatory (DSCOVR) is a satellite positioned near the first
Lagrange point (or L1). It offers the continuous observations of
full, sunlit side of the Earth. The DSCOVR satellite carries on-
board a spectroradiometer—the Earth Polychromatic Imaging
Camera (EPIC). EPIC can provide spectral images of the entire
sunlit face of the Earth with 10 narrow channels (from 317
to 780 nm) (Marshak et al., 2018) every 1–2 h in summer and
winter, respectively.

The CI retrievals with DSCOVR/EPIC product data are
validated in this study using available in situ measurements
obtained with digital hemispherical photography (DHP), carried
over select sites belonging to the Australian Terrestrial Ecosystem
Research Network (TERN; Lowe et al., 2016) comprising a
diverse range of canopy structure from short and sparse to dense
and tall forest.

METHOD

DSCOVR EPIC Vegetation Earth System
Data Record (VESDR) Product
The DSCOVR EPIC version 1 Vegetation Earth System Data
Record (VESDR) provides Leaf Area Index (LAI) as well as
diurnal courses of Sunlit Leaf Area Index (SLAI), Normalized
Difference Vegetation Index (NDVI), Fraction of incident
Photosynthetically Active Radiation (FPAR) absorbed by the
vegetation and Directional Area Scattering Function (DASF).
The product at 10 km sinusoidal grid with 65–110min temporal
frequency is generated from the upstream DSCOVR EPIC L2
MAIAC surface reflectance product (Lyapustin et al., 2018).With
the exception of LAI, all VESDR parameters vary with the sun-
sensor geometry. The VESDR files also include Solar Zenith
Angle (SZA), Solar Azimuthal Angle (SAA), View Zenith (VZA),
and Azimuthal (VAA) angles at the same temporal and spatial
resolutions. A quality assessment variable (QA_VESDR) is also
provided. For this analysis, only the EPIC observations with best
quality flags (QA_VESDR = 0) were used for the CI retrieval.
It is noted that the DSCOVR EPIC VESDR product is currently
released at a provisional quality level. The EPIC level 2 VESDR
product and accompanying documentation are available from the
NASA Langley Atmospheric Science Data Center (https://asdc.
larc.nasa.gov/project/DSCOVR). The VESDR product data were
downloaded through NASA’s Open-source Project for a Network
Data Access Protocol (OPeNDAP; https://opendap.larc.nasa.gov/
opendap/).

Foliage Clumping Retrieval With DSCOVR
EPIC Data
Available DSCOVR/EPIC VESDR products of sunlit leaf area
index (SLAI) and leaf area index (LAI) allow to estimate sunlit
fraction of leaf area (Knyazikhin et al., 2017):

SF =
SLAI

LAI
. (3)

CI provides best agreement between directional uncollated
transmittance through clumped canopy, t0(θ), and Beer’s
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exponential transmission law, exp (−τ ), which is applicable for
completely randomly distributed leaves. Here

τ (θ) =
G(θ) · LAI · CI(θ)

cos θ
, (4)

where G is the geometry factor as a function of viewing direction
θ . We approximate SF based on Beer’s law (WarrenWilson, 1967,
Yang et al., 2017), i.e.,

SF =
1− exp (−τ )

τ
(5)

Using SF from Equation (3) allows us to solve Equation (5) for τ .
Finally, CI can be then estimated from Equation (4) as:

CI(θ) =
τ (θ) · cos θ

G(θ) · LAI
(6)

The geometry factor may not be always precisely known, but
G approaches a value of 0.5 around 57 degrees irrespective of
orientation of canopy elements (Ross, 1981; Jupp et al., 2009;
Woodgate et al., 2015). We adopt the G value of 0.5 in the
CI retrieval while using VESDR products collected with the
suitable sun-sensor geometry—observations with view zenith
angle around 57 degrees—as an input.

Study Sites and Data for Validation
Australia’s Terrestrial Ecosystem Research Network (TERN)
is a distributed research infrastructure providing intensive
monitoring of the physical and chemical environmental and
biological components of ecosystems (Karan et al., 2016). In-
situ measurements of CI at different heights using towers were
collected at five of the TERN’s SuperSites, which together offer a
diverse range of canopy structure from short and sparse to dense
and tall forest. Their locations and vegetation characteristics are
summarized in Table 1.

The Cumberland Plain flux station is located in a dry
sclerophyll forest in the Hawkesbury Valley in central New
SouthWales (site coordinates: 33.6152S, 150.7236E). The canopy
is dominated by Eucalyptus moluccana and Eucalyptus fibrosa,

which host an expanding population of mistletoe. Average
canopy height is 23m. The Wombat forest research site
(37.42S, 144.09E) is located in the Wombat State Forest,
Victoria, SE Australia. The site is a secondary regrowth Eucalypt
forest that was last harvested in 1980. Dominant tree species
are Messmate Stringybark (Eucalyptus obliqua), Narrow Leaf
Peppermint (Eucalyptus radiata) and Candlebark (Eucalyptus
rubida) with an average canopy height of 25m. The understory
consists mainly of patchy grasses. The second dry sclerophyll
site at Whroo (36.67 S, 145.03E) in Victoria, Australia is box
ironbark woodland with lower tree height and canopy cover.
The vegetation was dominated by two main Eucalypt species:
Gray Box (Eucalyptus microcarpa) and Yellow Gum (Eucalyptus
leucoxylon). The mean tree height at Whroo was 15.3 ±

0.2m. The Tumbarumba flux station is located in the Bago
State forest in south eastern New South Wales (35.6566S,
148.1517E). The forest is classified as wet sclerophyll, the
dominant species is Eucalyptus delegatensis, and average tree
height is 40m. The Bago State Forest is adjacent to the south
west slopes of southern New South Wales and the 48,400 ha
of native forest have been managed for wood production for
over 100 years. Warra Long Term Ecological Research (LTER)
site (43.09S, 146.66E; Neyland et al., 2000) is located in SW
Tasmania, Australia. It represented a tall E. obliqua wet forest
with rainforest understory and a dense man-fern (Dicksonia
antarctica) ground-layer. The forests around the Warra site
had mature heights in excess of 55 m: the tallest E. obliqua
within the LTER reaches a height of 90m. Both Tumbarumba
and Warra sites experienced bushfires in the last 2 years.
Our site descriptions, in situ validation data, as well as the
retrievals with DSCOVR EPIC data correspond to the pre-
fire period.

The vertical profiles of CI (i.e., Cl for all vegetation above the

given height) were obtained by climbing scaffolding/flux towers

and taking leveled digital hemispherical photos (DHPs) along the

climbed height. At each profile, usually several series of DHPs

were acquired using a Nikon CoolPix 4500 digital camera with a

Nikon FC-E8 fisheye lens under diffuse illumination conditions,

following the protocol of Zhang et al. (2005). No leaves were

TABLE 1 | Study site characteristics.

Site code Site name Lat (deg) Lon (deg) Forest type Overstory Tree

height (m)

LAI References In-situ data

collection

CBLP Cumberland plain −33.62 150.72 Remnant eucalypt

woodland

EMo, EF 23 1.20 Beringer et al., 2016 2019/2

TUMB Tumbarumba −35.66 148.15 Managed open wet

schlerophyll eucalyptus

forest

EDe, EDa 40 2.4 Keith et al., 2009 2019/2

VICD–Whroo Whroo −36.67 145.03 Box woodland EMi, EL 15.3 ± 0.2 1.0 Beringer et al., 2016 2013/7

VICD-Wombat Wombat −37.42 144.09 Open eucalypt woodland EO, ERa,

ERu

25 1.75 Haverd et al., 2013 2013/7

WRRA Warra −43.10 146.65 Tall wet eucalypt forest EO 55 5.84 Neyland et al., 2000 2013/8

In the column “Overstory” EMo, Eucalyptus moluccana; EF, Eucalyptus fibrosa; EDe, Eucalyptus delegatensis; EDa, Eucalyptus dalrympleana; EMi, Eucalyptus microcarpa; EL, Eucalyptus

leucoxylona; EO, Eucalyptus obliqua; ERa, Eucalyptus radiata; ERu, Eucalyptus rubida.
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present directly above the camera to obscure its field of view.

The towers were masked from the photos before the analysis. The
reference DHPs were obtained above the top of the tree canopy.
Gap fraction profiles were extracted from the blue channel at
view zenith angle 57◦ with the DHP software (v4.5; Canada
Center for Remote Sensing, Ottawa, Canada). Various methods
exist to estimate CI (see Gonsamo and Pellikka, 2009; Woodgate

et al., 2015; Chianucci et al., 2019). The method of Leblanc

et al. (2005b) was previously shown to provide reliable clumping

estimates in both simulated and real canopies (Pisek et al., 2011;
Leblanc and Fournier, 2014; Woodgate et al., 2017; Yan et al.,
2019):

CICLX (θ) =
n ln[P (θ)]

∑n
k=1 ln [Pk (θ)] /CICCk(θ)

(7)

where CICLX(θ) is CI determined with the method of Leblanc
et al. (2005b), CICCk(θ) is the CI of segment k using the corrected

FIGURE 1 | Continued
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FIGURE 1 | (A–J) Shortwave BRF composites centered at TERN sudy sites. Variogram estimators (points), spherical model results (dotted curves), and sample

variances (solid straight lines) obtained over the sites with OLI subsets and spatial elements of 1, 6, and 10 km as a function of distance between observations.

Variogram legend explanations: a–variogram range; var–sample variance; c–variogram sill; c0–nugget variance.

Chen and Cihlar (1995) method by Leblanc (2002), Pk (θ) is the
gap fraction of segment k, n is the total number of segments
(segment size = 15◦), P (θ) is the mean gap fraction, and θ is the
view zenith angle. The segment size was set to 15◦ as it produced
the smallest error out of three segment sizes tested (15, 45, and
90◦) in the mimicked virtual Eucalypt stand by Woodgate et al.
(2017). Equation (7) is used to estimate CI at each climbed height.

Spatial Representativeness Assessment
An analysis of the surface heterogeneity representativeness
(Román et al., 2009; Wang et al., 2017) was used in this study
to determine whether direct “point-to-pixel” comparisons
were appropriate for all validation sites. The method employs
variograms calculated using surface albedos obtained using
shortwave near nadir surface reflectances (0.25–5.0 um)
generated from cloud free 30m Landsat/Operational Land
Imager (OLI) data (Román et al., 2009). To facilitate the 10 km
subset, the Landsat imagery was resampled to 90m spatial
resolution. The OLI data were collected as close to the sampling

date as possible. Where valid imagery was not available within
a reasonable window of the sampling date, imagery from the
corresponding season of a different year was used. As such, the
analysis was done to illustrate the representativeness of the tower
site with respect to a particular point in time.

When a measurement site is spatially representative, the
overall variability between the internal (1.0 km) components
(here Landsat pixel reflectances) of the measurement site and its
adjacent landscape corresponding to the satellite pixel footprint
should be similar in magnitude. The variogram estimator
(variance of the albedo values obtained from the resampled
90m spatial resolution Landsat imagery at the given distance)
usually levels off upon reaching the variogram range indicating
the distance where they are no longer spatially correlated
(e.g., Figure 1B, points). The site can be simply judged to
be spatially representative with respect to the given footprint
when the sill value (i.e., the ordinate value of the range at
which the variogram levels off to an asymptote) is <5.0e-04
(Román et al., 2009; Wang et al., 2017).
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RESULTS

The spatial representativeness was evaluated at three different
footprint sizes: 1, 6, and 10 km (Figure 1). All five sites may
be considered spatially representative at the smallest 1 km pixel
footprint around the time of in situ measurements, although the
variogram curve did not reach clear asymptote at Cumberland
Plain (Figure 1B). The spatial heterogeneity increased with the
footprint for all sites (here indicated with an increase in sill
value). Only two sites (Tumbarumba and Warra) preserved
the spatial representativeness all the way to the nominal pixel
resolution of 10 km for the DSCOVR EPIC VESDR product
(sill value < 5.0e-04).

The landscape heterogeneity within the DSCOVR EPIC
VESDR product pixel resolution also manifested itself in the
agreement with the in situ measured values of CI over the
different sites. Good agreement between the EPIC CI-derived
value and in situ measurements (i.e., EPIC CI retrievals
intersecting with the vertical profiles collected with DHP)
was observed over the most homogeneous sites, Tumbarumba
(Figure 2B) and Warra (Figure 2E). The EPIC CI values did
not show agreement with the vertical profiles of CI at Whroo
(Figure 2C) and Wombat (Figure 2D). The EPIC CI value was
found to intersect the range of CI variation with height at
Cumberland Plain site (Figure 2A).

DISCUSSION

This study explored the potential of using an alternative
approach, along with unique observations and products from the
Earth Polychromatic Imaging Camera (EPIC) onboard the Deep
Space Climate Observatory (DSCOVR) satellite, to estimate the
clumping index (CI).

First, it must be acknowledged that our measurements are
limited to single location (tower) and moment in time for a
vertical profile at each site. Any factors that cause an increase in
the variance of gap fraction (e.g., canopy type and size, density,
disturbances) would imply that a higher number of samples
is needed (Nilson et al., 2011). The relatively coarse nominal
resolution of the EPIC sensor at 10 km makes the product
validation with in situ data a particularly challenging exercise.
Out of five TERN sites with available in situ CI measurements
included in this study, only Tumbarumba and Warra may be
deemed to be spatially representative of the relatively coarse
EPIC nominal pixel footprint. It is encouraging that CI values
obtained with EPIC data provided good agreement with the
in situ measurements over these two sites (Figures 2B,E). It
shall be noted that the spatial representativeness approach used
in this study does not include land cover or vegetation type
information. Many modeling studies using flux tower data will
use classification layer and assess the various proportions of
classes to determine whether a site is representative. Using
Landsat OLI data and variograms as originally proposed by
Román et al. (2009) and applied in this study may provide more
detail and catch possible variation that may not be assessed
with the land cover or vegetation type based evaluation. It shall
be noted that our spatial representativeness evaluations may be

FIGURE 2 | Vertical profiles of foliage clumping from in-situ measurements

with ±1 standard deviation bars. (A) Cumberland Plain, (B) Tumbarumba,

(C) Whroo, (D) Wombat, and (E) Warra. Clumping index values from DSCOVR

EPIC data obtained around the same time of the year are marked with vertical

purple line (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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valid only for the indicated moments in time. Although all five
sites are classified as broadleaf evergreen vegetation dominated
by Eucalypts, they may still experience seasonal dynamics of
vegetation growth and decay (Duursma et al., 2016). The spatial
representativeness of individual sites may change accordingly
throughout seasons as well. Additionally, Tumbarumba and
Warra sites experienced intensive bushfires in 2019 and 2020,
which may have affected their current spatial representativeness
as well. We recommend that future studies would follow our
example and carry the spatial representativeness assessments
to match the moment in time when the in situ measurements
are collected.

The best agreement was usually not observed with the in
situ measurements acquired close to the ground (h =2m),
but rather with those taken at a distance higher up in the
canopy. Similar behavior was previously observed in case of
CI estimates obtained with other EO sensors as well (Pisek
et al., 2013, 2015), as satellite measurements respond primarily
to the structural effects in upper levels of canopies (Pisek
et al., 2015). This feature will be further exacerbated if the
observations are made under oblique angles (Biriukova et al.,
2020), like in our study. Ground measurements may be also
biased by any lower vegetation/understory layers that would
make the foliage distribution more random. Indeed there was
an understory layer present at Tumbarumba and Warra when
the in situ measurements were taken and the comparison with
DSCOVR EPIC data was done (i.e., pre-2019/2020 fire period).
Lower shrubs are also present around Cumberland Plain, another
site where the EPIC CI retrievals intersected with the vertical
profile of CI measured along the tower height (Figure 2A).
This agreement might be purely coincidental and treated with
caution, since the Cumberland Plain site was the least spatially
representative site at the EPIC nominal resolution. The actual
EPIC measurements used in this study may in fact come even
from an area twice as large due to the large oblique angles around
the hinge region (Delgado-Bonal et al., 2020). The two sites
from Victoria, Whroo and Wombat, were found to be spatially
non-representative at the EPIC nominal resolution. EPIC CI
estimates correspondingly did not match with the available in situ
measurements (Figures 2C,D), presumably because they did not
capture the variability within the greater area within the EPIC
pixel footprint. The general range of the in situ measured CI
reported in this study agreed with values reported from other
Eucalyptus-dominated sites in Australia (Macfarlane et al., 2007;
Woodgate et al., 2017).

Our exploratory study is very pertinent to the on-going efforts
to map and incorporate clumping information in ecosystem
modeling at different scales (Ryu et al., 2012; He et al., 2018).
It is very encouraging we showed it is possible to obtain such
good quality results using a different approach and different

EO data that are very much comparable to previous efforts of
mapping CI from space (Chen et al., 2005; Pisek et al., 2013;
Wei and Fang, 2016; Jiao et al., 2018). This general agreement
between different retrieval strategies and input data sources is
important for increasing overall confidence, justification, and
general validity of clumping information retrieval from space in
the future.

As a part of the analysis, we also assessed the spatial
representativeness of the five TERN forest ecosystem sites for
validation of satellite retrievals using a different approach and
extending the analysis all the way to the spatial resolution of EPIC
sensor compared to Griebel et al. (2020). Our results improve
our understanding of product uncertainty both in terms of the
representativeness of the field data collected over the TERN
sites and its relationship to Earth Observation data at different
spatial resolutions.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

AUTHOR CONTRIBUTIONS

JP conceived the project, collected data, ran data analysis and
interpretation, and led the writing of manuscript. AE carried
the spatial representativeness analysis. WW helped with the
field collection at Tumbarumba. SA, AE, EP, CS, TW, WW,
and YK discussed the results and contributed to writing the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This study was supported from Estonian Research
Council Grants PUT232, PUT1355, and Mobilitas Pluss
MOBERC11. WW was supported by an Australian Research
Council DECRA Fellowship (DE190101182). The OzFlux
and SuperSite network was supported by the National
Collaborative Infrastructure Strategy (NCRIS) through
the Terrestrial Ecosystem Research Network (TERN).
YK was supported by the NASA DSCOVR project under
grant 80NSSC19K0762.

ACKNOWLEDGMENTS

We thank two reviewers for the constructive comments that
helped to improve the paper. We thank Marja-Liisa Plats for her
assistance with figure editing.

Frontiers in Remote Sensing | www.frontiersin.org 7 March 2021 | Volume 2 | Article 65243615

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


Pisek et al. Clumping From EPIC

REFERENCES

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A.,

et al. (2016). An introduction to the Australian and New Zealand flux tower

network –OzFlux. Biogeosciences 13, 5895–5916. doi: 10.5194/bg-13-5895-2016

Biriukova, K., Celesti, M., Evdokimov, A., Pacheco-Labrador, J.,

et al. (2020). Effects of varying solar-view geometry and canopy

structure on solar-induced chlorophyll fluorescence and PRI. Int. J.

Appl. Earth Observ. Geoinform. 89:102069. doi: 10.1016/j.jag.2020.

102069

Chen, B., Liu, J., Chen, J. M., Croft, H., Gonsamo, A., He, L., et al.

(2016). Assessment of foliage clumping effects on evapotranspiration

estimates in forested ecosystems. Agric. For. Meteorol. 216, 82–92.

doi: 10.1016/j.agrformet.2015.09.017

Chen, J., Menges, C., and Leblanc, S. (2005). Global mapping of foliage clumping

index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457.

doi: 10.1016/j.rse.2005.05.003

Chen, J. M., and Black, T. A. (1992). Defining leaf area index for non-flat leaves.

Plant Cell Environ. 15, 421–429. doi: 10.1111/j.1365-3040.1992.tb00992.x

Chen, J. M., and Cihlar, J. (1995). Plant canopy gap-size analysis theory for

improving optical measurements of leaf-area index. Appl. Opt. 34, 6211–6222.

doi: 10.1364/AO.34.006211

Chen, J. M., Ju, W. M., Cihlar, J., Price, D., Liu, J., Chen, W. J., et al.

(2003). Spatial distribution of carbon sources and sinks in Canada’s forests.

Tellus Series B-Chem. Phys. Meteorol. 55, 622–641. doi: 10.3402/tellusb.v55i2.

16711

Chen, J. M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., et al. (2012).

Effects of foliage clumping on the estimation of global terrestrial

gross primary productivity. Global Biogeochem. Cycles 26:GB1019.

doi: 10.1029/2010GB003996

Chianucci, F., Zou, J., Leng, P., Zhuang, Y., and Ferrara, C. (2019). A new

method to estimate clumping index integrating gap fraction averaging

with the analysis of gap size distribution. Can. J. For. Res. 49, 471–479.

doi: 10.1139/cjfr-2018-0213

Delgado-Bonal, A., Marshak, A., Yang, Y., and Oreopoulos, L. (2020). Daytime

variability of cloud fraction fromDSCOVR/EPIC observations. J. Geophys. Res.

Atmosph. 125:e2019JD031488. doi: 10.1029/2019JD031488

Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M.

G., and Ellsworth, D. S. (2016). Canopy leaf area of a mature evergreen

Eucalyptus woodland does not respond to elevated atmospheric [CO2] but

tracks water availability. Glob. Chang. Biol. 22, 1666–1676. doi: 10.1111/gcb.

13151

Gonsamo, A., and Pellikka, P. (2009). The computation of foliage clumping index

using hemispherical photography. Agricult. Forest Meteorol. 149, 1781–1787.

doi: 10.1016/j.agrformet.2009.06.001

Griebel, A., Metzen, D., Pendall, E., Burba, G., and Metzger, S. (2020). Generating

Spatially Robust Carbon Budgets From Flux Tower Observations. 47(3),

e2019GL085942. doi: 10.1029/2019gl085942

Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-

Heaps, C., et al. (2013). Multiple observation types reduce uncertainty in

Australia’s terrestrial carbon and water cycles. Biogeosciences 10, 2011–2040.

doi: 10.5194/bg-10-2011-2013

He, L., Chen, J. M., Gonsamo, A., Luo, X., Wang, R., Liu, Y., et al. (2018).

Changes in the shadow: the shifting role of shaded leaves in global carbon

and water cycles under climate change. Geophys. Res. Lett. 45, 5052–5061.

doi: 10.1029/2018GL077560

He, L., Chen, J. M., Pisek, J., Schaaf, C. B., and Strahler, A. H. (2012). Global

clumping index map derived from the MODIS BRDF product. Remote Sens.

Environ. 119, 118–130. doi: 10.1016/j.rse.2011.12.008

Hill, M., Román, M. O., Schaaf, C. B., Hutley, L., and Brannstrom, C. (2011).

Characterizing vegetation cover in global savannas with an annual foliage

clumping index derived from the MODIS BRDF product. Remote Sens.

Environ. 115, 2008–2024. doi: 10.1016/j.rse.2011.04.003

Jiao, Z., Dong, Y., Schaaf, C. B., Chen, J. M., Román, M., Wang, Z., et al. (2018). An

algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF

product using an adjusted version of the kernel-driven BRDF model. Remote

Sens. Environ. 209, 594–611. doi: 10.1016/j.rse.2018.02.041

Jupp, D. L. B., Culvenor, D. S., Lovell, J. L., Newnham, G. J., Strahler, A. H.,

and Woodcock, C. E. (2009). Estimating forest lai profiles and structural

parameters using a ground-based laser called ‘echidna. Tree Physiol. 29,

171–181. doi: 10.1093/treephys/tpn022

Karan, M., Liddell, M., Prober, S. M., Arndt, S., Beringer, J., Boer, M.,

et al. (2016). The Australian supersite network: a continental, long-

term terrestrial ecosystem observatory. Sci. Total Environ. 568, 1263–1274.

doi: 10.1016/j.scitotenv.2016.05.170

Keith, H., Mackey, B. G., and Lindenmayer, D. B. (2009). Re-evaluation of forest

biomass carbon stocks and lessons from the world’s most carbon-dense forests.

Proc. Natl. Acad. Sci. U.S.A. 106, 11635–11640. doi: 10.1073/pnas.0901970106

Knyazikhin, Y., Song, W., Yang, B., Park, T., and Myneni, R. B. (2017). DSCOVR

EPIC Vegetation Earth System Data Record. Science Data Product Guide.

Kuusk, A. (2018). “Canopy radiative transfer modeling,” in Comprehensive

Remote Sensing. V. 3, Terrestrial Ecosystems, ed S. Liang (Elsevier), 9–22.

doi: 10.1016/B978-0-12-409548-9.10534-2

Leblanc, S. C., and Fournier, R. A. (2014). Hemispherical photography simulations

with an architectural model to assess retrieval of leaf area index. Agricult. Forest

Meteorol. 194, 64–76. doi: 10.1016/j.agrformet.2014.03.016

Leblanc, S. G. (2002). Correction to the plant canopy gap-size analysis theory used

by the Tracing Radiation and Architecture of Canopies instrument. Appl. Opt.

41, 7667–7670. doi: 10.1364/AO.41.007667

Leblanc, S. G., Chen, J. M., Fernandes, R., Deering, D. W., and Conley, A. (2005b).

Methodology comparison for canopy structure parameters extraction from

digital hemispherical photography in boreal forests. Agric. For. Meteorol. 129,

187–207. doi: 10.1016/j.agrformet.2004.09.006

Leblanc, S. G., Chen, J. M., White, H. P., Latifovic, R., Lacaze, R., and

Roujean, J. L. (2005a). Canada-wide foliage clumping index mapping from

multiangular POLDER measurements. Can. J. Remote Sens. 31, 364–376.

doi: 10.5589/m05-020

Leblanc, S. G., Chen, J. M., White, P. H., Cihlar, J., Roujean, J.-L., and Lacaze,

R. (2001). “Mapping vegetation clumping index from directional satellite

measurements,” in Proceedings of the Symposium on Physical Signatures and

Measurements in Remote Sensing, Aussois (Toulouse: CNES), 450–459.

Lowe, A. J., Phinn, S., Thurgate, N., Liddell, M., Lindenmayer, D., Byrne,

M., et al. (2016). Building a New Continental, Hierarchically-Scaled

Ecosystem Monitoring Network in Australia. Terrestrial Ecosystem Research

Infrastructures: Challenges, New Developments and Perspectives. Boca Raton,

FL: CRC Press | Taylor & Francis Group.

Lyapustin, A., Wang, Y., Korkin, S., and Huang, D. (2018). MODIS

Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765.

doi: 10.5194/amt-11-5741-2018

Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., McMurtrie,

R., et al. (2007). Estimation of leaf area index in eucalypt forest

using digital photography. Agricult. Forest Meteorol. 143, 176–188.

doi: 10.1016/j.agrformet.2006.10.013

Marshak, A., Herman, J., Adam, S., Karin, B., Carn, S., Cede, A., et al. (2018).

Earth observations from DSCOVR EPIC instrument. Bull. Am. Meteorol. Soc.

99, 1829–1850. doi: 10.1175/BAMS-D-17-0223.1

Neyland, M. G., Brown, M. J., and Su, W. (2000). Assessing the representativeness

of longterm ecological research sites: a case study at Warra in Tasmania. Aust.

Forest. 63, 194–198. doi: 10.1080/00049158.2000.10674831

Nilson, T. (1971). A theoretical analysis of the frequency of gaps in plant stands.

Agric. Meteorol. 8, 25–38. doi: 10.1016/0002-1571(71)90092-6

Nilson, T., Kuusk, A., Lang, M., Pisek, J., and Kodar, A. (2011). Simulation

of statistical characteristics of gap distribution in forest stands. Agric. For.

Meteorol. 151, 895–905. doi: 10.1016/j.agrformet.2011.02.009

Pisek, J., Govind, A., Arndt, S. K., Hocking, D., Wardlaw, T. J., Fang, H., et al.

(2015). Intercomparison of clumping index estimates from POLDER, MODIS,

and MISR satellite data over reference sites. ISPRS J. Photogram. Remote Sens.

101, 47–56. doi: 10.1016/j.isprsjprs.2014.11.004

Pisek, J., Lang, M., Nilson, T., Korhonen, L., and Karu, H. (2011). Comparison

of methods for measuring gap size distribution and canopy nonrandomness at

Järvselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agric.

For. Meteorol. 151, 365–377. doi: 10.1016/j.agrformet.2010.11.009

Pisek, J., Ryu, Y., Sprintsin, M., He, L., Oliphant, A. J., Korhonen, L., et al.

(2013). Retrieving vegetation clumping index from Multiangle Imaging

Frontiers in Remote Sensing | www.frontiersin.org 8 March 2021 | Volume 2 | Article 65243616

https://doi.org/10.5194/bg-13-5895-2016
https://doi.org/10.1016/j.jag.2020.102069
https://doi.org/10.1016/j.agrformet.2015.09.017
https://doi.org/10.1016/j.rse.2005.05.003
https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
https://doi.org/10.1364/AO.34.006211
https://doi.org/10.3402/tellusb.v55i2.16711
https://doi.org/10.1029/2010GB003996
https://doi.org/10.1139/cjfr-2018-0213
https://doi.org/10.1029/2019JD031488
https://doi.org/10.1111/gcb.13151
https://doi.org/10.1016/j.agrformet.2009.06.001
https://doi.org/10.1029/2019gl085942
https://doi.org/10.5194/bg-10-2011-2013
https://doi.org/10.1029/2018GL077560
https://doi.org/10.1016/j.rse.2011.12.008
https://doi.org/10.1016/j.rse.2011.04.003
https://doi.org/10.1016/j.rse.2018.02.041
https://doi.org/10.1093/treephys/tpn022
https://doi.org/10.1016/j.scitotenv.2016.05.170
https://doi.org/10.1073/pnas.0901970106
https://doi.org/10.1016/B978-0-12-409548-9.10534-2
https://doi.org/10.1016/j.agrformet.2014.03.016
https://doi.org/10.1364/AO.41.007667
https://doi.org/10.1016/j.agrformet.2004.09.006
https://doi.org/10.5589/m05-020
https://doi.org/10.5194/amt-11-5741-2018
https://doi.org/10.1016/j.agrformet.2006.10.013
https://doi.org/10.1175/BAMS-D-17-0223.1
https://doi.org/10.1080/00049158.2000.10674831
https://doi.org/10.1016/0002-1571(71)90092-6
https://doi.org/10.1016/j.agrformet.2011.02.009
https://doi.org/10.1016/j.isprsjprs.2014.11.004
https://doi.org/10.1016/j.agrformet.2010.11.009
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


Pisek et al. Clumping From EPIC

SpectroRadiometer (MISR) data at 275m resolution. Remote Sens. Environ. 138,

126–133. doi: 10.1016/j.rse.2013.07.014

Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X., Braswell,

R. H., et al. (2009). The MODIS (CollectionV005) BRDF/albedo product:

assessment of spatial representativeness overforested landscapes. Remote Sens.

Environ. 113, 2476–2498. doi: 10.1016/j.rse.2009.07.009

Ross, J. (1981). The Radiation Regime and Architecture of Plant Stands. The Hague:

Junk Publishers, 391. doi: 10.1007/978-94-009-8647-3

Ryu, Y., Baldocchi, D. D., Black, T. A., Detto, M., Law, B. E., Leuning, R., et al.

(2012). On the temporal upscaling of evapotranspiration from instantaneous

remote sensing measurements to 8-day mean daily-sums. Agricult. Forest

Meteorol. 152, 212–222. doi: 10.1016/j.agrformet.2011.09.010

Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T.

A., et al. (2011). Integration of MODIS land and atmosphere products

with a coupled-process model to estimate gross primary productivity and

evapotranspiration from 1 km to global scales. Global Biogeochem. Cycles 25.

doi: 10.1029/2011GB004053

Thomas, V., Noland, T., Treitz, P., and McCaughey, J. H. (2011). Leaf

area and clumping indices for a boreal mixed-wood forest: lidar,

hyperspectral, and Landsat models. Int. J. Remote Sens. 32, 8271–8297.

doi: 10.1080/01431161.2010.533211

Wang, Z., Schaaf, C. B., Sun, Q., Kim, J., Erb, A. M., Gao, F., et al.

(2017). Monitoring land surface albedo and vegetation dynamics

using high spatial and temporal resolution synthetic time series

from Landsat and the MODIS BRDF/NBAR/albedo product. Int.

J. Appl. Earth Obs. Geoinf. 59, 104–117. doi: 10.1016/j.jag.2017.

03.008

Warren Wilson, J. (1967). Stand structure and light penetration.

III. Sunlit foliage area. J. Appl. Ecol. 4, 159–165. doi: 10.2307/

2401415

Wei, S., and Fang, H. (2016). Estimation of canopy clumping index from

MISR and MODIS sensors using the normalized difference hotspot and

darkspot (NDHD) method: the influence of BRDF models and solar

zenith angle. Remote Sens. Environ. 187, 476–491. doi: 10.1016/j.rse.2016.

10.039

Wei, S., Fang, H., Schaaf, C. B., He, L., and Chen, J. M. (2019). Global 500m

clumping index product derived fromMODIS BRDF data (2001–2017).Remote

Sens. Environ. 232:111296. doi: 10.1016/j.rse.2019.111296

Woodgate, W., Armston, J. D., Disney, M., Suarez, L., Jones, S. D., Hill, M. J., et al.

(2017). Validating canopy clumping retrieval methods using hemispherical

photography in a simulated Eucalypt forest. Agricult. Forest Meteorol. 247,

181–193. doi: 10.1016/j.agrformet.2017.07.027

Woodgate, W., Jones, S. D., Suarez, L., Hill, M. J., Armston, J. D., Wilkes, P., et al.

(2015). Understanding the variability in ground-based methods for retrieving

canopy openness, gap fraction, and leaf area index in diverse forest systems.

Agric. For. Meteorol. 205, 83–95. doi: 10.1016/j.agrformet.2015.02.012

Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., et al. (2019). Review

of indirect optical measurements of leaf area index: recent advances,

challenges, and perspectives. Agricult. Forest Meteorol. 265, 390–411.

doi: 10.1016/j.agrformet.2018.11.033

Yang, B., Knyazikhin, Y., Mõttus, M., Rautiainen, M., Stenberg, P., Yan, L.,

et al. (2017). Estimation of leaf area index and its sunlit portion from

DSCOVR EPIC data: Theoretical basis. Remote Sens. Environ, 198, 69–84.

doi: 10.1016/j.rse.2017.05.033

Zhang, Y. Q., Chen, J. M., and Miller, J. R. (2005). Determining digital

hemispherical photograph exposure for leaf area index estimation.

Agricult. Forest Meteorol. 133, 166–181. doi: 10.1016/j.agrformet.2005.

09.009

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Pisek, Arndt, Erb, Pendall, Schaaf, Wardlaw, Woodgate and

Knyazikhin. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Remote Sensing | www.frontiersin.org 9 March 2021 | Volume 2 | Article 65243617

https://doi.org/10.1016/j.rse.2013.07.014
https://doi.org/10.1016/j.rse.2009.07.009
https://doi.org/10.1007/978-94-009-8647-3
https://doi.org/10.1016/j.agrformet.2011.09.010
https://doi.org/10.1029/2011GB004053
https://doi.org/10.1080/01431161.2010.533211
https://doi.org/10.1016/j.jag.2017.03.008
https://doi.org/10.2307/2401415
https://doi.org/10.1016/j.rse.2016.10.039
https://doi.org/10.1016/j.rse.2019.111296
https://doi.org/10.1016/j.agrformet.2017.07.027
https://doi.org/10.1016/j.agrformet.2015.02.012
https://doi.org/10.1016/j.agrformet.2018.11.033
https://doi.org/10.1016/j.rse.2017.05.033
https://doi.org/10.1016/j.agrformet.2005.09.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


ORIGINAL RESEARCH
published: 30 March 2021

doi: 10.3389/frsen.2021.645794

Frontiers in Remote Sensing | www.frontiersin.org 1 March 2021 | Volume 2 | Article 645794

Edited by:

Yingying Ma,

Wuhan University, China

Reviewed by:

Lei Li,

Chinese Academy of Meteorological

Sciences, China

Xiangao Xia,

Institute of Atmospheric Physics

(CAS), China

Weizhen Hou,

Chinese Academy of Sciences, China

*Correspondence:

Alexei Lyapustin

alexei.i.lyapustin@nasa.gov

Specialty section:

This article was submitted to

Satellite Missions,

a section of the journal

Frontiers in Remote Sensing

Received: 24 December 2020

Accepted: 01 March 2021

Published: 30 March 2021

Citation:

Lyapustin A, Go S, Korkin S, Wang Y,

Torres O, Jethva H and Marshak A

(2021) Retrievals of Aerosol Optical

Depth and Spectral Absorption From

DSCOVR EPIC.

Front. Remote Sens. 2:645794.

doi: 10.3389/frsen.2021.645794

Retrievals of Aerosol Optical Depth
and Spectral Absorption From
DSCOVR EPIC
Alexei Lyapustin 1*, Sujung Go 2, Sergey Korkin 3, Yujie Wang 2, Omar Torres 1, Hiren Jethva 3

and Alexander Marshak 1

1National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, United States, 2 Joint Center

for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, United States, 3Goddard Earth

Sciences Technology and Research, Universities Space Research Association, Columbia, MD, United States

A new algorithm is described for joint retrievals of the aerosol optical depth and spectral

absorption from EPIC observations in the UV—Vis spectral range. The retrievals are

illustrated on examples of the wildfire smoke events over North America, and dust storms

over greater Sahara region in 2018. An initial evaluation of single scattering albedo (SSA)

at 443 nm over these regions shows a good agreement with AERONET data, generally

within the uncertainty of AERONET SSA of ± 0.03. A particularly good agreement is

achieved for dust with R∼0.62, rmse∼0.02, negligible bias, and 85% points within the

expected error. This new capability is part of version 2 MAIAC EPIC algorithm. The v2

algorithm has recently completed reprocessing of the EPIC record covering the period

of 2015–2020.

Keywords: EPIC, MAIAC, aerosol, biomass burning, mineral dust, spectral absorption

INTRODUCTION

Absorption is an important aerosol property determining, along with its total loading,
aerosol-radiation and aerosol-cloud interactions (Boucher et al., 2013). High natural variability and
lack of detailed knowledge of aerosol absorption make it one of the largest sources of uncertainty in
assessments of aerosol direct radiative effects (DRE) (Samset et al., 2018; Thorsen et al., 2020) and
in current climate projections (IPCC: Climate Change, 2013). Information on spectral dependence
of aerosol absorption provides a pathway to the speciation of absorbing aerosol components and
chemical composition analysis (e.g., Schuster et al., 2016; Li et al., 2020b). The latest climate
multi-model analysis showed that uncertainties in the mineral dust iron content give rise to ∼85%
uncertainty of dust DRE estimates by the models (Li et al., 2020a). Composition analysis of aerosol
particles and investigation of toxicity and adverse health effects of different components is a central
goal of the future NASA MAIA (Multi-Angle Imager for Aerosols) mission (Diner et al., 2018).

Historically, the Total Ozone Monitoring Sensor (TOMS) and Ozone Mapping Instrument
(OMI) were the first spaceborne instruments providing initially qualitative, in form of UV Aerosol
Index (UVAI) (Herman et al., 1997; Torres et al., 1998), and later quantitative information on
aerosol absorption for cloud-free conditions (Torres et al., 1998, 2002, 2007, 2013, 2018; Ahn et al.,
2014; Jethva et al., 2014), and most recently for the characterization of aerosol above clouds (Torres
et al., 2012; Jethva et al., 2018). The UV channels of these sensors were the key for two main
reasons: (i) the surface is significantly darker than in the visible range, which reduces the respective
uncertainty, and (ii) higher Rayleigh and aerosol optical depth in the UV increases sensitivity to
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absorption via increase in the multiple scattering of light. On the
other hand, the UV range adds the uncertainty due to the aerosol
layer height sensitivity (Torres et al., 1998, 2013) which plays only
a minor role at longer wavelengths in the visible and near-IR.

The present OMAERUV algorithm of Aura/OMI retrieves
aerosol optical depth (AOD) and single scattering albedo (SSA)
using two channels, i.e., 354 and 388 nm. The algorithm relies
on an ancillary data on spectral dependence of absorption
compiled from different sources, including lab measurements
(Jethva and Torres, 2011) and seasonal/regional climatological
aerosol height from CALIOP CALIPSO observations (Torres
et al., 2013). Because of the aerosol height sensitivity, the
product is reported for several effective heights (0, 1.5, 3, 6,
and 10 km). OMAERUV is currently the baseline algorithm used
to process data from several instruments having UV capability,
including DSCOVR/EPIC, OMPS on SNPP platform, as well as
S5p/TropOMI (Torres et al., 2020), and GEMS (Kim et al., 2020)
imaging spectrometers.

The near-simultaneous multi-angle imagery (e.g., MISR)
extends the range of measurements and provides an additional
information on aerosol particle size, shape and absorption
(Kahn et al., 2010; Kahn and Gaitley, 2015). Finally, with
adding the polarization dimension, the multi-angle spectro-
polarimetric missions in development, such as MAIA (Diner
et al., 2018), multi-angle polarimeters on PACE (Remer et al.,
2019), or EUMETSAT EPS-SG/3MI (e.g., Fougnie et al.,
2020), are expected to provide the most advanced global
aerosol characterization including spectral refractive index, AOD
and size distribution, as demonstrated by the processing of
POLDER/PARASOL observations (Chen et al., 2020) with the
Generalized Retrieval of Atmosphere and Surface Properties
(GRASP) (Dubovik et al., 2011) algorithm.

In this work, we present a new approach to derive AOD
and spectral aerosol absorption from observations of the Earth
Polychromatic Imaging Camera (EPIC) onboard the Deep Space
Climate Observatory (DSCOVR) satellite located at Lagrange-1
(L1) point. Due to DSCOVR’s unique orbit, EPIC continuously
observes the entire sunlit side of the Earth in 10 narrowband
channels (317, 325, 340, 388, 443, 551, 680, 688, 764, and 779 nm)
and provides 10–12 observations for the same surface area from
dawn to dusk in summer, and 6–7 images in winter (Marshak
et al., 2018). Given a reliable characterization of spectral surface
reflectance by MAIAC, a well-calibrated set of EPIC’s visible (443
and 680 nm) and UV channels (340 and 388 nm) offers a unique
opportunity to simultaneously retrieve both optical depth (AOD)
and spectral absorption of aerosols.

Below, the new approach to derive AOD and spectral aerosol
absorption from EPIC is presented in section MAIAC EPIC
Processing Algorithm. Analysis of the global EPIC dataset for
2018 is provided for both biomass burning smoke and mineral
dust in sections Retrieval Examples From EPIC and AERONET
Validation. AERONET (Holben et al., 1998) validation of single
scattering albedo at 443 nm (SSA443) shows a good correlation
and retrieval accuracy comparable with AERONET product
uncertainty. This approach is a part of the v2 MAIAC EPIC
atmospheric correction algorithm described in detail in a
companion paper (Lyapustin et al., submitted).

MAIAC EPIC PROCESSING ALGORITHM

The current development takes advantage of the baseline EPIC
MAIAC algorithm over land, which includes cloud detection,
characterization of spectral regression coefficients (SRC), aerosol
retrievals with regional background aerosol models, and
atmospheric correction resulting in surface reflectance and
parameters of spectral bidirectional reflectance distribution
function (BRDF) model. Below, we provide a brief outline of the
standard MAIAC algorithm relevant to sections AOD - Spectral
Absorption Algorithm to Detection of Smoke and Dust that
introduce the new flexible inversion algorithm.

Outline of MAIAC Algorithm
MAIAC relies on a dynamic time series analysis, which helps
separate relatively static surface properties from aerosols and
clouds that are changing rapidly over time. Observing the same
surface area over time requires resampling data on a regular
spatial grid. In v2 MAIAC, we introduced a rotated Sinusoidal
projection that minimizes spatial distortions (for detail, see
Lyapustin et al., submitted). The original nadir spatial resolution
of EPIC is 8 km in the Blue band (443 nm) and 16 km in other
bands due to 2× 2 onboard aggregation. To raise the probability
of cloud detection and capture maximal aerosol variability, we
grid EPIC data to 10 km resolution. This results in oversampling
in all bands except 443 nm, but the overhead in processing is
minor given current computing resources. For simplicity, the
fixed grid cells are called “pixels” further on.

MAIAC cloud detection includes several steps. It starts with
traditional pixel-level spectral tests, including (1) the bright cloud
test based on fixed thresholds; (2) 3 × 3 standard deviation test
using pixel-specific thresholds, and (3) oxygen A and B-band
test for high clouds. The next level of cloud detection follows
aerosol retrievals: it filters high AOD values in 25 × 25 pixels
window using threshold being a function of the cloud fraction
in the spatial window. The final detection of residual clouds
takes place during the atmospheric correction, and is based on
the known spectral BRDF for each land pixel. For instance, it
filters pixels when the derived reflectance at 443 nm exceeds the
BRDF model prediction by more than 0.05. The last two steps
provide a significant enhancement to the cloud mask. As a result,
despite the coarse spatial resolution and lack of thermal channels,
the overall achieved quality of MAIAC EPIC cloud detection is
satisfactory for aerosol retrieval and atmospheric correction.

Retrieving spectral regression coefficient (SRC) is a central
part of MAIAC that ensures separation of the surface
and atmospheric signals in the top of atmosphere (TOA)
measurements, and is required for aerosol retrievals over
different land surface types globally. SRC is retrieved for cloud-
free pixels as a minimum value for the ratios ρ443/ρ680, ρ388/ρ680,
and ρ340/ρ388, where surface reflectance (SR) ρ is a result of
Rayleigh atmospheric correction (for detail, see Lyapustin et al.,
2018). To account for the angular dependence, the ratios are
characterized in 4 bins of the cosine of solar zenith angle between
0.3 and 1, for the morning and afternoon observations separately.
Because of higher uncertainties of atmospheric correction at
340 nm, and large difference in reflectance at 340 and 680 nm, we
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use the ratio 340/388 nmwhich is derived from observations near
the local noon. Through these three ratios, we have an assessment
of SR at 340, 388, and 443 nm from themeasured 680 nm for each
10 km grid cell. Figure 1 gives an example of SRC for the North
American continent for August 2018.

Following the MAIAC MODIS algorithm (Lyapustin et al.,
2018), EPIC aerosol retrievals use eight prescribed regional
aerosol models to represent global variability of aerosol
properties over land. For cloud-free pixels, the surface reflectance
at 443 nm is estimated from the red band, as described above, and
AOD443 is derived by matching the measured TOA reflectance.
Finally, for low to moderate atmospheric opacity (AOD443 <

1.2),MAIAC performs atmospheric correction and derives BRDF
from the accumulated set of up to 80 previous observations at
different angles.

AOD - Spectral Absorption Algorithm
With the knowledge of surface reflectance, we can use the
Blue and UV channels to retrieve both AOD and spectral
aerosol absorption. As mentioned before, spectral dependence
of absorption carries information on particles chemical
composition, including black-brown carbon partitioning for
smoke, or hematite/goethite content for the mineral dust. In
this work, spectral absorption is represented by a conventional
power-law expression (e.g., Bond, 2001; Kirchstetter et al., 2004),

kλ= k0(λ/λ0)
−b for λ<λ0, and kλ= k0 for λ≥λ0, whereλ0=680nm(1)

where k is an imaginary refractive index. In the limit of small
(fine mode) particles, the spectral absorption exponent (SAE) b
is related to the conventional Absorption Angstrom Exponent
(AAE) that defines spectral dependence of the aerosol absorption
optical depth (AAOD) as b ∼ AAE-1. Below, the term SAE will
be used to denote exponent b for convenience.

We are using Levenberg-Marquardt optimal fit algorithm
(Marquardt, 1963) to derive the unknowns (AOD443, k0,
b) by matching EPIC TOA reflectance at 340, 388, 443,
and minimizing:

F2 =
1

N

∑[
Lmλ − Ltλ

Lmλ

]2

= min{AOD443, k0, b}, (2)

where Lmλ and Ltλ are measured and theoretical values. The
retrievals are based on the look-up table (LUT) computed with
combination of vector code IPOL (Emde et al., 2015; Korkin
and Lyapustin, 2019) computing path reflectance and scalar
code SHARM (Lyapustin and Knyazikhin, 2002; Lyapustin, 2005)
generating atmospheric Green’s function, transmittance, and
spherical albedo.

The real refractive index (m) and size distribution for both
smoke and dust models are fixed. Specifically, the smoke model
uses m = 1.48 and a bimodal lognormal size distribution with
rvf = 0.14, σ vf = 0.4, rvc = 2.8, σ vc = 0.6, and Cvf/Cvc = 2.5.
Here, rv, σ v are the volumetric radius and standard deviation,
and Cv is the volumetric concentration for the fine (f) and coarse
(c) modes, respectively. The dust LUT uses model of randomly
oriented spheroids (Dubovik et al., 2006) withm=1.56, following

the dynamic model of Dubovik et al. (2002) for the Solar Village
site where the relative concentration of the coarse mode dust
grows rapidly with AOD.

The LUTs are generated on a 4 × 4 matrix of b = {0.1, 1.5,
3, 4} and k0 = {0.001, 0.006, 0.011, 0.016} for smoke and k0 =

{0.0006, 0.0014, 0.0022, 0.003} for dust. For each combination
of (k0, b), the standard sub-LUT is computed for 8 AOD443

nodes {0.2, 0.5, 0.8, 1.2, 1.8, 2.8, 4.2, 6.}, 18 values of cosine of
solar and view zenith angle from 0.15 to 1 with step 0.05, and 5
azimuths for the range 160–180◦ with step 5◦. The sub-LUT is
computed for 2 relative pressure levels, P = 1 and 0.7, for the
surface height interpolation.

Calculation of TOA reflectance for each nodal combination
(k0,i, bj, AODn) involves 4D-interpolation in view geometry and
surface pressure/height. Generating output for an arbitrary set of
parameters (k0, b, AOD) involves further tri-linear interpolation
over the respective nodes. The partial derivatives over these
parameters are also estimated using the neighbor nodes. Despite
this rather crude estimation of partial derivatives, the algorithm
generally features fast convergence on average within ∼1–3% of
the measurements. Overall, the developed LUT-based approach
is numerically optimized and very efficient, resulting only in
a fractional increase of the processing time compared to the
standard MAIAC EPIC algorithm.

Finally, to account for the dependence on the aerosol plume
height, we generated 2 smoke LUTs with an effective height at
1 and 4 km, generally representing the boundary layer aerosol
and the long-range transport. We make separate retrievals for
2 heights and report them for the biomass burning smoke. In
the v2 algorithm, the dust is represented by the boundary layer
aerosol only.

The described flexible inversion algorithm is applied when
AOD443 retrieved with the background aerosol model exceeds 0.6
or absorbing smoke or dust were detected (see section Detection
of Smoke and Dust). This cut-off was introduced based on
observation that our EPIC SSA443 retrievals are systematically
biased low at lower AOD compared to those for higher AOD
for the same events. A similar pattern is often observed in
AERONET inversion dataset, which points to a generic nature of
this artifact when, at lower AODwith higher role of uncertainties,
a better fit to the measurements is often achieved at higher
absorption. In certain cases, such pattern may, at least partially,
be explained by aerosol humidification at high relative humidity
accompanied by the increase of both AOD and SSA [e.g., Schafer
et al. (2014), Figure 12].

The described approach was developed for regions with pure
biomass burning or dust. A proper handling of cases with mixed
dust and biomass burning, prevalent, for instance, in sub-Saharan
Africa, will require further development.

Detection of Smoke and Dust
The OMI OMAERUV algorithm uses the UVAI to detect
absorbing aerosols, along with the ancillary AIRS (Atmospheric
Infrared Sounder) carbon monoxide (CO) serving as a
tracer of carbonaceous aerosols to separate from dust.
MAIAC uses a different, perhaps less flexible, approach
developed for MODIS, where dust is limited to known
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FIGURE 1 | SRC of the MAIAC EPIC algorithm for August 2018 for North America and Greenland (surface reflectance ratios): (A) 443/680; (B) 388/680; (C) 340/388.

Ratios (A,B) are shown for four cSZA bins labeled on the top from the morning on the left till the evening on the right. Ratio (C) is built from cloud-free measurements

within ± 2 h from the local noon.

FIGURE 2 | Illustration of flexible MAIAC EPIC retrievals for August 17, 2018. Shown are EPIC TOA RGB image, Aerosol Index (AI), and results of flexible retrievals for

smoke at 1 km effective height.

dust source regions (see Lyapustin et al., 2018), and the
smoke model is used globally elsewhere. Because cloud
edges and certain types of thin clouds often show spectral

signatures similar to those of dust, such an approach
was chosen in MAIAC to limit omission errors of cloud
detection globally.
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FIGURE 3 | Effect of assumed smoke height (1 or 4 km) on retrieved spectral absorption.

FIGURE 4 | Examples of flexible MAIAC EPIC retrievals for three different dust storms over Sahara region. The columns are the same as in Figure 2.

In v2 MAIAC EPIC algorithm, flexible inversion is performed
after cloud detection and standard aerosol retrieval with
associated residual cloud filtering. Designed to ensure high
quality of its main product—atmospheric correction—MAIAC

cloud filtering is rather conservative and often masks optically
thick smoke and dust. To avoid such filtering, v2 algorithm uses
AI > 4.5 for the initial identification of absorbing smoke. This
AI is generated internally, while the official UVAI EPIC product
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FIGURE 5 | AERONET validation of MAIAC EPIC AOD443 over North America in 2018. (A) standard MAIAC AOD (background model) for all 114 sites; (B) is equivalent

to (A) but for 103 sites with 11 bright sites excluded; (C) MAIAC AOD from flexible retrievals for 103 sites.

is reported by the EPIC aerosol algorithm [Marshak et al., 2018;
Ahn et al., in review]. While generally robust at moderate-to-
high values AI > 4.5–6, AI is often low for the weakly absorbing
smoke, e.g., from the Boreal forest fires or peat fires (e.g., Eck
et al., 2009, 2019) with AI∼1–2 where it cannot be used for
reliable separation from clouds. AI can also take high values
over some bright surfaces or over clouds, in particular at high
sun/view zenith angles.

To overcome these issues, we developed a separate, more
generic test for smoke detection. It relies on understanding
that due to progressively increasing multiple scattering toward
UV, aerosol absorption reduces atmospheric reflectance much
stronger at 340 nm compared to 443 nm. Thus, we make three
independent retrievals of AOD443 with the weakly absorbing
background aerosol model using observed reflectance at 443 nm
(τ 443443 ), 388 nm (τ 388443 ), and 340 nm (τ 340443 ). The surface reflectance
at each wavelength, required for AOD retrieval, is evaluated from
680 nm using MAIAC spectral ratios (SRC) (section Outline of
MAIAC Algorithm). Note that AOD is always reported at the
Blue band (443 nm, lower index) while the upper index indicates
the wavelength used to derive AOD443 from the measurements.
Spectrally increasing absorption caused by aerosol manifests in
the ratios τ 388443 /τ

443
443 and τ 340443 /τ

388
443 notably below 1, while over

non-absorbing clouds they are close to 1. Analysis of different
smoke events shows that threshold 0.8 for both ratios detects the
majority of smoke events even when the AI is low, and ensures
robust separation from clouds, thus complementing the AI-based
smoke detection.

We apply the described approach for dust detection in the
dust regions as well, but only when the surface is sufficiently
dark, or when the associated parameter AOD uncertainty (for
definition, see Lyapustin et al., 2018) is low (<0.1). Because most
world deserts are bright and a single-band, single-angle AOD
retrieval is unstable, we use the test AI > 3.5 as the baseline for
dust detection.

Below, we provide examples and AERONET validation
analysis for the wildfire smoke and mineral dust based

on processed EPIC 2018 data over North America and
Sahara/Middle East regions, respectively.

RETRIEVAL EXAMPLES FROM EPIC

Biomass Burning
With an overall increase in the wildfires over the last decades,
2018 witnessed a number of significant fire events, with the
largest in August on the West Coast and central USA and in
September in Alaska. In the first case, the smoke was injected
above the boundary layer and was transported across the USA,
reaching the East Coast.

Figure 2 shows an example of consecutive EPIC RGB images
andMAIAC products from flexible retrievals, including AOD443,
k0, b, and resulting single scattering albedo SSA443. One can
see that except extreme angles, the results are rather stable
with variation of the viewing geometry. At high zenith angles,
parameters b and k0 often change in the opposite directions, b
decreases and k0 increases while keeping SSA443 approximately
constant. The reported absorption values are typical and
agree well with the range of values reported in AERONET
climatological analyses (e.g., Giles et al., 2012).

The result in Figure 2 corresponds to aerosol in the boundary
layer (mean height of 1 km). Figure 3 compares retrievals for
smoke at 1 km and 4 km. The difference is significant. The higher
single scattering albedo at 4 km reflects an obvious fact that it
takes less absorption for the elevated smoke (with less Rayleigh
atmosphere above) to create the same reduction in the reflected
intensity as compared to the smoke near the surface. This is
supported by a notably lower baseline absorption k0 for smoke
at 4 km, which is a proxy of spectrally neutral component of
absorption, or a black carbon (e.g., Schuster et al., 2016). The
observed spectral dependence (SAE, or b) for the elevated smoke
may be smaller, similar, or larger than that at 1 km. For instance,
b4km is lower for August 13, but it is slightly higher for the August
16 and 17. Analysis of all large wildfires in 2018 observed by EPIC
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FIGURE 6 | Site-level AERONET validation of MAIAC EPIC SSA443 over North America in 2018 for the effective aerosol height of 1 km.

shows that SSA443 is always higher for the lofted smoke, inverse
being true for k0.

Thus, the role of aerosol height cannot be overestimated: not
only it changes the total aerosol absorption, by up to 0.02–0.05 for
SSA443 in cases considered, but it also affects the interpretation of
the results regarding aerosol chemical composition. For instance,
the lower baseline absorption (k0) and higher SAE for the lofted
smoke would be interpreted as less black andmore brown carbon
as compared to the boundary layer smoke.

Mineral Dust
North Africa is a very active part of the world responsible
for about 60% of the total global dust emissions (Tanaka and
Chiba, 2006). We selected three episodes shown in Figure 4.
The top row shows dust originating from the Bodélé depression

on January 1, 2018. Bodélé represents a dry salt lake bed
with very low hematite content or lack of thereof. It shows
a very low absorption (b, k0) and high SSA443∼0.94–0.96. It
is interesting to note that a separate dust source is located
right south of Bodélé with dust blown at a small angle (∼15◦)
to the main Bodélé source in the South-West direction. The
visual analysis shows that it has a yellow color in contrast
to Bodélé’s white dust. Figure 4 shows that EPIC resolves
higher absorption and lower single scattering albedo (by ∼0.03–
0.05) from this satellite source. Such difference in absorption
is distinct in the plume right at the source as well as in
the “dust cloud” several hundred km downwind, which was
emitted earlier.

The middle Figure 4 shows a dust mega-storm from Arabian
Peninsula covering nearly the entire Sahel region for several days
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FIGURE 7 | The same as Figure 6 but for the effective aerosol height of 4 km.

in late March–early May 2018. It features a moderate absorption
typical for most dust emission sources in Sahara. On March 30
shown here, the Bodélé source was also active. Mixing of the
respective white dust with the main dust plume shows as a well-
resolved reduction in the total absorption, especially visible in
lower SAE (b) and increased SSA.

Finally, the bottom row shows results for May 29 for the dust
storm in West Africa. It is characterized by the highest spectral
dependence of absorption (SAE) and lowest SSA in the Blue-UV
range, indicating enhanced hematite content.

These examples show that v2 MAIAC EPIC provides a new
information on spectral absorption with sufficient resolution and
accuracy to differentiate sources and a change of absorption
properties from the downwind mixing.

AERONET VALIDATION

To assess accuracy of the flexible retrieval algorithm, we
performed validation analysis using AERONET version 3 (Giles
et al., 2019) level 1.5 AOD data with improved cloud screening.
MAIAC EPIC AOD443 data were limited to cosines of view and
solar zenith angles above 0.45. We used average MAIAC AOD
collocated in space and time within± 20 km and± 30min for all
AERONET stations, respectively.

Biomass Burning
AOD validation for North America in 2018 shows correlation
coefficient R > 0.8 for most sites. An exception is the
Rocky Mountain region and south-west USA, where the
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FIGURE 8 | A summary AERONET validation of MAIAC EPIC SSA443 over North America in 2018 for the effective aerosol height of 1 km (A) and 4 km (B).

low background AOD and its low variability, exacerbated by a
bright surface, result in lower R-values and a bias of ∼0.15. This
is typical for all sensors, including MODIS [e.g., see validation
study by Jethva et al. (2019)]. It should be mentioned that
such conditions are particularly challenging for EPIC making
observations 4–16◦ from the retro-scattering direction where
surface brightness is near its peak due to reduced shadowing.
Figure 5 shows the summary validation ofMAIACEPICAOD443

over North America in 2018. The first scatterplot (a) shows
validation of standard MAIAC AOD (background model) for all
114 sites. The middle plot shows the same result for the reduced
number of 103 sites where 11 sites with bright surface were
excluded (Bakersfield; Goldstone; KeyBiscayne; Neon_ONAQ;
Railroad Valley; Sandila_NM_PSEL; TableMountain_CA;
Tucson; UACJ_UNAM_ORS; White_Sands_HELSTF; Yuma).
Located in arid regions with generally low cloudiness, these 11
sites contribute disproportionate ∼19% of the total matching
points. With this exclusion, plot (b) shows improvement in all
parameters of validation statistics. Finally, the last plot (c) shows
validation of MAIAC AOD from flexible retrievals for 103 sites.
In this case, we used results for the 1 km aerosol height, which
are not generally representative. Nevertheless, flexible retrievals
generally correct the low bias at high AOD values and raise R to
0.85 from 0.81.

Validation of the single scattering albedo is shown in
Figures 6, 7 for 17 AERONET/NEON sites with more or less
significant statistics of at least 5 points. To enhance matchups,
we extended the spatio-temporal range to ± 30 km and ± 3 h,
and require at least 50% valid MAIAC retrievals in the spatial
window. The results are shown in two groups, for aerosol at
1 km (Figure 6) and 4 km (Figure 7). Except Rexburg_Idaho and
Waskesiu representing the boundary-layer aerosol, all other sites

show a much better agreement with AERONET at 4 km, thus
representing lofted smoke. While most sites indicate a general
agreement with AERONET within stated uncertainty of ± 0.03,
several sites, such as Missoula, Table_Mountain, Neon_Cvalla,
Waskesiu (at 1 km) show a meaningful correlation.

A summary validation (Figure 8), representing points with
AOD443 > 0.6, once again confirms that for the most part, the
smoke was lofted. 73.6% of results at 4 km fall within the expected
error (EE) of± 0.03.

Mineral Dust
Validation of SSA443 over desert dust sites from North Africa and
partly, the Middle East, is shown in Figure 9. The collocation
criteria were similar to the smoke case but with AERONET
AOD0.44 > 0.4. Contrary to the analysis for smoke, the dust
sites show a significantly better correlation with AERONET.
More than half of 17 sites show a good correlation, whereas a
good general agreement within EE is seen for the majority of
sites. Among exceptions are Ilorin representing mixture of dust
and biomass burning, to some extent, Mongu which has mostly
biomass burning aerosol with some dust contribution, and
Cairo_EMA_2,where EPICmay have an issue of unresolved sub-
pixel water contribution combined with a few AERONET values
anomalously low for the pure dust. As v2MAIAChas dust at 1 km
effective height only, the good overall agreement with AERONET
indicates that the boundary layer dust provides a significant
contribution to the measured TOA radiance, complementing
that from the elevated dust layers playing an important role in
the dust transport across Atlantic. We plan to optimize reporting
layers for smoke and dust in the next version of algorithm based
on extended EPIC data analysis.
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FIGURE 9 | Site-level AERONET validation of MAIAC EPIC SSA443 over north Africa/Middle East in 2018.

Figure 10 displays the summary results. Plots (a) and
(b) show comparison with AERONET SSA using thresholds
AERONET AOD0.44 > 0.4 and > 0.6, respectively. Regarding
SSA, Jethva et al. (2014) suggested using the term “comparison”
rather than validation “because both inversion techniques involve
assumptions.” Using higher AERONET AOD cutoff filters a
number of low outliers in AERONET retrievals. This becomes
obvious when we exclude 2 sites with a poorer agreement,
Cairo_EMA_2 and Ilorin. The resulting plot (c) shows an
excellent agreement for SSA443 with R = 0.62, rmse = 0.021,
negligible bias, and EE= 85%.

Spectral Dependence of Absorption
Unlike the described validation of SSA443, a direct comparison
of spectral dependence of absorption against AERONET is

associated with much higher uncertainties. First, an assessment
of the AERONET inversion products (Dubovik and King,
2000) states a 30–50% accuracy for the imaginary refractive
index at AOD440 > 0.4, with uncertainties being higher for
the coarse mode dust and optically thin aerosols. Second, v2
MAIAC derives SAE (parameter b) from the 340–443 nm range,
whereas AERONET provides refractive index for the non-
overlapping range of wavelength range 440–1,020 nm. Both,
Extinction and Absorption Angstrom Exponents depend on
selected pair of wavelengths or spectral interval of evaluation
(e.g., Moosmüller and Chakrabarty, 2011), which should hold
true for the imaginary refractive index as well. Besides all that,
the curvature of absorption is higher in the UV for hematite (e.g.,
Sokolik and Toon, 1999; Wagner et al., 2012) and in particular
for brown carbon (e.g., Kirchstetter et al., 2004; Chen and Bond,
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FIGURE 10 | A summary AERONET validation of MAIAC EPIC SSA443 over North Africa/Middle East in 2018. Plots (A,B) represent all 17 sites with AERONET AOD440

> 0.4 and > 0.6, respectively. Plot (C) is equivalent to (B) but for 15 sites, with Cairo_ENM_2 and Ilorin excluded.

FIGURE 11 | A comparison of spectral dependence of absorption between AERONET and v2 MAIAC EPIC for smoke (top) and dust (bottom). The AERONET results

correspond to AOD440 > 0.4. The blue line on top, approximating MAIAC EPIC results, serves to illustrate the difference in absorption at 440 nm with AERONET.
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2010) as compared to the vis-NIR spectral range. For this reason,
we provide only a qualitative assessment of spectral dependence
of v2MAIACEPIC vs. AERONET. Following the idea of Figure 4
in Schuster et al. (2016), Figure 11 shows k440-k670 plots for the
North America smoke (top) and north Africa dust (bottom).
For AERONET, parameter b was computed with Eq. (1) from
the imaginary refractive index at 440 and 670 nm. In turn, EPIC
values k440, k670 were computed from (k0, b). In both cases, the
value of parameter b+1 is indicated by the color.

For both smoke and dust cases, EPIC data occupy a much
smaller range of values. The results for dust are quite similar with
AERONET. EPIC showsmore variation at 440 nm in comparison
to 670 nm than AERONET. On the other hand, AERONET has
data at k670 > 0.003 where EPIC has none. According to Schuster
et al. (2016), data points with high absorption in the Red-NIR
should represent a mixture of dust with carbonaceous aerosols.

In case of smoke, EPIC displays much higher values of SAE
(b) than AERONET, which is expected from the properties
of brown carbon where EPIC’ sensitivity to parameter b
mainly comes from the two UV channels. This is indicated
by both the color of points and the offset along the y-axis, as
illustrated by the blue line. Despite these expected differences,
this comparison indicates an overall robust performance of the
developed algorithm.

CONCLUSIONS

This paper described a new algorithm for joint retrievals of
the aerosol optical depth and spectral absorption from EPIC
observations in the UV–Vis spectral range. The retrievals were
illustrated on examples of the wildfire smoke events in North
America, and dust storms over the greater Sahara region in
2018. An initial validation of SSA443 over these regions shows
a good agreement with AERONET data, generally within the
uncertainty of the AERONET product of ± 0.03. For many
AERONET sites, in particular those influenced by dust, retrieved
SSA shows a good site-level regression with R∼0.5–0.8. This
fact is important given that it is easier to demonstrate good
correlation at continental or global scales due to a significant
variation of aerosol types and absorbing properties. Despite the
near-backscattering EPIC view geometry, generally unfavorable
for aerosol retrievals because of high surface reflectance, EPIC’s
high rate of observations providing good surface characterization
and a well-selected combination of UV-Vis bands allowed us to
achieve an overall good quality of aerosol characterization. The
global validation of v2 MAIAC flexible retrieval products based
on full EPIC record and comparison with other satellite datasets
will be provided elsewhere.

The described flexible inversion algorithm is part of the v2
MAIAC EPIC algorithm. The v2 re-processing of the full EPIC’s

record 2015–2020 has recently been completed and the products
will be released soon. The v2 dataset includes AOD443, SSA443,
SAE (or b), and k0 as part of MAIAC’s standard output provided
in HDF5 format. The results of flexible retrievals are reported
for two aerosol effective heights (1, 4 km) for smoke and for one
height (1 km) for dust. The full list of MAIAC EPIC products is
given in the companion paper of this Special Issue.

Current work points to two directions of high practical value,
which we plan to explore in our future research. The first
one is a simultaneous evaluation of the aerosol layer height
from EPIC’s A and B oxygen absorption bands. Although
Xu et al. (2017) developed aerosol height algorithm over the
dark ocean and Xu et al. (2019) demonstrated a possibility
of the wildfire smoke height retrieval over the vegetated land,
systematic and reliable aerosol layer height retrieval from EPIC
over land remains challenging. Such retrieval requires a good
cloud detection and knowledge of both surface reflectance and
optical properties of aerosol. This information is currently
provided by the v2 MAIAC algorithm. The second direction
relates to the aerosol speciation of the airborne smoke and
dust, based on spectral absorption. Such information would
complement current datasets from the AERONET inversion
products (Schuster et al., 2016) and from POLDER/PARASOL
measurement record processed by the GRASP Components
algorithm (Li et al., 2019).
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Calibration of the DSCOVR EPIC
Visible and NIR Channels using
Multiple LEO Radiometers
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The first five years of operation of the Deep Space Climate Observatory (DSCOVR) Earth
Polychromatic Imaging Camera (EPIC) at the Lagrange one point have produced results
that uniquely complement the data from currently operating low orbit Earth-observing
instruments. In this paper we describe an updated unified approach to EPIC calibration. In
this approach, calibration coefficients and their trends were obtained by comparing EPIC
observations to the measurements from polar orbiting radiometers. In this study L1B
reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the
Aqua and Terra satellites, Multi-angle Imaging Spectroradiometer (MISR) onboard Terra
and Visible Infrared Imaging Radiometer (VIIRS) onboard the Suomi National Polar-orbiting
Partnership (Suomi NPP) spacecraft were used to infer calibration coefficients for four EPIC
visible and near-infrared channels: 443 nm, 551 nm, 680 nm, and 780 nm. EPIC Version
three measurements made between June 2015 and August 2020 were used for
comparison. The calibration procedure identifies the most homogeneous low Earth
orbit radiometer scenes matching scattering angles that are temporarily and spatially
collocated with EPIC observations. These scenes are used to determine reflectance to
count (R/C) ratios in spectrally analogous channels. Seasonal average R/C ratios were
analyzed to obtain EPIC calibration gains and trends. The trends for the full dataset period
are not statistically significant except in the 443 nm channel. No significant changes in
calibration were found after the instrument’s exit from safe hold in March 2020. The R/C
ratios were also used to determine the differences in EPIC gains resulting from separate
calibrations: against MODIS Aqua or Terra, as well as against forward or aftward MISR
cameras. Statistical tests indicate that the differences between the two datasets are not
significant except in the 780 nm channels where Aqua-derived coefficients may be around
2% lower compared to Terra. The dependence of EPIC calibration gains on the instrument
scattering angle and on DSCOVR-Earth distance were investigated. Lastly, model Low
Earth Orbit (LEO) reflectances calculated to match the EPIC viewing geometry were
employed to study how EPIC calibration coefficients depend on EPIC-LEO viewing
geometry differences. The effect of LEO and EPIC angular mismatch on calibration
was shown to be small.

Keywords: deep space climate observatory/earth polychromatic imaging camera, calibration, moderate resolution
imaging spectroradiometer, multi-angle imaging spectroradiometer, visible infrared imaging radiometer
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INTRODUCTION

The Deep Space Climate Observatory (DSCOVR) spacecraft
actively maintains itself in a Lissajous orbit around the
Lagrange point L1 between the Sun and the Earth at about
1.5 million kilometers from Earth (Marshak et al., 2018). From
this position the DSCOVR Earth Polychromatic Imaging Camera
(EPIC) views the entire sunlit Earth’s hemisphere in ten narrow
spectral channels ranging from UV to near IR 10 (in winter) to 22
(in summer) times a day. The Earth-observing geometry of the
EPIC instrument is close to backscattering: the scattering angle
varies between 168 and 178°. EPIC’s viewing geometry differs
significantly from instruments on sun-synchronous orbits for
which only a small portion of Earth views occurs in the
backscattering region. For comparison, depending on the
season, latitude and scan view angle, the scattering angle for
MODIS is typically in a wide range between 110 and 175°. The
Suomi-NPP VIIRS instrument, due to its wider scan, covers an
even larger range of angles, including the whole backscattering
region. The near-backscattering EPIC observations are a direct
consequence of its position at L1.

We previously reported Geogdzhayev and Marshak, (2018)
EPIC calibration coefficients based on comparisons with MODIS.
Since then, Version 3 EPIC L1b data has become available.
Compared to Version 2, significant improvements were made
in geolocation and flatfield correction (Kostinski et al., 2021). A
number of L2 products were developed from EPIC observations.
In this paper we describe an improved, more robust version of the
intercalibration algorithm and apply it to data from four low
Earth orbit (LEO) radiometers. In addition, we analyze trends
and sources of variability in the derived calibration.

Thanks to its unique vantage point and spatial and temporal
Earth coverage, EPIC remote sensing observations have been
used in such applications as the retrieval of aerosol, cloud, sulfur
dioxide and ozone amounts and vegetation properties Marshak
et al., (2018), as well as ocean color products (Gao et al., 2019). In
addition, EPIC data have been employed to observe volcanic
clouds Carn et al. (2016, 2018), analyze the global distribution of
erythemal irradiance Herman et al. (2020); Herman et al. (2018a),
and observe solar eclipse irradiance changes (Herman at al.,
2018b). EPIC observations in the backscattering region have
been used to observe and characterize the glint caused by
oriented ice crystals in clouds Varnai et al. (2020); Marshak
et al. (2017), retrieve cloud properties Yang et al. (2013); Yang
et al. (2019); Yin et al. (2020), ozone Herman et al. (2018a) and
vegetation properties (Marshak et al., 2017; Yang et al., 2017).
More EPIC-related research papers may be found here: https://
epic.gsfc.nasa.gov/science/pubs.

Most of the above applications rely on radiometric calibration
of the EPIC measurements. The lack of in-flight calibration
capabilities necessitates a comparison of EPIC Earth
observations with well-calibrated measurements from
radiometers in polar and geostationary orbits. In addition, the
images of the Moon regularly observed by the instrument may
also be employed for calibration.

In this study we employ EPIC measurements combined with
collocated Level 1b TOA reflectances from the Moderate

Resolution Imaging Spectroradiometer King et al. (2003) on-
board the Aqua and Terra satellites, the Multi-angle Imaging
Spectroradiometer Diner et al. (2005) on-board Terra and the
Visible Infrared Imaging Radiometer Suite Cao et al. (2014),
which is part of the Suomi National Polar-orbiting Partnership
(NPP), to derive the calibration coefficients in four EPIC visible
and near-infrared (NIR) channels. These instruments were
chosen for comparison because of their well-established
calibration record and wide use in the remote sensing
applications. Contemporaneous data from these instruments
are available for the entire period of the DSCOVR mission.
Using these data, we derive calibration gains for the latest
Version 3 release of the EPIC data.

DATA

Version 3 data EPIC L1B data were obtained from the NASA
EOSDIS OpeNDAP data server at https://opendap.larc.nasa.gov/
opendap/. The EPIC sampling size at nadir (at the center of the
image) is about 8 km × 8 km (10 km × 10 km when the EPIC
point spread function is applied) and increases toward the edges.
The radiometric resolution of the EPIC data is 12 bits per pixel.
To reduce the amount of data transmitted from DSCOVR, for all
but the blue channel (443 nm), four pixels are averaged on-board
the spacecraft resulting in an effective spatial resolution at nadir
of approximately 18 km.

We use MODIS Aqua and Terra L1B Collection 6.1 1 km
reflectances obtained from the Level-1 and Atmosphere Archive
and Distribution System (LAADS) Distributed Active Archive
Center (DAAC). Note that the MODIS reflectance, as well as the
EPIC one, is the true TOA reflectance multiplied by the solar
zenith angle (MODIS Characterization Support Team, 2006). We
will refer to this quantity simply as “reflectance” and will use it for
all radiometers. MODIS also has a radiometric resolution of 12
bits per pixel and calibration design requirements of 2% for
reflectance and 5% for radiance in the solar bands (Toller et al.,
2013). MODIS instruments have a cross-track swath width of
2,330 km. The equator crossing times are 10:30 AM and 1:30 PM
forMODIS Terra and Aqua, respectively. We note here that while
we used publicly available MODIS L1B data obtained from
LAADS DAAC, additional calibration for Terra and Aqua is
performed in MODIS Land discipline processing. This additional
calibration includes polarization correction of Terra data based
on Ocean Biology Processing Group Kwiatkowska et al. (2008),
de-trending for both Terra and Aqua, and gain adjustment for
Terra (cross-calibration to Aqua). These coefficients come from
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) group’s calibration over deserts sites (Lyapustin
et al., 2014). This additional calibration was not used in this study.

The MISR ellipsoid-projected L1B2 radiance product
(MI1B2E) data were obtained from the Atmospheric Science
Data Center (ASDC) DAAC. MISR uses 14-bit quantization and
has an instrument specification for radiometric accuracy of 3% at
maximum signal (Bruegge et al., 2002). The global mode data are
provided at 1.1 km spatial resolution for all nine cameras in blue
(446 nm), green (558 nm), and NIR (866 nm) channels and for
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the nadir camera in the red (672 nm) channel. The off-nadir red
channel data provided at 275 m resolution were downsampled to
1.1 km to match the other channels/cameras. MISR is onboard
the Terra satellite and thus has identical equator crossing time as
MODIS Terra. Among the LEO instruments considered in this
paper it has the narrowest swath of 360 km in the cross-track
direction.

The VIIRS Level 1 data were downloaded from the Level-1 and
Atmosphere Archive and Distribution System (LAADS) DAAC.
The moderate resolution (750 m) channels M3 (448 nm), M4
(555 nm), M5 (672 nm) andM7 (865 nm) were used in this study.

VIIRS radiometric accuracy requirement is 2% in reflectance of a
typical scene radiance (JPSS Level 1 Requirements Document,
2016). The VIIRS daytime equator crossing time is similar to
MODIS Aqua, at 1:30 PM. The instrument is on a higher orbit
compared to Terra and Aqua satellites and has a wide swath of
3,060 km, sufficient to eliminate data gaps from adjacent orbits in
the tropics.

The matching of EPIC channels to those of the LEO
instruments is summarized in Table 1. The table also includes
the position and bandwidth of the channels.

Figure 1 compares the normalized filter functions of the four
instruments to the corresponding EPIC channels. The curves for
the matching channels are marked by the same color. As one can
see from the figure, EPIC channels are significantly narrower
compared to the channels of LEO radiometers. The best spectral
match is for the overlapping green channels, while the largest
spectral difference, of about 80 nm, is observed between the NIR
channels. The central wavelength of the EPIC NIR channel is
significantly shorter compared to the LEO radiometers. While the
locations of the green and NIR spectral channels are similar
among the LEO radiometers, there are differences in positions of
the blue channels. Compared to MISR and VIIRS the red channel
of MODIS is shifted toward the shorter wavelengths. We note
that the spectral channels used for intercomparison in this study
are not exhaustive. Other MODIS and VIIRS channels, such as
VIIRS M6 (745 nm) and MODIS Band 15 (748 nm) ocean color
bands in near IR, may be employed for this purpose.

METHODS

The first step for the derivation of EPIC calibration coefficients is
to identify favorable LEO scenes. This process is illustrated by
Figure 2 for MODIS (upper panel), MISR (middle panel) and
VIIRS (lower panel). All EPIC observations are made in the
backscattering region, while for the LEO instruments only a small
fraction of the pixels have similar viewing geometry.We therefore
begin by selecting pixels that match the EPIC scattering angle to
within 1.5°. LEO radiometer pixels that satisfy this criterion form
a ring on the Earth surface, shown as white areas in Figure 2.
Compared to the EPIC Version 2 calibration approach
Geogdzhayev and Marshak, (2018), the angular match
threshold was relaxed to increase the number of matching

TABLE 1 | EPIC-MODIS-MISR-VIIRS channel correspondence. Midpoint wavelengths are band-averaged values. For simplicity, for the rest of the paper we will call the EPIC
NIR channel 780 nm.

EPIC channel (full
width in nm)

MODIS channel Midpoint
(bandwidth)

MISR channel Midpoint
(bandwidth)

VIIRS channel Midpoint
(bandwidth)

443 ± 1 nm (3 ± 0.6) 3 Blue M3
466 nm (19 nm) 446 nm (42 nm) 448 nm (20 nm)

551 ± 1 nm (3 ± 0.6) 4 Green M4
554 nm (20 nm) 558 nm (29 nm) 555 nm (20 nm)

680 ± 0.2 nm (3 ± 0.6) 1 Red M5
646 nm (48 nm) 672 nm (22 nm) 672 nm (20 nm)

779.5 ± 0.3 nm (2 ± 0.4) 2 NIR M7
857 nm (38 nm) 866 nm (40 nm) 865 nm (39 nm)

FIGURE 1 |MODIS (upper panel), MISR (middle panel), VIIRS (lower
panel) spectral response functions normalized to the maximum value for the
channels used in this study are shown by wide curves. Repeated on each
panel are the corresponding EPIC channels (narrow curves).
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fully filled scenes away from the ring borders. Due to the relatively
narrow width of the MISR cross-track swath, matching areas are
often found on the edge of the scan, as illustrated in the middle
panel of Figure 2, where the dark area in the upper right part of
the image is outside of theMISR swath. Tomitigate this effect, the
scattering angle matching threshold was relaxed to 3°. We ran
tests usingMODIS data to evaluate the effect of such a change and
did not find it to be significant. Among the selected pixels, we
retain those taken within 7 min of the EPIC image. These pixels
are shown as dots in the white areas of the images of Figure 2.
There are time lags in the data acquisition between different EPIC
spectral channels associated with the rotation of the filter wheels:
∼3 min difference between blue (443 nm) and green (551 nm),
and ∼4 min between blue and red (680 nm) (Marshak and
Knyazikhin, 2017). Therefore, the temporal collocation is done
separately for each spectral channel. The solar zenith angle (SZA)
of all matching pixels is limited to 60° to exclude scenes with low
illumination and scenes where the curvature of the Earth may
complicate the comparison. Pixels within 40° of the glint angle
over ocean are excluded as well. For each EPIC pixel that matches
the above criteria we identify LEO radiometer pixels that fall
within an approximately 25 km radius. Scenes are retained for
further analysis if at least 2/3 of the 25 km neighborhood is
covered with valid LEO radiometer pixels (one such scene is
represented by a gray circle on each of the upper and lower panels
of Figure 2). This requirement was introduced in the current
version of the algorithm and serves to exclude sparsely populated
scenes that can have more variability, thus introducing more

noise in comparisons. For each matching scene we calculate the
mean and relative standard deviation (defined as the ratio of the
standard deviation to the mean) for the matching LEO
radiometer pixels within the 25 km radius. We also calculate
the standard deviation for the 5 × 5 EPIC pixel neighborhood.
The values of the relative standard deviation are used to select the
most homogeneous scenes.

The differences in the position and spectral width of the
corresponding EPIC and LEO radiometer channels illustrated
in Figure 1 may cause discrepancy when a scene is observed
by the two orbit types (Chander, 2013). This discrepancy is
generally a function of the scene’s spectral signature and may
result in both noise and systematic errors of calibration. As in
the previous V2 calibration procedure, in this work we
compensate for these differences by employing spectral
band adjustment factors (SBAFs), which convert MODIS,
MISR and VIIRS TOA reflectance values to equivalent
EPIC reflectances for various surface types. These factors,
in the form of linear regression coefficients, were obtained
from the database available at https://cloudsgate2.larc.nasa.
gov/cgi-bin/site/showdoc?mnemonic � SBAF; they are based
on the analysis of the SCIAMACHY hyperspectral data for
various surface targets and account for the differences in
radiometer’s spectral response functions (Scarino et al., 2016).

In addition, we used the same source to identify the range of
reflectance values for each scene type. LEO radiometer’s pixels
were adjusted if their reflectance was within this range using the
SBAFs for the appropriate land cover type. For scenes with

FIGURE 2 | Examples of matching EPIC-LEO instrument scenes. Top, middle and lower panels show selected areas of MODIS, MISR and VIIRS images (green
channel reflectances), respectively. MODIS image is approximately 400 km in the cross-track dimension and 2,000 km long and is centered on 24.5°S and 51.1°E. MISR
image is approximately 250 km in the cross-track dimension and 1,750 km long and cetered at 17.1°S and 141.61°E. VIIRS image is approximately 330 km in the cross-
track dimension and 2,200 km long and cetered at 27.5°N and 43.9°E Areas of matching scattering angles are shown in white. Black dots on white are EPIC pixels
that are temporarily and spatially collocated with LEO instrument pixels. Gray circles on the upper lower panel shows the 25 km vicinity of single EPIC pixels. Cross-track
direction is approximately vertical. Dark upper-right region in the middle panel is outside of the MISR swath. White streaks on top of the lower panel are due to VIIRS bow-
tie effect.
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reflectance higher than 0.6 we used the deep convection cloud
spectral corrections. Land cover types were taken from a data set
developed by Channan et al. (2014). The dataset is a .5 x .5-degree
reprojected version of the Global Mosaics of the standardMODIS
land cover type data product (MCD12Q1) in the IGBP Land
Cover Type Classification. Separate adjustment factors were used
for each of the four LEO instruments.

The EPIC calibration coefficients may be derived from the
matching scenes using two methods (Geogdzhayev and Marshak,
2018). The first one involves calculating the linear regression
between EPIC counts/sec and LEO reflectances for the most
homogeneous scenes. The second involves finding the mean
reflectance/count (R/C) ratio for bright homogeneous scenes
(LEO reflectance greater than 0.6). The two approaches
possess a certain degree of independence since the regression
method uses darker pixels in addition to the bright ones. A linear
regression also produces the intercept values; their closeness to
zero may be used as an indication of the quality of fit. The ratio
method can be used on a smaller dataset to derive, for example,
seasonal gains, or to investigate the sensitivity of calibration to
various parameters. Since these topics will mostly be the focus of
this study, here we will be using the ratio method.

Specifically, to derive calibration gains we employ the ratios of
LEO instrument reflectance to EPIC count for all available
matching scenes where the reflectance is greater than 0.6 and
relative standard deviation is less than 10%. These scenes are
binned according to the relative standard deviation of theMODIS
reflectance and the mean R/C ratio is calculated for each bin. The
mean bin values are then extrapolated to the ideal case of a

completely uniform scene (zero standard deviation) using a linear
regression. The extrapolated value is then taken to be the
calibration coefficient.

The following list summarizes the conditions used to match
pixels between EPIC and LEO instruments: 1) scattering angle is
within 1.5° of the EPIC scattering angle 2) temporal collocation
with EPIC image is less than 7 min for each EPIC channel 3) glint
angle is greater than 40° 4) at least 2/3 of the 25 km-neighborhood
of the EPIC pixel is covered with LEO radiometer measurements
5) LEO radiometer reflectance is greater than 0.6 6) relative
standard deviation in the neighborhood is less than 10%.

RESULTS

Calibration Gains and Trends
Figure 3 presents a summary of the calibration datasets as
timeseries of seasonal mean R/C ratio for the four channels.
The top, middle and lower panels show the combined MODIS
Aqua and Terra data, MISR, and VIIRS NPP data, respectively.
The gap in data in June 2019–February 2020 corresponds to the
period when EPIC was is safe mode. The average number of
points per year that went into the calculation of the curves on
Figure 3 are 6,000 for MODIS, 70,000 for MISR and 20,000 for
VIIRS. The higher value for MISR is due to the relaxed scattering
angle match condition. The higher resolution and wider swath of
VIIRS resulted in more matches compared to MODIS. The
corresponding calibration gain values and their relative
differences are given in Table 2. The values in Table 2 are

FIGURE 3 | Time series of seasonal mean R/C ratios for combined MODIS Aqua and Terra instruments (upper panel), MISR (middle panel) and VIIRS (lower
panel). Here and in the following R/C figures blue green, red and magenta lines represent 443, 551,680 and 780 nm EPIC channels. Whiskers represent the standard
deviation of R/C ratios within each three-month period.
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based on the data for the time period to 06/2019, when EPIC was
put in safehold. Encouragingly, MODIS results agree to within
1.4%, 0%, 1.2%, 2.6% with the corresponding values for each
channel derived by an independent method by Doelling et al.
(2019), also see (Haney et al., 2016). VIIRS results agree to within
0.4% with corresponding values from the same source. We found
that the relative difference between calibration gains derived from
MISR and VIIRS is less than 2% in all channels (last column in
Table 2), while the MODIS-VIIRS difference is within 4.3%.
These differences are in line with the reported values for the
radiometric accuracy of the instruments.

MODIS channel 2 may saturate over bright deep convective
clouds (Doelling et al., 2019). In this study we considered MODIS
L1B data marked to be within the valid range (integer values [0,
32,767]). The saturated pixels (with value 65,533) were excluded.
To investigate whether possible saturation of MODIS band 2
affected our results, we recalculated the 780 nm calibration gain
while additionally restricting MODIS reflectances to values
smaller than some threshold. Across all threshold values down
to 0.7, we found that the effect on the calibration was limited to
about 0.5%.

We used the seasonal mean R/C values summarized in
Figure 3 to estimate calibration gain trends for the whole
period of EPIC data. The results are listed in Table 3. As can
be seen from the table, EPIC calibration values are stable.We used
a standard double-sided test with a 95% confidence threshold
(corresponding to a “p-value” of 0.05) to evaluate the statistical
significance of the trends. We found the calculated trend values to
not be statistically significant (with corresponding p-values

greater than 0.05), except in the blue channel for VIIRS data.
To test how the resumption of operations in March 2020 affected
the calibration, we used the trend values from Table 3 together
with their confidence intervals to find the expected range of R/C
values for the two 3 month periods after the gap (the last two
points of the curves in Figure 3). We found that the actual values
are well within the expected range for all instruments. We
conclude that the safe hold incident did not noticeably affect
the calibration.

Next, we normalized the time series for MODIS, MISR and
VIIRS to the second three-month period (September-October-
November of 2015) and combined them into one time series by
taking the arithmetic average of the three curves as illustrated in
Figure 4, since the first three-month period (June-July-August
2015) contains fewer EPIC data points leading to more variability
in the calculated values. Using this combined time-series we
calculated the “overall” MODIS + MISR + VIIRS trends. The
values are shown on the inserts in Figure 4. We found a small
statistically significant trend of 0.16%/year in the 443 nm channel,
while trends in other channels were not significant. The
differences between the normalized curves (gray lines) appear
to be greater in the red and NIR channels compared to the blue
and green channels. It can be seen from the last column of Table 3
that relative RMSE values are higher in the NIR channels
compared to the visible channels for all LEO instruments,
possibly due to bigger spectral separation (see Figure 1). This
may have contributed to the larger differences for the 780 nm
curves. In addition, the observed offsets between individual
instrument curves may partly be an artifact of random

TABLE 2 | EPIC calibration gains derived from several LEO instruments and their relative differences.

EPIC gains (x10−5) vs Relative difference

MODIS MISR VIIRS MODIS-VIIRS MISR-VIIRS
443 nm 0.8330 0.8686 0.8528 −2.3% 1.9%
551 nm 0.6617 0.6882 0.6842 −3.3% 0.6%
680 nm 0.9238 0.9565 0.9658 −4.3% 1%
780 nm 1.4538 1.4834 1.4887 −2.3% 0.36%

TABLE 3 | Absolute and relative EPIC calibration gains trends derived from several LEO instruments and their statistical significance.

EPIC channels
(nm)

Absolute linear
trend per

year

Relative linear
trend per

year

Significant?
(p-value)

Relative RMSE
(%)

MODIS 443 1.19E-08 0.14% No (p � 0.12) 0.52
551 −9.99E-09 −0.15% No (p � 1.86) 0.59
680 2.22E-08 −0.24% No (p � 1.99) 0.45
780 4.09E-09 0.03% No (p � 0.85) 0.88

MISR 443 5.96E-09 0.07% No (p � 0.3) 0.39
551 4.16E-10 0.01% No (p � 0.92) 0.34
680 −2.69E-08 −0.28% No (p � 1.99) 0.56
780 −3.00E-08 −0.20% No (p � 1.89) 0.72

VIIRS 443 2.31E-08 0.27% Yes (p � 0.006) 0.52
551 8.83E-09 0.13% No (p � 0.24) 0.64
680 −3.93E-09 −0.04% No (p � 1.34) 0.54
780 2.48E-09 0.02% No (p � 0.88) 0.64
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differences between the instruments at the point of
normalization. This, however, does not have any effect on the
trend calculations.

Variability due to Orbital Motion
The DSCOVR satellite’s orbital motion around L1 point means
that EPIC’s scattering angle fluctuates by as much as 10° in the
time frame of about 1.5°months (top panel of Figure 5). In
addition, the instrument’s distance to Earth can change by as
much 200,000 km in about 3°months (top panel of Figure 6). This
behavior differs a lot form the very regular orbits of instruments
in sun-synchronous or geostationary orbits. In this section we
estimate how much variability in EPIC calibration is caused by
the DSCOVR orbital motion. This is useful for algorithm
validation and provides reference values for EPIC-LEO
intercalibration and trend analysis. Detrended R/C ratios
derived from MODIS were binned and averaged according to
the EPIC scattering angle and according to the EPIC-Earth
distance. The results are displayed on the lower panels of
Figures 5, 6. The dependance of the R/C ratios on the

scattering angle is essentially flat with some increase observed
for the largest angles in the 443 and 680 nm channels. RMSE
values over the four bins used is about 1%. We conclude that the
changes in scattering angle are not a significant source of
variability of the calibration gains. The changes in the
DSCOVR-Earth distance have an even smaller effect on the
variability of calibration values, as can be seen from the lower
panel of Figure 6. The corresponding RSME values are on the
order of 0.5% for the binned R/C mean values. As expected, this
value is small, because EPIC counts for identical scenes should
not depend on the distance from Earth.

Aqua- and Terra-Derived Calibration
In the preceding sections, data from MODIS Aqua and Terra
were combined into one dataset. While the two instruments are
very similar and follow the same calibration approach, the Aqua
and Terra satellites have different equator crossing times and
thus, generally speaking, different observational geometries. It is
therefore of interest to investigate the differences that may occur
if the two instruments are used separately. Figure 7 presents the

FIGURE 4 | Average MODIS + MISR + VIIRS seasonal mean R/C values normalized to one on SON 2015 (colored curves). Solid gray curves are for individual LEO
instruments, dotted line is linear trend.
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time-series of R/C ratios derived fromMODIS Terra (blue curve)
and MODIS Aqua (red curve), while Table 4 lists the relevant
statistics. We found that MODIS Aqua R/C values have higher
variability compared to MODIS Terra (third and second columns
of Table 4, respectively). Assuming that seasonal mean R/C
values are statistically independent samples, we can apply the
Kolmogorov-Smirnov (KS) test to the two datasets. The test
reveals that the Terra and Aqua values for 443, 551 and
680 nm channels are not significantly different (the fifth
column of Table 4). However, a significant statistical
difference exists between Aqua- and Terra-derived 780 nm
values, with Aqua values being systematically lower by about
2% compared to Terra. This is consistent with the higher (2.6%,
see Calibration Gains and Trends above) difference in the
calibration gains in this channel reported here and by Doelling
et al. (2019), since they used MODIS Aqua data only. In addition,
the Aqua 780 nm R/C ratios appear to be somewhat higher
during the period from the middle of 2017 to the middle of
2018 than during other periods (Figure 7). We cannot establish
with confidence the cause of these differences. We plan to
investigate them further using the additional MODIS
calibration from MODIS Land discipline processing,
mentioned in Data, which does not have trends or biases

between the two MODIS sensors. Please refer to Modeling
Earth Polychromatic Imaging Camera Reflectances below for
additional modeling analysis and further discussion.

Multi-Angle Imaging Spectroradiometer
Camera-Specific Calibration Analysis
MISR on board Terra spacecraft has a nadir, 4 forward, and 4
aftward looking cameras. Figure 8 shows the distribution of
EPIC-matching pixels over MISR cameras. Over 80% of EPIC
matches are viewed through the two cameras closest to nadir (Af
and Aa). The number of matching pixels viewed through each of
these cameras (around 40%) is similar across the four channels.
Some variation may be due to time delays between EPIC image
acquisition in different spectral channels. We can compare the
calibration gains derived separately for the two cameras. The
results of an analysis analogous to the previous section are
summarized in Figure 9. We found the relative difference
between the MISR aftward (Aa) and forward (Af) cameras to
be 0.03, −0.02, −1.53, and −0.85% for the 443, 551, 680 and
780 nm channels, respectively. The corresponding relative RMSE
differences were 1, 1, 1.7, and 1.4%. Using the Kolmogorov-
Smirnov test, we determined that the differences between EPIC

FIGURE 5 | Top panel: EPIC scattering angle vs. time. Lower panel:
mean R/C ratio vs. scattering angle. Whiskers represent the standard
deviation of the values within each bin. Based on MODIS data.

FIGURE 6 | Top panel: EPIC-Earth distance vs. time. Lower panel: mean
R/C ratio vs. EPIC-Earth distance. Whiskers represent the standard deviation
of the values within each bin. Based on MODIS data.
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R/C values derived from the two MISR cameras’ data are not
statistically significant in the blue and green channels (p-values of
0.5 and 0.3, respectively) and are significant in the red and NIR
channels (p-values of 0 and 0.004, respectively).

Modeling Earth Polychromatic Imaging
Camera Reflectances
EPIC and the LEO instruments view a collocated scene at the
same scattering angle in the backscattering region, but may have
different viewing and azimuth angles. In this section we conduct a

model study to investigate how the differences in viewing
geometry affect EPIC calibration coefficients. Such a study is
also relevant for the evaluation of the range of any potential
systematic differences due to viewing geometry between MODIS
Aqua and MODIS Terra, which have different equator crossing
times. For this purpose, we calculated reflectance look-up tables
(LUT) for water clouds of various brightness. A LUT was
calculated for each of the four channels, on a grid of 35 values
of cosine of the solar zenith angle (in increments of 0.015), 150
values of cosine of the viewing angle, 181 values of azimuth angle
(in increments of 1°), and 19 values of droplet number density,

FIGURE 7 | Time series of MODIS Aqua (red) and Terra (blue) derived seasonal mean R/C ratios.

TABLE 4 | Statistics of EPIC R/C ratios derived from Terra and Aqua MODIS data.

EPIC channel
(nm)

Terra RMSE
(%)

Aqua RMSE
(%)

Relative Terra-Aqua
difference

Kolmogorov-Smirnov test
significant?

Relative RMSE
difference (%)

443 0.68 1.06 0.61% No (p � 0.05) 1.5
551 0.75 1.41 −0.13% No (p � 0.25) 1.9
680 0.53 1.51 −0.19% No (p � 0.25) 1.75
780 0.86 1.47 1.96% Yes (p � 0.0005) 2.53
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selected to cover the observed range of TOA reflectance. Using
the actual geometries of matching EPIC and MODIS scenes, we
then calculated what EPIC andMODIS would see, had they flown
over such clouds. Specifically, we used the measured MODIS
reflectance and viewing geometry (for the actual pixels used for
calibration) to look up the cloudy scene that matches the observed
MODIS reflectance. Using that scene, we then determined the
reflectance that EPIC would measure using its viewing geometry
angles for this scene. Thus, we created a set of synthetic (modeled)
EPIC reflectances which may be used in place of MODIS
reflectances for “calibration.” The procedure is illustrated
schematically in Figure 10. The background contour plot
shows calculated reflectance field as a function of relative
azimuth and view angles for a specific solar zenith angle. Each
pair of connected circles and crosses represents MODIS and EPIC
positions for a single matching scene. The scenes were randomly
selected from the available pool. The calculated reflectance field is
selected from the look-up table to match the observed MODIS

FIGURE 8 | Distribution of EPIC-matching scenes over MISR cameras.
Blue, green, red, and magenta bars represent 443, 551, 680 and 780 nm
channels.

FIGURE 9 | Time series of seasonal mean R/C ratios derived from MISR Af (red) and Aa (blue) cameras.
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reflectance for the actual MODIS viewing geometry for each
scene. The scene marked by the green line illustrates a situation
where MODIS and EPIC would register similar reflectance (same
background shade at the ends). For the scene marked by the blue
line, EPIC reflectance will be lower than the reflectance registered
by MODIS (different background shades at the ends). Repeating
this procedure for all available matching scenes allowed us to
create a synthetic dataset for this idealized case where both
instruments observed scenes of plane-parallel water clouds.
If we replace the actual MODIS-observed reflectances with
the modeled EPIC ones we can eliminate the influence of the
imperfect viewing geometry match between the instruments.
In this way we can investigate how calibration gains would
change if MODIS were always in the line of sight of EPIC
(perfect viewing geometry match). Using only MODIS Terra
data, we found the relative differences of mean R/C ratios to be
0.28, 0.1, 0.1, and 0.5% for the 443, 551, 680, and 780 nm
channels respectively. For MODIS Aqua the corresponding
values were -1.2, −0.02, 0.4, and −2.27%. It can be seen that in
this highly idealized case, the average effects of the imperfect
viewing geometry match are generally small, except for Aqua
in the 780 nm channel. In addition, most of the time, the effects
described above influence Aqua and Terra values in opposite
directions, so that the results for the combined Aqua + Terra
dataset (0.02, 0.09, 0.13, and 0.18% difference, respectively) are
very close. It may therefore be advantageous to combine
MODIS Terra and MODIS Aqua data for the purpose of
EPIC calibration.

We also looked at the ratio of modeled EPIC to measured
MODIS reflectance as a function of scattering angle. The results
are presented in Figure 11. As can be seen from the figure, in this

idealized case, MODIS Terra and Aqua may exhibit biases of up
to several percent for the largest scattering angles. This is
consistent with measured data in Figure 5, where small
increases in the last scattering angle bin may be observed. As
can be seen from Figure 10, reflectance gradients are larger in the
region close to the exact backscattering. In this region viewing
geometry mismatch may result in larger EPIC-LEO reflectance
differences. Since the resumption of operations in February 2020,
the DSCOVR satellite operates without a gyroscope and relies on
its startracker for angular rate information. The satellite is
allowed to operate closer to exact backscattering, approaching
it every three months to within 2° to conserve fuel for station-
keeping. Our results suggest that caution should be exercised
when data from such periods are used for calibration purposes.
Note however, that, as mentioned above, the biases point in the
opposite directions for MODIS Terra andMODIS Aqua and tend
to cancel when the data is combined.

DISCUSSION

We applied the EPIC VIS-NIR calibration algorithm to the full
duration of the data record. We assembled database of EPIC-
matching data files from MODIS Aqua and Terra, MISR and
VIIRS NPP, thus producing uniform EPIC calibration data
records against four major LEO radiometers. Calibration gains

FIGURE 10 | A schematic representation of modeling EPIC reflectances.
The background contour plot shows calculated reflectance field as a function
of relative azimuth and view angles for a specific solar zenith angle. Each pair of
connected circles and crosses representsMODIS and EPIC positions for
a single matching scene. The scene marked by the green line illustrates a
situation where MODIS and EPIC would register similar reflectance (same
background shade at the ends). For the scene marked by the blue line EPIC
reflectance will be lower than the reflectance registered by MODIS (different
background shades at the ends).

FIGURE 11 |Modeled EPIC to measured MODIS reflectance ratios as a
function of scattering angle. Top panel: combined Aqua and Terra data,
middle panel: MODIS Terra data, lower panel: MODIS Aqua data.
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for data until June 2019 were found to be in excellent agreement
with independent published values (Doelling et al., 2019). No
significant changes in calibration were observed after the
instrument’s exit from safe hold in March 2020. Analysis of
seasonal mean R/C ratios revealed that the trends for the full
dataset period are not statistically significant except in the 443 nm
channel. We conducted an investigation of how DSCOVR’s
varying Sun-Earth-Vehicle angle and the distance from Earth
could affect the calibration gains. We found that such changes
result in less than 1 and 0.5% RMSE variability, respectively.
Using MODIS Aqua and MODIS Terra as two independent
datasets we analyzed the consistency of the retrieved time
series of EPIC calibration gains. Statistical tests indicate that
the differences between the two datasets are not significant except
in the 780 nm channels, where Aqua-derived coefficients may be
around 2% lower compared to Terra-derived ones. Similar
consistency analysis was performed using two MISR cameras
separately. We found that the gains derived from the forward-
and aftward-looking cameras agreed to within 1.5% of each other.
These analyses increase our confidence in the robustness of the
developed algorithm as applied to multiple LEO radiometers.
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Earth Polychromatic Imaging Camera (EPIC) raw level-0 (L0) data in one channel is a 12-bit
2,048 × 2,048 pixels image array plus auxiliary data such as telemetry, temperature, etc.
The EPIC L1a processor applies a series of correction steps on the L0 data to convert them
into corrected count rates (level-1a or L1a data): Dark correction, Enhanced pixel
detection, Read wave correction, Latency correction, Non-linearity correction,
Temperature correction, Conversion to count rates, Flat fielding, and Stray light
correction. L1a images should have all instrumental effects removed and only need to
be multiplied by one single number for each wavelength to convert counts to radiances,
which are the basis for all higher-level EPIC products, such as ozone and sulfur dioxide
total column amounts, vegetation index, cloud, aerosol, ocean surface, and vegetation
properties, etc. This paper gives an overview of the mathematics and the pre-launch and
on-orbit calibration behind each correction step.

Keywords: Satellite remote sensing, Earth observation, Lagrange 1 point, instrument calibration, flat field
correction, stray light correction

INTRODUCTION

The Earth Polychromatic Imaging Camera (EPIC) operates aboard the Deep Space Climate
Observatory (DSCOVR) satellite that is orbiting the Sun at the Lagrange-1 point, L1, about 1.5
million kilometers away from Earth (Marshak et al., 2018). It measures the solar radiance
backscattered from the sunlit portion of the Earth using 10 narrow-band wavelength filters,
from the ultraviolet (UV) to the near-infrared (NIR). The science products (L2 data, see also
Table 1) derived from these observations include total column ozone (Herman et al., 2018; Yang and
Liu, 2019; Herman et al., 2020) and sulfur dioxide (SO2) (Carn et al., 2018), aerosol information
(Christian et al., 2019; Sasi et al., 2020; Xu et al., 2019; Torres et al., 2020; Lyapustin et al., 2021), cloud
(Meyer et al., 2016; Molina García et al., 2018; Davis et al., 2018; Yang et al., 2019, Yin et al., 2020;
Zhou et al., 2020) and vegetation (Marshak and Knyazikhin, 2017; Weber et al., 2020; Pisek et al.,
2021) properties, reflectivity (Song et al., 2018; Yang et al., 2018; Wen et al., 2019), and atmospheric
correction (Herman et al., 2020; Lyapustin et al., 2021). The sequence from raw data to final products
is a 3-step process:

• L0 to L1a: L0 data in each channel are converted into corrected count rates (level-1a or L1a
data). L1a images should have all instrumental effects removed so that the resulting data images
are proportional to the absolute radiances.

• L1a to L1b: The latitude, longitude, sun, and view angles are calculated for the L1a image in its
original orientation. For level-1b (L1b), the images are reprojected into a common grid, which
fixes offsets due to variation in attitude, rotational offsets due to time, and orients the images so
that north is up.
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• L1b to L2: A calibration factor is derived to convert the corrected
count rates in either L1a or L1b into radiances (Geogdzhaev and
Marshak, 2018; Herman et al., 2018; Doelling et al., 2019). The
L1b images from one or more channels are converted into level-
2 (L2) data through application of a specific algorithm for each
output science product.

This paper gives an overview of the mathematics and the pre-
launch and on-orbit calibration behind the first of the steps above
that is the basis for all further processes. Instrument Overview gives
a short overview of the instrument design and performance. The

different calibration periods are listed in Calibration Periods. L1a
Processing Steps goes through each of the steps to convert the L0
data in L1a data. Pixel Size on Ground and Uncertainty discuss the
EPIC pixel size on the ground and L1a data uncertainty,
respectively. Conclusions are given in Conclusions.

INSTRUMENT OVERVIEW

The EPIC instrument is described in detail in the DSCOVR
Overview report (Atmospheric Science Data Center, 2016; also

TABLE 1 | Specifications of the EPIC filters. Filter wheel 1 with filters 1–5 is closer to the primary mirror, filter wheel 2 with filters 6 to 10 is closer to the detector. The center
wavelengths are given in nm-air and the resolutions are given as the full width half maximum (FWHM) of the filter function. The exposure time is the one used in regular
operation and is never changed. For themeaning of the stray light fraction see Stray Light Correction. The primary science purpose indicates for which science L2 product the
respective channel is used.

FIGURE 1 | EPIC light path. The picture at the top left shows one of the filter wheels with six positions.
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https://epic.gsfc.nasa.gov/about/epic). Here we will provide a
brief overview of the optical elements that are relevant for this
paper. The optical path of EPIC is shown in Figure 1.

As light enters the front end of the 286 cm focal length
Cassegrain telescope, it is reflected by the 30.5 cm diameter
primary mirror onto the 9.5 cm diameter secondary mirror.
Light reflected by the secondary mirror passes through the
center of the primary mirror, where it enters the camera
assembly. A three-element fused silica field lens group is
designed to correct the inherent optical aberrations of the
Cassegrain telescope such as coma, astigmatism, and field
curvature. EPIC houses two filter wheels, each with six
openings of 4 cm diameter, of which five are equipped with an
optical filter and one position is left open (Figure 1). Each filter is
a combination of a narrow band interference filter with a
broadband blocking filter. The next element in the EPIC
camera assembly is a 3-slit rotating shutter wheel to control
the length of the exposure, i.e., the duration in which the detector
actively collects photons of light. The filter specifications and the
mission invariant exposure times for each channel used in orbit
are given in Table 1.

In the focal plane of the beam is the EPIC detector, a thinned,
backside-illuminated hafnium coated silicon wafer CCD with an
anti-reflection coating. It contains 2,048 × 2,048 square pixels of 15
microns pitch, resulting in a total imaging area of slightly more than
3 × 3 cm2. In angular measurements, the pixel instantaneous field of
view (iFOV) is 1.078 arcsecs. Therefore, the total field of regard
(FOR) of the EPIC telescope is 0.607°, limited by the horizontal and
vertical edges of the CCD (see Figure 2, where the gray areas in the
corners of each panel show the region outside the FOV).

The EPIC CCD can be drained (readout) from two opposite
corners. In regular operation, the same corner is always used. If
the readout through that corner fails, EPIC could switch to the
readout from the other corner. While the entire EPIC calibration
has been done for both readout modes, all results shown in this
paper refer to the regular readout mode.

EPIC is read in a so-called “over-scanned” mode. This means
although there are 2,048 × 2,048 pixels, 2,056 readings in both row
and column direction are done. Therefore, the pixels from the first
eight rows and columns do not include those photons that have
been accumulated during the exposure time, but instead, only the
photons caused by thermal electrons during the readout process.

FIGURE 2 | EPIC L1a images for each channel taken on May 8, 2019 around 11 UTC. One such full set of 10 images is taken by EPIC approximately every 65 min
during the Northern Hemisphere summer and every 110 min during the Northern Hemisphere winter. The gray areas in the corners of each panel show the regions
outside of the FOV of the telescope. Areas with no signal are plotted in black color. Higher signal intensity is plotted in shades of white for the UV filters 1 to 3 and the NIR
filters 9 and 10 and for the visible filters in that color our eye would see if we placed the respective filter in front of it. The contrast between dark and bright areas in the
images is smallest for the UV channels due to strong Rayleigh scattering, and increases with wavelength. The filter pairs 7–8 and 9–10 are relatively close in wavelength,
but one channel in each pair is strongly absorbed by molecular oxygen (filters 7 and 9), which causes a much darker image of the Earth compared to the other filter in
the pair.
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The pixels in these rows and columns are called “oversampled
pixels” and are used in the dark correction (Dark Correction).

CALIBRATION PERIODS

Most of the information used for the EPIC raw data calibration was
obtained during calibration periods that are listed in this section. The
first version of full calibration for EPIC L1a processing was finished
before the launch of DSCOVR. The necessary measurements were
obtained during two dedicated pre-launch calibration campaigns
(Calibration Period “CalLM” and Calibration Period “CalGSFC”).
This first calibration version was then modified based on
information obtained during two on-orbit calibration campaigns
(Calibration Period “CalDark” and Calibration Period “CalMoon”).
Finally, the operational EPIC images are used to determine if the
instrumental characteristics are changing with time. The observed
small changes have been used to modify the calibrations.

Calibration Period “CalLM”
The first calibration period “CalLM” took place at the Lockheed
Martin Advanced Technology Center, Palo Alto, CA. Preparatory
measurements were taken in air and with the detector at room
temperature during July and August 2011. Final measurements
were obtained at flight conditions in the vacuum chamber with a
cooled detector from 15–20 Sept 2011. More than 3,000 images
were taken in total. The calibration setup for CalLM is described
in detail by Cede et al. (2011). The light from a 1500W xenon
lamp entered the vacuum chamber through a window into an
integrating sphere. After exiting the sphere, the light passed a
focusing lens and a selected “target” on the 6-position aperture
wheel (most targets were holes of different diameters). Then it
entered a Dobsonian collimator, which produced an extended
beam with a divergence determined by the target. The beam was
then reflected by the steering mirror and entered EPIC. This setup
allowed EPIC to be illuminated with beams of different
divergence, from point sources used for stray light calibration
to extended sources that overfilled the instrument’s total FOV.

Calibration Period “CalGSFC”
The second pre-launch calibration period “CalGSFC” took place in
February 2014 at NASA/Goddard Space Flight Center, Greenbelt,
MD. In this period, measurements were taken in the vacuum
chamber at flight conditions for 7 days with over 600 images in
total. The focus was to repeat the original calibration sequences that
did not give conclusive results in the 2011 tests during CalLM,
namely the non-linearity and flat field calibration. In this
calibration EPIC was illuminated by a beam reflected from a
diffuser plate that overfilled the instrument’s FOV.

Calibration Period “CalDark”
The period from DSCOVR’s launch on February 11, 2015 to
reaching its orbital location at the Earth-Sun Lagrange-1 point on
June 7, 2015 was used for extensive dark count measurements
with the closed telescope door and closed shutter and is called
“CalDark”. More than 1,000 dark images were taken to
complement the pre-launch dark count calibration.

Calibration Period “CalMoon”
At the beginning of the mission, EPIC was pointed towards the fully
illuminatedMoon instead of the Earth on several occasions in between
regular operations (“lunar observations”). They were usually taken at
timeswhere the angular distance betweenEarth andMoon as seen from
EPIC was at a maximum, which corresponds approximately to half-
moonphases onEarth. The longest of these periods is called “CalMoon”
and lasted from August 15–19, 2015, where the lunar surface was
“moved” over 36 positions across the detector. Images for 5 filters were
taken at each position. Additional shorter periods with lunar
observations have been and continue to be inserted in the regular
EPIC observations schedule (26 of such periods as ofMarch 2021). The
objectives of the lunar observations are to test the stray light andflatfield
calibrations, and to check the radiometric stability of EPIC over time.

L1A PROCESSING STEPS

Any measurement device has imperfections, so does EPIC. For
example, the radiometric sensitivity and the dark counts vary
across the detector, stray light affects the pixels in different ways,
the readout mechanism has a latency, etc. In processing the raw
L0 data to L1a data we try to correct for all such imperfections in
the best possible way. This is done in several processing steps.

If everything was done “perfectly”, then each of the more than
four million EPIC pixels would give exactly the same L1a output,
if it was receiving the same input, and consequently the entire
image only would need to be multiplied by one single number to
convert from corrected count rates to radiances. Apart from the
L1a data array, the L1a output also includes a so-called “pixel type
array” of the same dimension as the image itself. The pixel types
give information about whether the specific pixel is outside the
EPIC FOV, is oversampled, is on or off “target” (i.e., inside or
outside the disk of the Earth or the Moon), or is saturated or
enhanced (see Enhanced Pixel Detection).

Some of the L1a corrections have less impact on the data than
others. For those, the data would only differ from the “correct” data
by a small amount if the correction was not applied. In order to get
an overview of the magnitude (or impact) of each correction step,
we decided to introduce “impact levels”, which allow a quick
qualitative assessment of the impact each correction has on the
data. Here we define four impact levels: “small” (impact is below
0.4%), “moderate” (between 0.4 and 2%), “significant” (between 2
and 10%), and “large” (above 10%). Note that these percentage
limits have been chosen, since the magnitudes of the different
corrections clustered approximately into groups limited by these
numbers. Correctionsmay have amoderate impact on the image as
a whole, but a significant impact on a subgroup of pixels that are
especially affected by the respective effect. The nine processing
steps are listed below, with the impact given in parenthesis. If two
impact levels are given (e.g., significant to large), then the first one
is for the average impact and the second one for the impact on the
subgroup of more affected pixels:

• Step 1-Dark correction (moderate to large)
• Step 2-Enhanced pixel detection (small to large)
• Step 3-Read wave correction (small)
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• Step 4-Latency correction (moderate to significant)
• Step 5-Non-linearity correction (small)
• Step 6-Temperature correction (small)
• Step 7-Conversion to count rates (small)
• Step 8-Flat fielding (significant to large)
• Step 9-stray light correction (significant to large)

In this section, we describe each correction step separately.
Since it would go beyond the limits of this paper to describe each
correction step in full detail, we focus on those corrections with
more significant effects on the data, i.e., dark-count, flat-field, and
stray light corrections.

Dark Correction
The first correction applied on the 12-bit digital resolution EPIC raw
data is the dark correction. A rather “safe” way to perform dark
correction on the data would be to add a dark measurement (i.e., a
measurement with closed shutter) after every single regular
measurement using the same exposure time (Table 1). In this
way, the dark count would be measured with exactly the same
conditions (e.g., electronic state and temperature of the detector)
and, therefore, any possible systematic errors in the dark correction
could be avoided. However, the download rate for DSCOVR is
limited so that such a technique cannot be applied. Due to this
limit, the operational EPIC images for all filters, except the 443 nm
blue filter number 5, are reduced on the spacecraft from the original
size of 2,048 × 2,048 pixels to 1,024 × 1,024 pixels by averaging each
group of 2 × 2 pixels. This was the only way to keep the EPIC image
sequence in the range of one set of 10 images every 65min in the
NorthernHemisphere summer and 110min inwinter. The difference
is caused by the number of hours a single S-band receiving antenna
located at Wallops Island, Virginia, United States is in view. As a
consequence, the strategy for the dark correction was the following:

• Develop a model that determines the EPIC dark count at
pixel i, DCi, based on two input variables, exposure time,
tEXP, and detector temperature, TCCD, which are both
transmitted in the auxiliary data.

• Adjust the modeled dark count to the electronic conditions
at the measurement time using the oversampled pixels.

• Check the dark count behavior over time taking a daily dark
measurement at 1,000 ms exposure time.

From the analysis of the data from CalLM, CalGSFC, and
CalDark we developed the dark count model for dark count DCi

at the ith pixel given in Eq. 1.

DCi(tEXP,TCCD, tIM) � DOOV(TCCD) + DOCi + DOTi · exp[kO
· (TCCD − TREF)] + DSi · exp[ksi · (TCCD − TREF)] · tEXP
+ DOT(tIM)

(1)

TREF is the reference temperature. It was originally set to −40.0°C,
since this was the temperature the EPIC detector was expected to
have in operation. After the CalDark period it was changed to
−20.8°C, since this temperature was then effectively observed in
the first months on orbit (Figure 3).

The DO-terms represent the dark offset and are independent
of tEXP. The dark slope DS depends linearly on tEXP. tIM is the time
since January 1, 2017 0:00 UTC.

DOOV is the average dark count over the oversampled pixels
(Figure 3). It is mostly a function of TCCD, but also depends on
the electronic state of the detector system at the measurement
time. This term does not need to be taken from the calibration,
since it can be calculated for each operational measurement.

All 2,048 × 2,048 arrays DOCi, DOTi, DSi, and kSi from Eq. 1
are shown in Figure 3. DOCi gives the difference between the dark
offset at each pixel and the value DOOV at standard conditions. As
seen in Figure 3, DOCi increases towards the left edge of the
detector, probably due to a temperature increase in this direction,
and also shows a separation into four regions covering a quarter
of the CCD each, which we believe is due to some characteristic of
the readout electronics. The temperature dependence of the dark
offset uses calibration parameters DOTi and kO. DOTi is mostly a
function of the CCD columns (Figure 3) with kO determined to
be 0.166/K.

The dark slope DS uses calibration parameters DSi and kSi. DSi
is characterized by an increase at the readout corners due to
elevated temperature and also shows a rather small number of hot
pixels. Using as a criterion for a hot pixel to exceed the expected
value by more than 10 counts at the reference temperature, then
EPIC has 210 hot pixels, which is 0.005% of the total pixels. Since
they are singular isolated pixels, they are not visible in Figure 3.

In the first calibration versions, the “trend term” DOT in Eq. 1
was not included in the darkmodel. It was added in 2017 when we
discovered some pattern of the true dark count drifting away
from the dark model as shown in Figure 3. This effect is clearly
temperature-related but is obviously not correctly captured by the
TCCD-dependent terms in Eq. 1, although they have been
determined over a wide range of temperatures as seen in
Figure 3. It turned out that adjusting the dark model with a
modified TCCD-dependence was not possible, since the relation
between the temperature and the observed dark count bias does
not “fit” in the dark model framework. The seasonal temperature
cycle of ±1.1 K is rather constant over time, while the seasonal
cycle in the dark count bias changes from ±0.16 counts in 2015 to
>±0.5 counts in 2020. Furthermore, the seasonal temperature
cycle relates to the seasonal dark anomaly cycle on average by
∼0.3 counts/K, while the upwards trend in the temperature
of ∼0.3 K/year causes an upwards trend of the dark count bias
of ∼0.5 counts/year, i.e., a much higher relation of ∼1.7 counts/°C.
Due to this discrepancy, we decided to define DOT as a function
of the image acquisition time tIM with seasonal variation and a
linear drift as shown in Figure 3. With this addition the dark
model again well represents the true EPIC dark counts over its
time in orbit.

Enhanced Pixel Detection
This L1a processing step only affects the pixel type array and does
not change the L1a data array itself. The raw EPIC data can be
saturated or enhanced. The invariant EPIC exposure times
(Table 1) were selected on the first day of operation so that
saturation rarely occurs, but it can still happen when a pixel views
a highly reflective ice cloud high up in the atmosphere.
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Enhanced pixels are pixels with physically impossible values
that exceed the values of the neighbor pixels by a too large amount.
This can be understood when looking at Figure 8, which shows the
EPIC point spread function (more in Stray Light Correction). For
example, based on this function it is not possible that the value in a
pixel is five times larger than the average value over the adjacent
pixels. We believe this enhancement is mostly caused by issues in
the readout electronics. Nearly all EPIC images show a small
percentage of enhanced pixels. Their number varies between
just a few such pixels up to around 1,000 of them in a single
image of four million pixels. An algorithm to detect enhanced
pixels was developed. It is based on a comparison of the value in a
pixel relative to the average value over its eight neighbor pixels. It
then marks enhanced pixels in the pixel type array so that they can
be ignored for science data products.

Read-Wave Correction
EPIC’s read-out electronics add a small sinusoidal wave to the
image, called the “Read-wave”. This wave is a function of the image
column and has a rather constant period between 10 and 11 pixels

but varies from image to image in amplitude (between 0 and 0.6
counts) and phase. Both amplitude and phase are approximately
constant for all rows. An example of such a read wave is shown in
Figure 4. We developed an algorithm to determine the amplitude
and phase of the wave for eachmeasurement. It is based on fitting a
sinusoidal wave into those rows of the image, which get no direct
light input, i.e., the ones below and above the Earth’s disk, and then
subtracting this wave from the entire image.

Latency Correction
Just like many imaging devices with a CCD, EPIC suffers from a so-
called “latency effect”. That is, pixels with a low signal level are
significantly biased high when they are read after a large number of
pixels with a high signal level. This can cause an overestimation of as
much as 12% in the signal from a low signal clear scene on Earth that
is adjacent to a high signal extended region of clouds that is read just
before it. The consequences of this bias have been analyzed for other
satellite instruments (Várnai and Marshak, 2009).

The EPIC detector has two readout amplifiers located at
opposite corners of the array, which allowed us to characterize

FIGURE 3 | (A) DO0 as a function of TCCD measured during CalLM. (B) Dark model parameters DOCi, DOTi, DSi and kSi from Eq. 1. (C) EPIC dark trend. The
apparent noise in the dark anomalies (blue dots) is mostly caused by the low resolution of 0.6 K for the detector temperature readings (red dots). Both data sets are fitted
with formula y = a0 + a1 · t + ( a3 + a5 · t ) · sin[ 2 · π. ( t - a2 )/a4 ], where t is the time in days since January 1, 2017 0:00 UTC. The obtained fitting parameters for the Dark
Anomaly Fit (blue line) are : a0 � 0.71 counts, a1 � 0.49 counts/year, a2 � 71 days, a3 � 0.30 counts, a4 � 359 days, a5 � 0.07 counts/year. For the Temperature Drift
Fit (red line): a0 � −19.69°C, a1 � 0.28 K/y, a2 � 94 days, a3 � 1.13 K, a4 � 368 days, a5 � −0.02 K/y.
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the latency effect and develop a correction method for it. The
method determines the additional charge Δi, which is
accumulated in the readout electronics and added to the
“true” signal Ci, which is the proper charge originating from

the measured photons. We assume Δi � 0 for the first pixel i � 1 to
be read, and for each subsequent pixel i+1, Δi+1 is given by Eq. 2:

Δi+1 � Δi · (1 − kD) + Ci · kG (2)

FIGURE 4 | (A) Example for read wave for a dark count measurement. The blue line shows the average of the counts over all CCD rows between columns 495 and
645. The red line is a fitted sinusoidal wave, which is subtracted from the image for the read wave correction. (B)Measured (blue) and fitted (green) non-linearity of EPIC
based on laboratory measurements during CalGSFC. (C) Measured and linearly fitted radiometric temperature sensitivity of EPIC based on laboratory measurements
during CalGSFC. (D) Illustration of EPIC latency effect using measurements from CalLM. The exactly identical illumination, a circular illumination with a radius of 560
pixels, has been measured with two readout modes. One drains the image at the top right corner (see green dots), the other at the bottom left corner. The latency effect
adds a positive bias to the data read just after the target, i.e., at the right side of the detector in the top left panel and at the left side in the top center panel. The top right
panel shows the percentage difference of the panels (Top Right Corner minus Bottom Left Corner) before applying the latency correction. The bottom panels show the
same images after the latency correction has been applied.
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kG and kD are the latent charge gain and decay constants,
respectively, and have been determined to kG � 8.6 × 10−6 and
kD � 3.7 × 10−3 for the regular readout mode based on
measurements during CalLM. The effect is illustrated in
Figure 4. Use of Eq. 2 reduces latency errors by a factor of 3.

Non-Linearity Correction
EPIC readout electronics underestimate very small (<500 counts)
and very high signal levels (>3,500 counts) by up to 0.2%
(Figure 4). This is a relatively small non-linearity effect and
was characterized during CalGSFC.

Temperature Correction
EPIC shows a small radiometric temperature sensitivity of 0.01%/
K (Figure 4), which is corrected in this step by using the onboard
reading of the detector temperature. It was calibrated during
CalGSFC, where images from a constant light source were taken
over a temperature range from −40 to −10°C.

Conversion to Count Rates
The exposure time of an EPIC image is controlled by the shutter,
which is a rotating disk with three open sectors of different
angular width that moves in and out of the light path to unblock
the incoming beam (Atmospheric Science DataCenter, 2016).
The shutter is slightly non-linear, meaning that different pixels
are exposed to light for a different amount of time. However, this
shutter effect is only significant when the smallest sector
(exposure times <10 ms) is used. For this reason, the filter
bandwidths were decreased during refurbishment of EPIC to
increase the exposure time to more than 20 ms so as to never use
the smallest slit (Table 1). In this conversion step the data are
divided by the invariant exposure time given inTable 1 to convert
from “corrected counts” to “corrected count rates” (counts/s).

Flat Fielding
When EPIC is illuminated by a uniform input (i.e., each pixel
receives exactly the same signal), the recorded image lacks
uniformity for several possible reasons:

• Pixel response non-uniformity (PRNU): this is caused by small
variations in the sensitivity of each pixel. It is independent of
wavelength, has a very small spatial extent (i.e., changes from
pixel to pixel), and a magnitude in the order of a few percent.

• Etaloning (ETAL): this is caused by optical interference
effects from thickness variations in the depletion region of
the CCD. It only affects longer wavelengths above 600 nm
(hence only for EPIC filters 7–10), has a wider spatial extent
than PRNU, and a magnitude of tens of percent.

• Surface inhomogeneity (INHOMO): this is caused by
inhomogeneities on the detector surface, especially from
the hafnium coating. It manifests as a localized reduction or
enhancement of the sensitivity for a group of pixels with a
magnitude of tens of percent. It has the same distribution,
but different magnitudes for different channels, usually a
stronger effect in the UV than in the visible, since hafnium is
nearly transparent in the visible and NIR. Therefore, it
manifests most in filters 1–4. The affected regions can

have very different spatial extensions. Some features affect
only a few pixels, while others spread over hundreds of pixels.

• Vignetting (VIGN): this is the reduction of the instrument
sensitivity towards the periphery of the field of view. VIGN
varies smoothly across the CCD and might be different for
different filters. Based on optical modeling EPIC should not
have strong VIGN, at most in the order of a few percent. It
affects all EPIC channels in the same way, but it is best seen
in filters 5 and 6, since the other filters are dominated by
either ETAL (filters 7–10) or INHOMO (filters 1 to 4) as
those effects have a much larger magnitude.

Due to the combination of the above described effects, the
sensitivity of each EPIC pixel is different and a homogenous (or
flat) illumination produces not at all a homogenous (or flat)
image. Once the sensitivity across the detector, called the “flat-
field response”, is known, the image can be divided by it, which is
called “flat-field correction”. In the remainder of this section we
describe how the EPIC flat-field response was determined.

In both pre-launch calibration campaigns CalLM and CalGSFC
we attempted to produce an illumination as uniform as possible
across the CCD. In CalLM the beam reaching EPIC was the output
of a Dobson collimator telescope. In CalGSFC, EPIC was looking
onto a large diffuser plate that was illuminated by a high-power
tungsten halogen lamp. However, both inputs were far from being
“flat” and showed gradients up to 30%. This forced us to accept
some compromises for the pre-launch flat-field calibration.

We split the PRNU from the other effects described above,
since it does not really need a flat input as long as the signal varies
smoothly across the detector. It can be derived by comparing the
value at a single pixel to the average value of the surrounding
pixels. The final PRNU array is shown in Figure 5. It is applied
separately from the other flat-field effects in the L1a data
correction. We do not expect the PRNU to change over the
mission lifetime.

Instead of getting the absolute numbers for ETAL, INHOMO,
and VIGN, we derived the combined result from these three effects
relative to the 552 nm green filter 6, for which no flat field correction
other than the PRNUwas assumed or needed. The reason we picked
filter 6 is that it is not affected by ETAL and we also observed very
little INHOMO, as described in the next paragraph. In this way, it
was possible to cancel out that part of the inhomogeneity of the input
beam, which affects all filters in the same way.

The actual flat field maps are shown in Figure 6. We can
observe that filters 1 to 4 are dominated by INHOMO, seen as
regional depressions or enhancements across the detector. Filters
5 and 6 show much less INHOMO, with filter 6 even less than
filter 5, which is the reason it was selected as the reference filter.
Hence, they are dominated by VIGN. Finally, filters 7 to 10 are
dominated by ETAL, seen as a pronounced variation over the
entire detector. Overall, the flat-field correction for EPIC is on the
order of ±25%. The magnitude of INHOMO was significantly
different between CalLM and CalGSFC. We believe this is partly
caused by the uncertainty in the laboratory measurements itself,
but also originates from changes on the detector surface over pre-
launch time from 2011–2014. We used the results from CalGSFC
for the final pre-launch flat field correction, as they were closer to
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the launch date (2015). Due to these difficulties in the flat
field calibration and the resulting large uncertainty, the plan
was to re-evaluate and possibly modify the flat-field correction
using in-flight data.

A first in-orbit modification of the flat-field calibration was
performed in Fall 2016 using the fact that the telescope rotates
about its optical axis with a six-months period. The idea was that

when we average all the images of one filter over a long period, we
should obtain a rather smooth image, since all features caused by
the atmosphere and the ground should average out as they are
“moving” across the detector. We saw that this assumption holds
for small features, i.e., the resulting averaged image is rather
smooth, but there are still systematic effects that cause an
inhomogeneous result. For example, ocean glint, which creates

FIGURE 5 | (A) EPIC Pixel response non uniformity as determined during CalGSFC. 61% of the pixels inside the telescopes’s FOV have an absolute value of the
PRNU below 0.5%, 30% between 0.5 and 1.0%, 8% between 1.0 and 1.5%, 1% between 1.5 and 2.0 and 0.1% above 2.0%. (B) EPIC VIGN effect estimated from lunar
observations during CalMoon. Each dot is the result of a single lunar image for the respective filter. The black line is a polynomial fit in all the data.

FIGURE 6 | EPIC flat field maps without PRNU from the actual calibration version 18. Filters one to four are dominated by INHOMO, filters 5 and 6 by VIGN, and
filters 7 to 10 by ETAL. The flat field correction consists of dividing the data in each filter by the arrays shown in this figure.
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an enhancement at the specular reflection angle near the center of
the Earth (Várnai et al., 2020), and also the high albedo regions of
Greenland and Antarctica, which cause higher backscattered
signal away from the center of the image as they are at high
latitudes. Therefore, we again fixed the flat field in filter 6 and only
looked at the differences from it with this technique. The in-flight
version of the flat field correction differed on average from the 1st
version by <0.03% for filters 1–5, and in the range of 0.3–0.5% for
filters 7, 9, and 10. However, in all filters there were extreme
values, where the flat field changed for certain pixels by 34–53% in
filters 1–5, and 9–15% for filters 7, 9, and 10. The technique did
not seem to improve the flat field for filter 8 and therefore that
channel was left unchanged. As a result of this improvement, L2
data such as the total ozone columns gave smoother and more
consistent results (see Figure 7, left and middle panel).

The next improvement was to compare EPIC measured
radiances for filters 1–4 with synthesized radiance images based
on the NASA Ozone Mapping and Profiler Suite (OMPS) satellite
(National Oceanic and Atmospheric Administration, 2021), while
EPIC blue channel 5 was compared with the Ozone Monitoring
Instrument (OMI) (Goddard Space Flight Center, 2021). For every
EPIC radiance image, OMPSNadirMapper (NM) radiance spectra
measured on the same day was convoluted with EPIC bandpass
function and interpolated to the given EPIC channel wavelength.
Then, the OMPS radiance measurements at EPIC wavelength were
interpolated to each EPIC pixel geographic location. All of the
nearly 6,000 synthesized images and as well as EPIC measured
images from the first 18 months of the EPIC mission were
averaged, respectively. Ratios of the averaged EPIC radiance
image to the averaged OMPS radiance image were computed.
The synthesized radiance images were corrected by accounting for
the differences in the solar incidence angles and the satellite
observation angles using the TOMRAD atmospheric radiative
transfer model (Bhartia and Wellemeyer, 2002) and OMPS NM

ozone retrieval results (ozone and surface reflectivity, etc.), which
were also averaged and synthesized in parallel with the synthesizing
of radiance images. Ratios of the averaged EPIC radiance image to
the resulting OMPS (and OMI) radiance image were computed.
This technique eliminates some large geophysical features
mentioned above and characterizes pixel-to-pixel variations very
well. However, we found the resulting flatfield still had significant
offsets changing from the CCD-center to the edge. We believe this
is because the spherical geometry approximation in TOMRAD
causes increased uncertainties at large solar/viewing zenith angles.
Also, the forward model does not simulate the ocean Sun glint.
These two errors are circularly symmetric. Therefore, a polar
coordinate system was set at the CCD center, and circles of
CCD pixels were selected from the ratios and fitted with
piecewise linear functions of the polar angle to determine a
reference background. Pixels with large deviations from a fitted
background were removed from the circle, and the raw ratios of the
remaining pixels in the circle were fitted again. Two iterations of
this fitting were performed. This procedure was repeatedly applied
with 1-pixel radius increments from the center to the edge, where a
sufficient (3,000) number of EPIC images were accumulated.
Finally, the raw ratios were normalized with the resulting
reference background for the flat field correction.

A further step to improve the flat-field correction was to
estimate the magnitude of VIGN from the lunar measurements
during CalMoon. After correcting for the slightly changing
distances for Sun-Moon-EPIC, a given face of the Moon can be
considered a stable light source. The obtained results for the EPIC
sensitivity decrease towards the edge of the FOV and are shown in
Figure 5. Since the scatter in the results was significantly larger
than potential differences among the filters, we used a polynomial
fit to the average over all filters as the final function for VIGN. The
lunar calibration measurements are periodically repeated over the
life of the mission.

FIGURE 7 | EPIC total ozone columns in Dobson Units (DU) on October 17, 2015 at 20:14 UTC using flat field calibration from pre-launch (left panels), the update
from Fall 2016 (middle panels) and the actual latest version (right panels). The bottom row is a zoom into the region indicated by the black lines. The very low ozone
values below 200 DU in a region of the bottom left panel are not real, as we know from other data, and are a consequence of the imperfect initial flat field correction. This
artifact is not seen in the bottom right panel anymore, where the latest flat field correction is used.
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The in-flight modifications described above further improved
the quality of the L2 data like total ozone columns (Figure 7, right
panel). Themodification is on the order of up to 4% of radiance to
optical speckle-like features in broad regions, and up to 60% for
some bad pixels, which lead to corrections in the retrieved ozone
from tens DU to hundreds DU. The estimated uncertainty in the
flat field correction (pixel-to-pixel sensitivity changes) is 0.5%.

Stray Light Correction
Light entering EPIC from a specific direction does not only end up at
the CCD location defined by geometric optics, the “core region” that
consists of the corresponding pixel and its neighbor pixels. A fraction
of the light is distributed over the entire detector as stray light. The
fraction of the total signal ending up outside the core region, the “stray
light fraction”, is rather large for EPIC, between 12 and 20%
depending on the filter (Table 1). If not corrected, the stray light
would severely reduce the quality of the scientific data products,
particularly those depending on the ratio of light from different
wavelength channels. Therefore, a stray light correction method
based on the knowledge of the instrument’s point spread function
(PSF) was developed. The method follows the principle described in
Zong et al. (2006) used for a different purpose. To our knowledge this
is the first time that such a technique has been applied to a 2-
dimensional detector. Our novel approach is described in this section.

As mentioned in Calibration Periods, different targets were used
during CalLM to create different illuminations for EPIC. For example,
one target produced the circular image seen in Figure 4. Another
target produced a quasi-parallel beam with divergence of ±5 × 10−5

degrees, which is only one third of the angular extension of one pixel,
3 × 10−4 degrees. When this “sub-pixel-illumination” was positioned
to reach the CCD right in the center of a pixel, the obtained signal is
considered to be the PSF of EPIC (Figure 8).Within themeasurement
uncertainty, the shape of the PSF for EPIC in the core region was
found independent of the filter and the position on the detector.

When using the sub-pixel illumination, the signal outside the
core region basically disappears in the measurement noise, i.e., the

exact structure of the stray light cannot be determined. It was also
not possible to increase the exposure time and saturate the center
pixel to such an extent that this structure was seen. To solve this
problem another target was used, which produces a beam with
divergence of ±3 × 10−3 degrees or 3,600 times more energy than
the sub-pixel illumination. This results in a “small circular image”
with a radius of 20 pixels. Both unsaturated and saturated
measurements with this target were taken and then merged to
produce final images (Figures 9, 10). As in Figure 8, the data are
normalized to the sum of the corrected signal over the entire
detector. Several common features can be seen in the figures, but
not all of them are related to stray light. For example, we believe
that the enhancement of entire rows in the saturated regions is due
to a not fully removed readout latency effect.

The most obvious feature of EPIC stray light is a ghost image,
in which the support structure of the secondary mirror can be
seen. Based on optical modeling, we think this ghost image is
mainly caused by reflections between the detector and the parallel
filters, which are significant, although all of these optical elements
have proper anti-reflection coatings applied. Since filter wheel 1 is
farther away from the detector, the diameter of the ghost image is
larger for filters 1 to 5 than for filters 6 to 10 (Figure 10).

Based on these measurements we developed a PSF-model for
EPIC. For this model the PSF was divided into eight different
“regions”: the core region with the 21 pixels shown in Figure 8,
the near field, transition and interpolation regions, extending to a
distance of ∼200 pixels around the center pixel (violet and dark
red colors in the figures), the ghost image region (mostly orange
colors in Figure 9), the regions inside and outside of the ghost
(mostly yellow) and the region outside the telescope (the gray
corners of Figure 2). The PSF-model consists of a set of filter-
dependent parameters for each region, e.g., the stray light level in
the transition region or the diameter of the ghost image region,
etc. Details such as the arms of the support structure of the
secondary mirror were omitted in the model (see also Figure 11).
The PSF-model allows us to calculate an estimation of the EPIC

FIGURE 8 | EPIC PSF in the core region measured during CalLM for filter 6 using sub-pixel-illumination. The data are normalized to the sum of the signal over the
entire detector. The individual values are listed in the left panel. For filter 6, 87% of the signal ends up in the core region, i.e., the center pixel and the next neighbor pixels
(cells with gray background), while 13% of the signal is stray light and spreads over the remaining part of the CCD. For other filters the shape of the PSF in the core region
is the same, but the normalized values are different due to a different stray light fraction (Table 1).
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FIGURE 9 | EPIC PSF in parts per billion (ppb) measured during CalLM for filter 8 using the small circular illumination directed at different positions on the detector.
The top left panel shows the entrance of EPIC with the support structure of the secondary mirror.

FIGURE 10 | EPIC PSF measured during CalLM using the small circular illumination directed at the center of the detector for all filters.
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PSF for each of the 10 filters for any of the more than four million
pixels on the CCD.

The next step in the stray light correction method described by
Zong et al. (2006) is to build the so-called stray light distribution
matrix D, which is basically the combination of all the PSFs. One
column of D is the PSF with the core region replaced by zeros for
the respective pixel as a column vector, i.e., with dimension (2,048
* 2,048 � 4194304,1) instead of (2,048, 2,048). The unitary matrix
I is added to D. The result, I + D, is a diagonally dominant matrix
with ones in the main diagonal and very small numbers elsewhere
(values as shown in Figures 9, 10). I + D is inverted to obtain the
stray light correction matrix C (Eq. 3).

C � (I + D)−1 � I − D + 1/2 · D2 − . . . ∼ I − Dp (3)

D* is an approximation for the combined D-terms in Eq. 3 as is
described below. C is then applied to the measured data (as a
column vector) to correct for the stray light. The problem we
faced is that for a 2D-detector like EPIC matrices D and C have a
huge dimension (4194304, 4194304). Such amatrix would occupy
>70 TB of disk space (for each filter) if stored in single precision.
While it is in theory possible to create D using our PSF-model, it
is completely impractical to invert D even with the most advanced
computer system. And even if we were able to perform this
inversion, applying matrix C to an image would also take far too
much time to be executed for routine operation. Therefore, we
made two simplifications:

First, we applied “partial binning” on the PSFs. The central
part of 96 × 96 pixels around the target pixel is saved in full
resolution, but all the pixels outside this central part are binned
into “super-pixels” with a size of 32 × 32 pixels each. An example
for this binned PSF is shown in Figure 11. The specific numbers
for the configuration of the central part and the binning were a
compromise between reducing the size of matrix C as much as
possible and still maintaining a good measure of the stray light
correction. This compromise was obtained by testing different
configurations. The lower physical limit for the central part was
about 90 × 90 pixels, since this covers the near field of the PSF
(Figure 10), which has the strongest gradient. Any smaller size

for the central region would have altered the results significantly.
Since the width of the super-pixels must be an integer fraction of
the pixel number in one dimension, 2,048, and the width of the
central region must be a multiple of the width of the super-pixels
(both for numerical reasons), the minimum possible size for the
central region was then given by 96 × 96, as 96 is three times 32 or
six times 16. Since we did not see a large difference between 32 ×
32 and 16 × 16 super-pixels, we chose 32 × 32 as it significantly
reduces the size of matrix C.

With these settings, the partially binned PSF has a total of
13,303 entries (9,216 pixels in the central part and in addition
4,087 super-pixels), which means the final stray light correction
matrix C occupies ∼208 GB of disk space per filter in single
precision. Despite this simplification, the operational stray light
correction would still take a long time (roughly 52 min per image)
when executed on a desktop computer. Instead, the operational
EPIC data processing is done on a supercomputer at the NASA
Center for Climate Simulation (NCCS) (National Aeronautics
and Space Administration, 2021), where the processing can be
done in less than 30 s per image.

The second simplification is that we approximate the inversion
in Eq. 3with only the first term of a Taylor series expansion, which
can directly be obtained from the PSF-model. In order to
compensate for the underestimation caused by the
approximation I−D, we created a modified distribution matrix
D* (Eq. 3). D* was obtained by testing the stray light correction on
pre-launch and post-launch data with a known signal input.

Examples of such test images are shown in Figure 12. For the
left panel in this figure, another target used during CalLM, the “bar
target”, is measured. This target consists of rectangular areas with
gaps in between. Knowing that the signal outside and in between
the openings must be zero, we could fine-tune our PSF-model.
These images were especially useful to test the performance of the
stray light correction in the regions near the central pixel (the near
field, transition, and interpolation regions), which is something
that cannot really be verified after launch.

The right panel in Figure 12 shows a lunar image taken during
CalMoon.While we could not use the region on the moon itself to
test the stray light correction, since we do not know the exact
structure of the lunar surface, we could make use of the fact that

FIGURE 11 |Measured (left panel) andmodeled partially binned PSF (middle and right panels) for filter 8 at target pixel (1400,600) in logarithmic scale. The right
panel is a zoom into the middle panel for the region of rows 1,250–1,550 and columns 450−750. The area inside the green frame in the right panel is the central part of
96x96 pixels around the target pixel, which is resolved in full resolution. Outside the green frame are the 32x32 “super-pixels”.
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outside the moon the signal must be basically zero and that the
signal drops sharply to zero at the edge of the lunar disk since the
moon has no atmosphere.

One check for the quality of the stray light correction that can be
done for the operational data is simply to look at the region outside the
target (Earth or Moon), which should give a signal as close to zero as
possible. We have analyzed the ratio R of the mean signal outside the
Earth <SOUT> over the mean signal on the Earth <SON> for the first
year of EPIC data in orbit,R � <SOUT>/<SON>. For eight of the filters,
R ranged from 0.8–2.7% before stray light correction was applied, and
from −0.1%–+0.4% after the correction, which proves excellent
performance of the stray light correction algorithm of a factor of 7
or higher. An exception isfilter 9, where the numbers are 3.5 and 1.0%,
respectively, hence, still an improvement by a factor 3.5, but not of the
same quality as for the other filters.

Another way to test the quality of the stray light correction is
described in Geogdzhaev and Marshak (2018), where absolute
calibration constants for EPIC filters 5, 6, 8, and 10 are found
through comparison with data from the Moderate Resolution
Imaging Spectroradiometers (MODIS) onboard the Terra and
Aqua satellites. The authors applied their technique separately for
dark scenes and bright scenes. When EPIC L1a calibration, especially
the stray light correction, was done correctly, the twomethods should
give approximately the same calibration constants. Their analysis
showed that the agreement between the calibration based on the dark
and bright scenes respectively increased by a factor of 1.7–3.3 after
EPIC stray light correction was applied.

Figure 13 shows the stray light error (SLE) for the same
images as shown in Figure 2, i.e., fromMay 8, 2019 around 11:00
UTC. Here we define the SLE as the percent difference between
the data before and after the stray light correction. The median of
the SLE-distribution for the pixels on the Earth’s disk (“pixels on
Earth”) ranges from −2% for filters 1 to 5 down to −4% for filter 8.
This is because stray light causes a fraction of the energy from the
pixels on Earth to spread to the pixels outside the Earth’s disk
(“pixels outside Earth”). For the pixels outside Earth, the SLE goes
towards infinity since the corrected data are close to zero. Bright
scenes (clouds, ice or high surface albedo like over Africa for the
higher filters) have a negative SLE, which ranges from −6% for
filters 1–6 down to −10% for filter 8 (this is based on the 1-
percentile of the SLE-distribution for pixels on Earth). Dark
scenes (clear sky and low surface albedo) have a positive SLE,
which can exceed the scale of Figure 13 substantially with values
above 50% and even up to 100% for filter 8 (this is based on the
99-percentile of the SLE-distribution for pixels on Earth).

PIXEL SIZE ON GROUND

An important question for the data user is where does the light come
from as measured by one EPIC pixel? This is often referred to as the
“footprint” of a satellite pixel. The answer to this question is strongly
related to the PSF, which describes how the light originating from a
point source is distributed over the CCD. The core part of the EPIC

FIGURE 12 | (All pseudo-color images are in logarithmic scales and use the same color bar as in Figure 11): (A) Bar target measurement for filter 8 from CalLM
before stray light correction (“Uncorrected”) and after stray light correction (“Corrected”). The bottom panel shows the average over rows 900–950 as a function of the
column index, which is indicated by the green area in the full images. The stray light reduces the signal at the maxima and fills the gaps in between the maxima (red solid
line). After the correction (dashed blue line) the signal at the maxima is “restored” and the signal in the gaps caused by the stray light is “cleared”. (B) Lunar image for
filter 8 from CalMoon before stray light correction and after stray light correction. The bottom panel shows the average over rows 700–720 as a function of the column
index, which is indicated by the green line in the images. Before the correction (red line) the signal outside the lunar surface is enhanced, mostly due to the ghost image,
while after the correction (dashed blue line) it is approximately zero.
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PSF (Figure 8) can be approximated by a 2-dimensional super
Gaussian function with exponent 1.63 ± 0.11 and FWHM of
1.29 ± 0.11 pixels. The angular FOV of a pixel is given by the
core PSF “mirrored on the center point” and convoluted over the
extension of the pixel. It describes the angleswhere light originates that
ends up on a given pixel. The FWHM of the EPIC FOV, which is

obviously a 2D super-Gaussian just like the PSF, is 1.73 arcsecs. The
geographic footprint finally is the projection of the angular FOV
on the Earth’s surface, i.e., one needs to include the distances,
angles, etc., included in the telemetry. The blue lines in
Figure 14 show the footprint for the “standard case” of
normal incidence on the ground (satellite viewing zenith

FIGURE 13 | Stray light error for the EPIC images from Figure 2 (May 8, 2019 around 11:00 UTC).

FIGURE 14 | (A) Energy contours of the EPIC footprint for a pixel at 0° satellite zenith angle and average Earth-Lagrange 1 distance. The blue lines represent the
unbinned case, the red lines the case of 2 × 2 binned pixels. The light colors give the 50% level, i.e., 50% of the energy reaching the pixel comes from inside this region.
The dark colors give the 90% level. (B) EPIC SNR for the operational readout mode at typical CCD temperatures. The SNR of dark scenes is smaller in the visible than in
the UV due to the larger contrast between dark and bright scenes (see also Figure 2).
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angle VZA � 0°) and the average Earth-Lagrange 1 distance. For
this situation, the footprint is approximately circular with a
FWHM of 12.5 km, a 50% energy contour line with a diameter
of 13.2 km (i.e., 50% of the energy measured in the pixel is from
within this circle) and a 90% energy contour line with diameter
of 24.9 km. The footprint increases with the distance of EPIC
from the Earth and also changes in size and shape for other
places on the Earth with VZA > 0°.

As already mentioned in Dark Correction, the images from
all filters except the blue filter 5 are “binned”, i.e., the averages
over groups of 2 × 2 pixels are formed. The FOV for one of
these binned pixels increases to 2.41 arcsecs, since the
convolution is done over a larger area than in the
unbinned case. This also changes the native footprint of
the L1a data for these filters (red lines in Figure 14). The
“binned” footprint is not circular anymore and has a FWHM
of 17.5 km, a 50% energy contour line with a diameter of
16.4 km and a 90% energy contour line with diameter of
29.2 km.

UNCERTAINTY

A complete uncertainty analysis for EPIC L1a data has not been
made, since this is outside of the available resources. However, we
can determine the read noise and the gain of EPIC, which allows
us to estimate the signal to noise ratio (SNR) of an EPIC
measurement:

SNR � CC/sqrt(N 2
READ + GAIN · CC) (4)

CC are the dark corrected counts ranging from 0 to about 4,000.
CC can be approximated by multiplying the L1a data (count
rates) with the exposure times given in Table 1. NREAD is the read
noise, which is 3.9 counts for the operational EPIC readout mode.
GAIN � 0.04 on average (it changes with the CCD temperature).
The SNR is shown in Figure 14. It ranges from 50:1–150:1 for
dark scenes (lower values for higher wavelengths and higher
values for short wavelengths that have significant Rayleigh
scattering) and from 250:1 to 300:1 for bright scenes
containing clouds or snow/ice. A measure of the success of the
corrections is that features as small as 10 km can be discerned
(Nile river banks) in the 443 nm blue channel and that the very
sensitive algorithm for ozone retrieval is successful (Kramarova
et al., 2021 submitted).

For the binned images (all filters but filter 5), the SNR is the
double of the numbers shown in Figure 14 and listed in the
previous paragraph for L1a data.

CONCLUSION

We believe that within the available possibilities from pre-
launch and on-orbit calibration activities, an adequate EPIC
raw data calibration has been obtained. The produced L1a
data are corrected for all known instrumental effects and only
need to be multiplied by a single number for each filter to
obtain absolute calibrated radiances from the count rate.

Before in-flight data were available, it was decided that no
attempt would be made to determine the conversion from
count rates to radiances for two reasons. First, the laboratory
setup to produce an absolutely calibrated, homogenous,
extended light source is a rather difficult task and would
have exceeded the possibilities with respect to budget and
schedule. Second, it is unlikely that the absolute calibration
values obtained during pre-launch would have been
applicable to the operation on orbit, as many factors, such
as launch stress or the different environment and instrument
illumination in space, usually modify the calibration
significantly (see, e.g., Kabir et al., (2020). Therefore, the
EPIC L1a data are given as corrected count rates and the 10
numbers needed to convert to radiances are determined by
comparison to other satellites in a later processing step.

Several of the corrections described in L1a Processing Steps
follow well-established procedures for instrument calibration.
However, for some of the steps, we needed to develop rather
novel techniques that have not been previously used to our
knowledge.

• A readout latency correction method was determined.
This was possible since the EPIC detector can be drained
(read) from different CCD corners and the necessary
measurements were made before launch (Latency
Correction).

• The flat-field corrections, which turned out to be the
most critical part with respect to producing reliable L1a
data, needed to be adjusted on-orbit relative to their pre-
launch values. This was done through comparison with
other satellites and by applying a statistical analysis of
all the EPIC images taken over a long period (Flat
Fielding).

• A novel stray light correction method was developed
based on partially binned PSFs to handle the huge
dimensions of the matrices involved (Stray Light
Correction).

Since its launch in 2015, EPIC has been monitored for
possible calibration changes, e.g., the dark count evolution
(Dark Correction), the number of hot pixels (Enhanced Pixel
Detection), or the radiometric stability from periodic lunar
observations. The overall conclusion is that the observed
instrumental changes are small, which we attribute to the
benevolent conditions for the Lagrange 1 orbit. EPIC does
not undergo periodic variations of extremely hot and cold
temperatures like satellites in Earth orbits (low Earth orbits
or geostationary orbits), which periodically move from sun
to shadow, for low Earth orbits every ∼50 min. Furthermore,
it is in a much more constant radiation environment
compared to the instrument in LEOs, which cross the
South Atlantic Anomaly (SAO) at least once per day [see,
e.g., Li et al. (2020)]. Since the same side of the DSCOVR
satellite always points to the Sun, the shielded effect from
charged particles originating from the solar wind is much
better than the charged particle effect in the SAO. We believe
that apart from the excellent Earth-observing situation from

Frontiers in Remote Sensing | www.frontiersin.org July 2021 | Volume 2 | Article 70227516

Cede et al. Raw EPIC Data Calibration

60

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


Lagrange 1, the observations discussed in this document are
another positive aspect of this orbit, which should be
considered when possible future missions are discussed.
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Cloud Detection Over Sunglint
Regions With Observations From the
Earth Polychromatic Imaging Camera
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With the ability to observe the entire sunlit side of the Earth, EPIC data have become an
important resource for studying cloud daily variability. Inaccurate cloud masking is a great
source of uncertainty. One main region that is prone to error in cloud masking is the
sunglint area over ocean surfaces. Cloud detection over these regions is challenging for the
EPIC instrument because of its limited spectral channels. Clear sky ocean surface
reflectance from visible channels over sunglint is much larger than that over the non-
glint areas and can exceed reflectance from thin clouds. This paper presents an improved
EPIC ocean cloud masking algorithm (Version 3). Over sunglint regions (glint angle ≤25°),
the algorithm utilizes EPIC’s oxygen (O2) A-band ratio (764/780 nm) in addition to the
780 nm reflectance observations in masking tests. Outside the sunglint regions, a dynamic
reflectance threshold for the Rayleigh corrected 780 nm reflectance is applied. The
thresholds are derived as a function of glint angle. When compared with co-located
data from the geosynchronous Earth orbit (GEO) and the low Earth orbit (LEO)
observations, the consistency of the new ocean cloud mask algorithm has increased
by 4∼10% and 4∼6% in the glint center and granule edges respectively. The false positive
rate is reduced by 10∼17%. Overall global ocean cloud detection consistency increases by
2%. This algorithm, along with other improvements to the EPIC cloud masks, has been
implemented in the EPIC cloud products Version 3. This algorithm will improve the cloud
daily variability analysis by removing the artificial peak at local noon time in the glint center
latitudes and reducing biases in the early morning and late afternoon cloud fraction over
ocean surfaces.

Keywords: EPIC, cloud detection, sunglint, oxygen A-band, ocean surface reflectance

INTRODUCTION

When the geometric configuration of Sun, surface, and viewing angles form a mirroring path, the
specular reflection, or sunglint, creates a bright spot on the remote sensing imagery. Ocean surface
reflectance in the visible spectrum over sunglint is much larger than that from other areas. If the
ocean surface were perfectly smooth, sunglint would appear in remote sensing images as the mirror
image of the Sun, occupying a relatively small portion of the images. In reality, because of the wave
and ocean currents, the ocean surface is tilting toward different directions, causing the sunlight to
scatter and resulting in a large area of glint zone. The size of the glint zone in the satellite imagery
depends on the ocean surface roughness, which in turn can be parameterized in terms of the vector
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wind field. The classical work by Cox andMunk (1954a), Cox and
Munk (1954b) use sea surface wind speed and direction 10 m
above the ocean surface to parameterize the distribution
probability of the orientation of sea surface facets, which is
widely used in radiative transfer models to estimate glint
distribution and intensity.

The large reflectance in the glint region poses significant
problems in the remote sensing of some atmospheric and
ocean constituents. For example, remote sensing of
atmospheric aerosol over ocean relies on separating the total
sensor reflectance originated from surface and atmospheric
molecular and aerosol backscattering. While surface reflectance
over ocean can be estimated with auxiliary wind information,
aerosol retrieval is normally avoided near and in the sunglint
region (glint angle <40°) because of the large uncertainties (Levy
et al., 2005). Likewise, sunglint is a serious confounding factor for
remote sensing of water column properties and benthos as the
total signal is dominated by the sunglint which makes the
retrieval of water-leaving radiance very difficult (e.g., Khattak
et al., 1991; Hagolle et al., 2004; Ottaviani et al., 2008; Kay et al.,
2009; Jackson and Alpers, 2010; Harmel and Chami, 2013).

Outside the sunglint regions, cloud detection over ocean
surfaces is considered relatively easy due to the sharp contrast
between bright cloud objects and the generally dark ocean surface
in the visible spectral channels. A single reflectance test at 0.86 µm
can detect over 95% of daytime clouds over water when compared
to the full set of Moderate Resolution Imaging Spectroradiometer
(MODIS) cloud mask tests (Zhou et al., 2003). The MODIS cloud
mask algorithm utilizes a varying reflectance threshold for the
0.86 µm channel in sunglint regions, where they are split into
three sections according to the sunglint angle Θglint. For Θglint

from 0 to 10°, the mid-point threshold is constant at 0.105, for
Θglint from 10° to 20° the threshold varies linearly from 0.105 to
0.075, and forΘglint from 20° to 36°, it varies linearly from 0.075 to
0.055 (Frey et al., 2008; Ackerman et al., 2010). Additional

spectral tests in thermal and near infrared channels are useful
in delineating between clear sky and some optically thin clouds.

The Earth Polychromatic Imaging Camera (EPIC) on board
the Deep Space Climate Observatory (DSCOVR) launched in
2015 has 10 narrow spectral channels in the ultraviolet (UV) and
visible/near-infrared (Vis/NIR) (317–780 nm) spectral regions.
The DSCOVR satellite, which is located in the first Lagrangian
(L1) point of the Earth–Sun orbit, approximately 1.5million
kilometers away, allows the EPIC instrument to take
continuous measurements of the entire sunlit side of the Earth
from the nearly backscattering direction (scattering angles
between 168.5 and 175.5+) every 1∼2 h (Marshak et al., 2018;
Yang et al., 2019). The geometric configuration of EPIC leads to a
large sunglint zone close to the center of each 2024x2024 CCD
pixel granule (e.g., Figure 1A).

A suit of cloud products, including cloud mask (CM), cloud
effective pressure (CEP), cloud effective height (CEH), and cloud
optical depth (COD), have been developed with observations from
the EPIC’s 10 spectral channels (Yang et al., 2019). EPIC possesses
two oxygen (O2) band pairs each with an absorption channel and a
non-absorption reference channel. TheA-band absorption channel is
centered at 764 nm with a full width at half maximum (FWHM) of
1.02nm, and its reference channel is centered at 780 nm with a
FWHM of 1.8 nm. The B-band’s absorption channel is centered at
688 nm with a FWHM of 0.84nm, and its reference channel is
centered at 680 nm with a FWHM of 1.6 nm (Marshak et al., 2018).
Oxygen absorption has been applied to remote sensing of cloud and
aerosol extensively (e.g., Fischer and Grassl, 1991; Stammes et al.,
2008; Wang et al., 2008; Ferlay et al., 2010; Ding et al., 2016;
Richardson et al., 2020). The EPIC’s two O2 band pairs (R764∕R780
and R688∕R680) are used for the retrieval of CEP (Yang et al., 2013;
Davis et al., 2018a; Yang et al.,2019; Yin et al., 2020) and for cloud
masking over snow and ice (Zhou et al., 2020). The retrieval is based
on the principle that the O2 absorption bands are sensitive to the
presence of clouds, especially high and thick clouds that reduce the

FIGURE 1 | (A) Example of EPIC RGB image for the granule at 13:31 UTC on January 1, 2016. (B) Cloud mask for this granule from Version 2 (old) cloud mask
algorithm. Notice the enhanced glint reflectance in the center of the granule in (A) and corresponding false positives of cloud identification in the glint region in (B). Blue,
light blue, green, and white colors indicate four levels of cloud mask output: confident clear, uncertain clear, uncertain cloud and confident cloud, respectively.
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absorbing air mass that light travels through while the reference
channel does not. An increase in the ratio of the bidirectional
reflectance functions (BRFs) between the absorbing and reference

channel can not only indicate the presence of cloud but also be used
to retrieve the effective cloud height (Yang et al., 2013; Yang et al.,
2019). Zhou et al. (2020) further improved the O2 band ratio-based
cloudmask algorithm over snow and ice by developing a dynamically
varying threshold with surface altitude and Solar/view zenith angles.

Over ocean, the Version 2 (old) EPIC cloud mask algorithm uses
the Rayleigh corrected reflectance of 680 and 780 nm channels with
fixed thresholds (Yang et al., 2019). The Rayleigh correction partially
mitigated the angle effect. EPIC cloudmask algorithm generates four
levels of clear and cloud confidences similar to those of official
MODIS cloud mask (Table 1). The global mean cloud fraction over
ocean derived from EPIC is within 3% of those computed from
collocated LEO/GEO composites. The pixel level accuracy of EPIC
cloud mask product is about 88% (Yang et al., 2019). Though the

TABLE 1 | Cloud mask classification from EPIC and GEO/LEO. CldHC, CldLC,
ClrLC, ClrHC stand for cloud with high confidence, cloud with low confidence,
clear with low confidence, and clear with low confidence, respectively.

Scene classification CM values EPIC CM GEO/LEO CM

Cloud 4 CldHC cloud fraction>95%
3 CldLC 50%< cloud fraction< 95%

Clear 2 ClrLC 5% < cloud fraction< 50%
1 ClrHC cloud fraction <5%

FIGURE 2 | (A) Glint angles for a single granule from September 24, 2017, 04 UTC. The thick red line in the middle is the location of the simulations shown in
Figures 3, 4. (B) Glint areas (within 30° of glint angle) in all granules drawn from left to right as the day progresses on June 21, March 21, and December 21, 2016 in the
top, middle and low rows, respectively; pink, light pink, and pale represent areas within 10, 20 and 30 degrees of glint angle. (C) Glint migration during a year. Red, pink,
light pink and light purple colors mark the boundaries of 0° and 10°, 20°, 30° of glint angles. (D) Ocean area percentage at each latitude.
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performance is reasonable, further inspection reveals that over
sunglint regions near the center of the granules, the algorithm
nearly always identifies pixels as cloudy regardless of whether or
not clouds are present (Figure 1). This increases the cloud fraction
around local noon time over the ocean at latitudes where sunglint
occurs. In addition, we also noticed that the cloud mask for ocean
pixels near the edge of the granules is biased toward cloudy, which is
due to enhanced reflectance in the large solar/view zenith angles near
the edge. This bias can lead to an overestimation of cloud fraction
close to the edge of the images, including high-latitude regions. It is
worth noting that the biases in the cloud mask affect the EPIC
downstream products as well. For example, the EPIC COD retrieval
procedure (Meyer et al., 2016), which adopts a single channel retrieval
approach similar to what Yang et al. (2008) describes, uses cloud
mask as part of the input.

This study aims to improve the EPIC cloudmask over the sunglint
region and granule edges over ocean based on the radiative transfer
simulations and collocated observations from GEO/LEO platforms.
A new application of the A-band ratio in the glint region will be
investigated. The remainder of the paper is organized as follows: First,
we introduce the data and radiative transfer model (RTM) used and
the sensitivity studies conducted. Then we will describe EPIC’s
sunglint distribution and impact. Next we will describe the new
ocean cloud mask algorithm including the threshold derivation and
algorithm evaluation. Then we will discuss impact of the new
algorithm on cloud diurnal cycle and zonal mean oceanic cloud
fraction. Summary and discussion will be provided in the end.

DATA AND RADIATIVE TRANSFER MODEL
SIMULATIONS

Data
The primary data used in the study are the EPIC level 1B
calibrated reflectance and the EPIC level 2 standard cloud
products (Yang et al., 2019). In addition, the study uses the
composite cloud product developed by the Clouds and the Earth’s
Radiant Energy System (CERES) team at the NASA Langley

Research Center as reference for comparison with the EPIC cloud
detection results. The composite is created by projecting the
geosynchronous Earth orbit (GEO) and low Earth orbit (LEO)
satellite retrievals to the EPIC grid at each EPIC observing time
(Khlopenkov et al., 2017; Su et al., 2018). The procedure ensures
that every EPIC image/pixel has a corresponding GEO/LEO
composite image/pixel with approximately the same size and
observing time. The LEO satellites include NASA Terra and Aqua
MODIS and NOAA AVHRR, while geosynchronous satellite
imagers include the Geostationary Operational Environmental
Satellites (GOES) operated by NOAA, Meteosat satellites by
EUMETSAT, and Multifunctional Transport Satellites
(MTSAT) and Himawari-8 satellites operated by the Japan
Meteorological Agency (JMA). The time differences between
the GEO/LEO and the EPIC observations are included in the
product files. To limit uncertainties, we only use pixels where the
GEO/LEO and EPIC observations are within 5 min of each other.
Compared to EPIC, the GEO/LEO sensors are usually better
equipped for cloud detection because more spectral channels are
available in these instruments. The cloud retrievals in the
composite data follow Minnis et al. (2011). Because of EPIC’s
large pixel size, one EPIC pixel corresponds to many GEO/LEO
pixels each with its own cloud mask and optical properties
retrievals; hence a composite pixel reports a cloud fraction
based on cloud masks of the GEO/LEO pixels within it.

Radiative Transfer Model Simulations
An EPIC simulator (Gao et al., 2019) has been developed based
upon an RTM (Zhai et al., 2009; Zhai et al., 2010) that solves
multiple scattering of monochromatic light in the atmosphere
and surface systems. The model setup is described in Gao et al.
(2019), Zhou et al. (2020). The EPIC simulator is used to generate
the oxygen A-band and B-band reflectance over ocean surface.
Gas absorptions due to ozone, oxygen, water vapor, nitrogen
dioxide, methane, and carbon dioxide are incorporated in all
EPIC bands. The gas absorption cross sections are computed
from the HITRAN line database (Rothman et al., 2013) using the
Atmospheric Radiative Transfer Simulator (ARTS) (Buehler
et al., 2011). Line broadening caused by pressure and the
temperature dependencies of line absorption parameters are
considered. In the O2 A- and B-bands, radiances from line-by-
line radiative transfer simulations are conducted and then
convolved with the EPIC instrument response functions. The
model atmosphere uses Standard US atmosphere profile from
Intercomparison of Radiation Codes in Climate Models
(ICRCCM) project (Barker et al., 2003) and assumes a one-
layer cloud with a molecular layer both above and beneath.
The O2 absorption within clouds is considered by assuming a
fixed O2 molecule vertical profile.

The cloud is assumed to be liquid droplets following a gamma
size distribution with an effective radius of 10 µm and an effective
variance of 0.1. The cloud layer has varied optical thickness
ranging from 0.2 to 30 and cloud top height (CTOP) from 1.0
to 15 km above the ground. The cloud geometrical thickness
(CGT) varies from 0.5 to 4 km. The model simulates a variety of
cases with 17 solar zenith angles (SZAs) ranging from 0 to 80+, 18
view zenith angles (VZAs) from 0 to 85+, and 37 relative azimuth

FIGURE 3 |Model simulations of reflectance at 780 nm for clear sky and
cloud with different optical thickness along the horizonal line passing the
granule center in Figure 2A. Clear sky is in color blue.
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angles (RAZMs) from 0 to 180+, all with an increment of 5+. The
lower boundary is an ocean surface with the surface roughness
characterized by the Cox Munk model (Cox and Munk, 1954a;
Cox and Munk, 1954b). A fixed surface wind speed of 6 m/s is
used (Gao et al., 2019). The model simulated reflectance under
similar sun-view geometry to the EPIC observations are used for
developing thresholds for cloud detection.

GLINT DISTRIBUTIONS AND IMPACT

The sunglint region of an image can be roughly estimated by the
glint angle (Θglint), which denotes the angle between the reflection
received by satellite sensor and the angle of specular reflection.
The glint angle is defined as

⊙glint� cos−1(cosθscosθv + sinθssinθvcosϕ) (1)

where θs, θv, andΦ are the solar zenith, the satellite zenith and the
relative azimuth angles (between the Sun and the satellite),
respectively. Glint contamination are normally considered
within [0°, 30°] or [0°, 40°] depending on applications.

Figure 2 shows glint covered area from a single granule
(Figure 2A), an entire day (Figure 2B) to an entire year
(Figure 2C). Based on the sunglint contamination on cloud mask,
we define our glint region in this study as a region with glint angle less
than 30°. Figure 2 shows that sunglint covers a large fraction of a
granule in the granule center if the region happens to be ocean. At any
given day, the glint center moves from east to west and creates a zonal
band of about 30° in the meridional direction where the glint is
centered (Figure 2B). June 21 and December 21 represent the north
(south) most position of the Sun (and glint center latitude)
respectively. The glint center is located near the equator on March
21. Because sunglint appears in the entire oceanic part of the
latitudinal band, if included, it is sufficiently large to affect the

FIGURE 4 | Model simulations of A-band ratio (R764/R780) for clear sky
(blue curve, COD � 0) and cloudy sky with different cloud optical thickness
(COD) (see color legend) and cloud top height (CTH) at (A) 2.5 km, (B) 5 km,
and (C) 7.5 km along a horizonal line passing the granule center in
Figure 2A.

FIGURE 5 | Ensembles of simulated (A) 780 nm reflectance and (B)
A-band ratio with geometries from 12 EPIC granules (one per month) in 2016.
Black, blue, green and red shows simulations fromCOD � 0.0, 0.22, 0.82, 1.72,
respectively. Cloud top height is 5 km and geometric thickness is 3 km.
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oceanic cloud fraction diurnal cycle analysis, and possibly mean cloud
fraction in those latitudes due to the bias in the Version 2 cloud mask.
This issue has been noticed by the community. For example, in the
analysis of Delgado-Bonal et al. (2020), the time period with sun-glint
is excluded. Lastly, the glint center migrates between 23°S–23°N each
year and creates a total glint contamination region spanning from -38°

to 38° (Figure 2C). Figure 2D shows the percentage of ocean area in
each latitude which ranges from around 50% in 40°N to more than
95% in 40°S. The glint effect of the mean zonal cloud fraction is
expected to be larger in southern hemisphere, with a larger percentage
of ocean coverage.

It is important to correct the cloud mask bias in the sunglint area.
The simulation of Gao et al. (2019) shows that while clear sky ocean
reflectance increases over sunglint regions, the presence of thin clouds
dims the glint reflectance.While thismakes single reflectance threshold
tests difficult, they also find that the cloudy sky A-band ratio is usually
higher than that of clear sky in the glint region,making it a potential test
for cloud mask in the glint region. In the following section, we will
further investigate the behavior of A-band ratio in the glint region and
try to incorporate it in the ocean cloud mask algorithm.

OCEAN CLOUD MASK ALGORITHM
DEVELOPMENT

Sensitivity Study
To demonstrate the effect of sunglint on reflectance over the
ocean, the reflectance at 780 nm R780 from the EPIC simulator

along a horizontal line passing the center of one granule from
September 24, 2017 (Figure 2A) is shown (Figure 3).
Hypothetical ocean surface is assumed everywhere. The clear
sky R780 is smaller than those of cloudy sky outside the sunglint
zone, but increases toward the center and surpasses the cloudy
sky R780 for thin clouds with optical thickness less 3. The cloudy
sky R780 generally increases with cloud optical depth (COD), even
at the glint center except when clouds are very thin (COD <1).
The R780 of cloudy sky is always larger than that of clear sky
outside the sunglint zone, and is insensitive to cloud height (figure
now shown), which makes it a good candidate for cloud detection
for ocean surface outside sunglint zone. Inside the sunglint zone,
however, R780 for cloudy sky can be larger or smaller than that of
clear sky depending on cloud optical thickness, hence a single
R780 test cannot always separate clear and cloudy pixels.

The ratio of A-band behaves quite differently than the 780 nm
channel. In the center of glint, A-band ratio of clear skies is always
smaller than those of cloudy skies, regardless of cloud optical
thickness and cloud height (Figure 4). The separation between
clear sky and cloudy sky A-band ratio increases with cloud height
and optical thickness. For low cloud at 2.5 km, a clear separation
between cloudy sky and clear sky in A-band ratio would require a
cloud optical thickness greater 2, while for clouds with height
greater than 5 km, a thin cloud with optical thickness greater than
0.82 is sufficient to separate the two. This is due to the greater
sensitivity of the absorbing channel to the cloud height and
optical depth as discussed in Zhou et al. (2020). Exact
conditions (combination of COD and height) of clouds that

FIGURE 6 |Observed Rayleigh corrected EPIC 780 nm reflectance (A,B) and A-band ratio (C,D) as a function of glint angles from January and July 2017 for clear
sky (A,C) and cloudy sky (B,D). The solid black lines represent the upper bounds of the model simulated clear sky Rayleigh corrected R780 in each 1-degree glint angle
bins. Dash lines represent the adjusted Rayleigh corrected R780 thresholds.
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can be detected would depend on the measurement uncertainty,
which is estimated to be around 1% after considering the
cancelation of calibration errors in the two bands (Davis et al.,
2018b). The clear sky A-band ratio in the glint center is around
0.38; hence a difference between cloudy sky and clear sky A-band
ratio larger than 0.04 would be above the 1% uncertainty range. It
is found that 82% of the pixels at the glint center (Θglint < 20°) with
a cloud at 2.5 km and COD of 1.72 can satisfy this condition.
Outside the sunglint region, the clear sky A-band ratio can be
higher or lower than cloudy sky depending on the cloud height
and COD. This renders the A-band ratio test only good for the
sunglint region where the surface reflectance is high. To
summarize, the EPIC R780 can serve as a good test for cloud
detection outside the sunglint region; inside the sunglint, the
EPIC O2 A-band ratio can be used to separate clear and cloudy
pixels when R780 fails for thin clouds.

To derive stable thresholds for the EPIC instrument,
additional investigation is necessary to examine the clear and
cloudy sky data under all possible EPIC Sun-view geometry. For
this purpose, we selected one EPIC granule from each month in
2016 and extracted the Sun-view geometry for all the pixels in this
dataset. This creates a representative dataset for the EPIC Sun-
view geometries. The EPIC simulator results are then interpolated
into all the Sun-view angles in this dataset. Figure 5 shows that
the EPIC R780 and A-band ratio as a function of Θglint. The
sawtooth appearance in the figure is due to the Sun-view angle
spread and corresponding R780 for a given Θglint. As shown in the
figure, there is a well-defined curve of R780 and A-band ratio as a
function ofΘglint from clear sky simulations for most of the ocean
areas. The clear sky R780 increases at the glint center (Θglint < 30°)
and spreads slightly that overlaps with thin clouds (COD <1.7)
(Figure 5A). It remains quite flat, though not completely

constant, at the Θglint range of 40°∼120° before rising sharply
again at Θglint > 150° with an even larger spread. Importantly, the
A-band ratio for clear skies is consistently lower than that of thin
clouds in the glint region (Figure 5B). The curves show that it is
possible to define tabulated baseline thresholds in 1° intervals for
cloud detection by combining the R780 and A-band ratio tests.

R780 and A-Band Ratios From EPIC
Observations
In this section we examine the observed Rayleigh corrected R780

(R′780) and A-band ratio as a function of Θglint (Figure 6).
Choosing Rayleigh corrected reflectance is to minimize the
known angle effect. The separation of clear sky and cloudy sky
is based on the results derived from the collocated GEO/LEO
cloud fraction (Su et al., 2018). The upper bounds of the model-
simulated clear sky of R′780 and A-band ratio are plotted for
comparison. We notice that the upper bounds of the model
derived clear sky R′780 and A-band ratio (solid lines) represent
the lower and upper bounds of their observed counterparts,
respectively. The observed clear sky R′780 distribution shows a
high concentration of low values in the middle range of the glint
angles, but increases toward both ends, similar to what is shown
in Figure 5. There is more spread (toward higher values) in the
clear sky R′780 distribution than that of the simulation, possibly
due to cloud contamination in the GEO/LEO dataset (also notice
that the clear sky category we define for GEO/LEO may contain
some cloud, see Table 1). The spread is larger with larger Θglint

due to larger pixel size; hence more likely cloud contamination.
The cloudy sky R780 is generally higher than those for the clear sky
at the same Θglint except at very small Θglint (<25°), where a large
portion of the clear sky and cloudy sky R′780 are in the same
range. The model simulated R780 envelops the observed
reflectance in both clear sky and cloudy sky plots outside the
glint region, which makes it a good candidate as a cloud masking
test. On the other hand, the model simulated clear sky A-band
ratio curve falls between observed cloudy sky A-band ratios,
indicating that it is not an ideal test beyond the glint region. As
expected, the large spread of the observed clear sky A-band ratio
narrows towards the glint center where most clear sky values are
under the simulated curve. Inside the glint region, however, the
cloudy sky A-band ratio is mostly higher than that of the clear
sky, which indicates that the A-band ratio can be used as a test in
the glint region.

Based on these observations, we designed the cloud mask
ocean algorithm as follows:

For Θglint < 25°,

R′780 > R0 �> cloud

R′780 < R0 and R764/R780 > A0 �> cloud

For Θglint > 25°,

R′780 > R0 �> cloud

where the R0 and A0 values are the thresholds for Rayleigh
corrected R780 and R764/R780, respectively, which are a function of

FIGURE 7 | New cloud mask for the granule at 13:31 UTC on January 1,
2016 shown in Figure 1. The new algorithm showsmostly clear sky with small
features of cloud consistent with the cloud pattern outside the sunglint region.
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Θglint. The values of R0 and A0 are modified from the model
simulations (dashed curves in Figure 6). These adjustments are
necessary as model derived values represent theoretical lower and
upper bounds of clear sky values.

New Algorithm Evaluation
Case Study
The improvement of the new algorithm can be easily examined
visually, as more than 2/3 of the granules have sunglint in the ocean.
Figure 7 shows the new cloudmask for the granule at 13:31 UTC on
January 1, 2016 shown in Figure 1. The new cloud mask algorithm
eliminates the obvious overestimate of clouds in the glint center
while keeping small cloud features in the glint intact. It is also
noticeable that the old cloud mask overestimates cloud coverage in
most of the edge areas of the granule (Figure 2B), especially on the
right side, and the new algorithm has mitigated this issue as well.

Monthly Statistics
To quantitatively evaluate the new cloud mask, we conducted a
comparison with the CM from the Langley LEO/GEO composite

product introduced in Data and RTM simulations. As in Zhou
et al. (2020), we divide the GEO/LEO cloud fraction into four
categories to match with the four confidence levels of CM in EPIC
(Table 1).

In addition, we define the accuracy, probability of correct
detection rate (POCD) and probability of false detection rate
(POFD) as:

Accuracy � (a + b)/(a + b + c + d) (2)

POCD � a/(a + c) (3)

POFD � d/(b + d) (4)

where a is the number of pixels that both algorithms identify as
cloudy (including high and low confidence), b is the number of
pixels that both identify as clear (including high and low
confidence), c is the number of pixels that EPIC identifies as
clear while GEO/LEO identifies as cloudy, and d is the number of
pixels that EPIC identifies as cloudy while GEO/LEO identifies as
clear. We note that the cloud detection in GEO/LEO is by no
means the truth, hence the “accuracy” here should be interpreted
as consistency with GEO/LEO rather than true accuracy. The

FIGURE 8 |Number of pixels in each pixel-by-pixel matchup category between the cloudmask from EPIC and cloud fraction fromGEO/LEO composite over ocean
surfaces for January and July 2017 at glint center (Θglint < 25°) (A,B); large glint angles (Θglint > 120°) (C,D), and all glint angles (E,F). Left is from Version 2 EPIC cloud
mask algorithm and the right is from the new algorithm. Blue, cyan, yellow, and red bars are for EPIC cloud mask equals to 1, 2, 3, 4, respectively. POCD: probability of
correct detection; POFD: probability of false detection.
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same should be applied to POCD and POFD as they are relevant
to GEO/LEO’s cloud detection.

Figure 8 shows the matchups between EPIC cloud mask in 1
(blue), 2 (cyan), 3 (yellow), 4 (red) with the GEO/LEO cloud
fraction with <5%, 5–50%, 50–95% and >95% categories. It is
obvious that the old algorithm overestimates the cloud in the glint
center, evidenced by a red bar in the first group where GEO/LEO
has low cloud fraction (<5%) and virtually no blue bar in high

cloud fractions (>95%) categories. The new algorithm increases
the blue bar (high confident clear sky) in the clear region without
overestimating clear sky in the cloudy region. Similarly in the
high Θglint region (toward granule edge), the new algorithm was
able to detect more clear sky (blue bar) in the clear region without
overestimating clear sky in the cloudy region. Improvement is
evident for the new algorithm, where most of the pixels with <5%
cloud fraction have CM � 1 or 2 (high and low confidence clear,

TABLE 2 |Comparison of EPIC ocean cloud mask performance between the Version 2 algorithm and the new algorithm at glint center (Θglint < 25°), large glint angles (Θglint >
120°), and all glint angles of four additional months.

Month Region Glint center (Θglint < 25°) Large glint angles
(Θglint > 120°)

All angles

v1 New v1 New v1 New

2016.01 Accuracy 77.0 86.7 83.5 88.2 87.2 89.4
POCD 93.6 85.0 98.8 92.0 91.5 90.9
POFD 24.8 7.2 17.0 7.4 8.6 5.4

2017.03 Accuracy 76.4 88.3 84.4 91.7 88.5 90.9
POCD 92.9 93.0 99.1 94.3 91.3 91.4
POFD 25.9 12.0 16.5 5.3 8.2 5.0

2017.09 Accuracy 85.5 91.8 84.9 91.1 88.6 90.8
PCD 95.2 93.6 99.0 93.3 91.5 91.3
POFD 13.9 5.0 15.8 5.0 7.4 4.3

2017.12 Accuracy 82.5 86.3 83.7 89.6 89.9 90.5
POCD 93.9 86.0 99.2 93.9 92.9 92.3
POFD 15.6 4.8 17.1 7.3 7.4 4.8

FIGURE 9 | Comparison of cloud (red) and clear (blue) detection rates as a function of glint angle from Version 2 algorithm (A) and the new algorithm (B). (C) cloud
fraction as a function of glint angle from GEO/LEO composite (black line), Version 2 algorithm (blue) and the new algorithm (red). (E–F) are similar as (A–C) except as a
function of view zenith angles. Data are from January and July of 2017.

Frontiers in Remote Sensing | www.frontiersin.org July 2021 | Volume 2 | Article 6900109

Zhou et al. EPIC Ocean Cloud Mask

71

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


respectively), while pixels with >95% cloud fraction more likely
have CM values of four and 3 (high and low confidence cloudy,
respectively). In the glint center, the overall consistency increases
from 81.9 to 86.9% and POFD decreases from 17.3 to 7.3%. In the
large glint angle region, the consistency increases from 80.3 to
86.6% and POFD decreases from 20.7 to 9.5%. For the entire
global ocean, the improvement in the glint center and granule
edge leads to an improvement of consistency from 86.6 to 88.7%
and false detection rate from 10.2 to 6.7%. The improvements in
other months are similar to that of January and July 2017
(Table 2). Based on these results, the new ocean cloud mask
algorithm increases the detection consistency in the glint center
and granule edges by 4∼10% and 4∼6%, respectively, with a
reduction of false cloud detection rate by 10∼17%. Overall global
ocean cloud detection consistency increases by
approximately 2%.

Systematic retrieval bias can often be revealed through
examining the retrieved parameters as a function of
independent variables such as viewing geometry (Zhou et al.,
2020). During the evaluation of the EPIC cloud products, we
notice that the EPIC clear and cloud detection rates vary with

view zenith angle. Here the clear (cloud) detection rates are
computed as the number of matched clear (cloudy) pixels
divided by total clear (cloudy) pixels.

Cloud_detection_rate � a/(a + c) (5)

Clear_detection_rate � b/(b + d) (6)

Figure 9 shows the comparison of the clear/cloud detection rates
between the old and new algorithms. It is quite obvious that the
old algorithm significantly underestimates clear sky pixels in the
glint center (Θglint < 30°) and large glint angles (Θglint > 100°)
while detecting clouds at nearly 100% (Figure 9A). The new
algorithm has a nearly constant clear and cloud detection rate of
more than 90% (Figure 9B). Cloud detection rate decreases
slightly when Θglint reaches zero. Pixels with Θglint > 160o

appear at the very edge of the granule and retrieval
uncertainty is large due to much larger pixel size and other
factors such as the curvature of the Earth not considered in the
RTM. Cloud fraction from the new algorithm is closer to the
cloud fraction from GEO/LEO composites, while the old
algorithm shows much larger cloud fraction at glint center and

FIGURE 10 | Zonal mean oceanic cloud fraction as a function of latitude and local time from the old algorithm (A,E), the new algorithm (B,F) and the difference
(old–new) (C,G) in January (top) and July (bottom) in 2016. (D,H) show daytime cycle of cloud fractions from glint center latitudes (10°S–30°S) in January and (10°N–30°N)
in July, respectively.
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high glint angles (Figure 9C). Similarly, the systematic bias as a
function of view zenith angle from the old algorithm is
significantly reduced (Figures 9D–F). These results show that
the new algorithm largely eliminates systematic bias in the old
algorithm as a function of the viewing geometry.

IMPACT ON CLOUD DIURNAL CYCLE AND
ZONAL MEAN CLOUD FRACTION STUDIES

As mentioned in Glint distributions and impact, sunglint affects a
zonal band of 30° in any given time of the year in tropical regions
from 38°S to 38°N. Since sunglint appears near the centers of the
granules which correspond to local noon time, it is likely that
tropical oceanic cloud diurnal cycle analysis is affected if sunglint
is not properly treated. In addition, a fixed threshold would
misidentify pixels near granule edges to be cloudy because of
high reflectance in those areas.

In Figure 10 we examine the latitudinal distributions of
daytime cycles of cloud fraction over oceans in January and
July. Note the complete diurnal cycle is not available from EPIC
since it only measures the sunlit side of the Earth. The daytime
cycle is computed by first converting the cloud mask retrievals
from universal time (UTC) to local time according to their
longitudes and then sorting the pixels according to their local
solar time and latitude bins. Mean cloud fraction is then
computed based on cloud mask results for each of these bins.

Because the length of daytime differs with latitude, the figures are
bell-shaped toward the winter hemisphere (shorter daytime in the
winter hemisphere). One feature of the old latitudinal distribution
of daytime cloud cycles is the circle-shaped high values in the
midst of low cloud fraction near 20°S in January and 20°N in July
at local noon, corresponding to glint center latitude in these two
months (Figures 10A,E). The new algorithm has largely
eliminated this artificial noon peak in the daytime cloud
fraction (Figures 10B,F). In addition, the old cloud mask has
produced near 100% cloud fraction in the beginning and ending
hours of the daylight time even in dry subtropical latitudes, which
is due to high-reflectance at large zenith angles. This problem is
largely mitigated in the new algorithm. The difference maps
clearly show reduced cloud fraction in the glint center and
daytime edge hours (Figures 10C,G). This is especially
significant in the glint center latitudes (Figures 10D,H),
because 1) the noon peak disappears, and 2) even though
diurnal cycle still features as higher cloud fraction in the
morning and afternoon with minimum in local noon, the
range of daytime cloud variation is greatly reduced.

Because of the reduction in cloud fraction in the glint center
and granule edge, some reduction in the zonal mean oceanic
cloud fraction is expected. Figure 11 shows that the reduction
appears for different latitudes in different seasons. In January,
glint related reduction of about 10% appears around 25°S and up
to 10% north of 15°N (Figure 11A). In July, the opposite is
observed even though glint related reduction is smaller near 25°N

FIGURE 11 | Zonal mean oceanic cloud fraction with latitude from old cloud mask algorithm (black) and new algorithm (red) in January, March, July, and
September 2017.
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(Figure 11C). In March and September, the Sun is near the
equator; therefore, major reductions of cloud fraction occur in the
latitudinal zone of 15°S–15°N, and high latitudes in each
hemisphere also incur less reduction.

SUMMARY AND DISCUSSION

Even though the old EPIC cloud mask algorithm attempts to
reduce the sun-view geometry impact by applying the Rayleigh
correction procedure, it is shown that fixed thresholds with the
visible and near infrared channels lead to biases in the EPIC cloud
mask product. Because of EPIC’s unique orbit, each EPIC granule
over the ocean consists of a large area near the granule center that
is affected by the sunglint. The glint affected area covers a
latitudinal band of about 30° at any given time and migrates
between 38°S and 38°N as the direct Sun position moves with the
season. The old EPIC cloud mask tends to miss-identify the clear
sunglint pixels as cloud due to its fixed reflectance threshold,
therefore creating an artificial cloud fraction peak in local noon
time. In addition, pixels with large Sun and view zenith angle at
the granule edge tend to be miss-identified as clouds because of
enhanced Rayleigh scattering.

A new ocean cloud mask algorithm is developed, which
consists of two tests. The first test is based on the Rayleigh
corrected 780 nm reflectance. A dynamic threshold dataset is
developed as a function of glint angle to account for the
enhanced reflectance in the glint region at the granule center
and large glint angle region at the granule edge. The second
test is based on the O2 A-band ratio, which is applied to
regions where glint angles are smaller than 25o. Inside the
sunglint region, the cloudy sky 780 nm reflectance can be
smaller than that of the clear sky when clouds are thin. A
unique property of A-band ratio is that the clear sky A-band
ratio is lower than that of the cloudy A-band ratio in the glint

center; thus, a supplemental A-band ratio test in the Sun
glint regions can make up the reflectance test. The
consistency of the new ocean cloud mask algorithm, as
compared with GEO/LEO cloud detection, has increased
by 4∼10% and 4∼6%, in the glint center and granule edges
respectively. The false cloud detection rate is reduced by
10∼17% and the overall global ocean cloud detection
consistency is increases by approximately 2%. The new
algorithm has largely eliminated the systematic biases
dependent on glint-angle and view zenith angles found in
the old algorithm.

The new ocean cloud mask algorithm can help studies on the
diurnal cycles of cloud fraction over ocean by reducing the
artificial peak at local noon time in the glint center latitudes
and by reducing early morning and late afternoon cloud fraction
biases.
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Effect of Scattering Angle on Earth
Reflectance
Alexander Marshak1*, Alfonso Delgado-Bonal2 and Yuri Knyazikhin3

1Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Universities Space Research
Association, Columbia, MD, United States, 3Earth and Environment Department, Boston University, Boston, MA, United States

After March 2020 the range of scattering angle for DSCOVR EPIC and NISTAR has been
substantially increased with its upper bound reaching 178°. This provides a unique
opportunity to observe bi-directional effects of reflectance near backscattering
directions. The dependence of the top-of-atmosphere (TOA) reflectance on scattering
angle is shown separately for ocean and land areas, for cloudy and clear pixels, while
cloudy pixels are also separated into liquid and ice clouds. A strong increase of TOA
reflectance towards backscattering direction is reported for all components (except
cloudless areas over ocean). The observed increase of reflectance is confirmed by
cloud and vegetation models. The strongest correlation between TOA reflectance and
scattering angle was found near IR where contribution from vegetation dominates. Surface
Bidirectional Reflectance Factor (BRF) acquired by DSCOVR EPIC and Terra MISR
sensors over the Amazon basin is used to demonstrate the bi-directional effects of
solar zenith and scattering angles on variation of reflected radiation from rainforest.

Keywords: radiative transfer, scattering angle, clouds, ocean, vegetation

INTRODUCTION

The Deep Space Climate Observatory (DSCOVR) was launched in February 2015 to a Sun-Earth
Lagrange-1 (L1) orbit, approximately 1.5 million kilometers from Earth towards the Sun (Marshak
et al., 2018). In addition to continuous solar wind measurements for accurate space weather
forecasting, it observes the full, sunlit disk of Earth from a unique vantage point with the two
instruments: the Earth Polychromatic Imaging Camera (EPIC) and the NIST (National Institute of
Standards and Technology) Advanced Radiometer (NISTAR). The Earth-observing geometry of the
EPIC instrument is characterized by a scattering angle between 168° and 178°. The left panel in
Figure 1 displays a time series of the scattering angle1 from June 2015.

EPIC and NISTAR have continuously operated until June 27, 2019, when the spacecraft was
placed in an extended safe hold due to degradation of the inertial navigation unit (gyros). Since then,
a software patch was developed and uploaded to the spacecraft that relies only on the star tracker for
spacecraft attitude determination. DSCOVR returned to full operations on March 2, 2020. Since
then, DSCOVR has been able to maintain a ∼0.02° pointing accuracy, similar to the pre-gyro-failure
operations, that keeps Earth fully in the field-of-view of EPIC. Both EPIC and NISTAR calibrations
performed since March 2020, show no change in the performance or calibration constants of the
instruments.
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As Figure 1 shows, after March 2020 the range of scattering
angle has substantially increased towards backscattering reaching
178° (see the right panel). This provides a unique opportunity to
study angular variations of the Earth reflectivity in the vicinity of
the backscattering direction.

It is well-known that radiation reflected from rough surface
exhibits a sharp increase in the backscattering direction (e.g.,
Hapke, 1963; Lumme and Bowell E, 1981; Kuusk, 1991).
Therefore one should expect an enhance reflection near
backscattering in the Earth observations from the DSCOVR
platform.

This paper studies the effect of scattering angles near the
backscattering directions on Earth reflectivity using EPIC and
NISTAR data with emphases on understanding mechanisms
contributing to this phenomenon. After description of the data
used in the paper (Data Used), we focus on the EPIC observed
radiance emanating from ocean and land, clear, and cloudy skies;
in addition, ice and water clouds are treated separately (EPIC
Observations). In Simulations EPIC cloud and vegetation
reflectances are simulated with models. A special attention is
paid to Amazonian forests where EPIC results near
backscattering are complemented with Multi-Angle Imaging
SpectroRadiometer (MISR) observations (Forest BRF). Finally,
NISTARObservations discusses NISTAR data near backscattering
and Summary summarizes the results.

DATA USED

EPIC provides 10 narrow band spectral images at 317, 325, 340,
388, 443, 551, 680, 688, 764, and 780 nm of the entire sunlit face of
Earth using a 2048 x 2048 pixel CCD (Marshak et al., 2018). The

sampling size is about 8 km at nadir (near the center of the
image), which effectively increases to 10 km when EPIC’s point
spread function is included. The pixel size increases as the
reciprocal of cosine of latitude. To reduce transmission time
for EPIC data for maximizing time cadence, the images of all
wavelength channels, except 443 nm, have been reduced to 1024 x
1024 pixels.

We use DSCOVR EPIC L1B data product that provides
radiance data every 65–110 min (NASA/LARC/SD/ASDC-L1B,
2018c). The radiance data are in engineering units of counts per
second. The EPIC team provides a calibration factor to convert
measurements given in counts per second into the TOA
reflectance (Geogdzhayev and Marshak, 2018; Geodzhayev
et al., 2021).

We also use surface Bidirectional Reflectance Factor (BRF)
derived from DSCOVR EPIC (NASA/LARC/SD/ASDC-MAIAC,
2018b) and MISR onboard low-earth-orbiting Terra satellite
(NASA/LARC/SD/ASDC-MISR, 1999). BRF describes surface
reflective properties in the absence of atmosphere and is
defined as the ratio of the surface-reflected radiance to
radiance reflected from an ideal Lambertian surface into the
same beam geometry and illuminated by the same mono-
directional beam (Martonchik et al., 2000; Schaepman-Strub
et al., 2006). The MISR sensor views the Earth’s surface with
nine cameras simultaneously. MISR has a ground track repeat
cycle every 16 days and achieves global coverage every 9 days. In
an equatorial zone it can measure surface reflected radiation over
a wide range of the phase angle (Bi et al., 2015). Unlike DSCOVR
EPIC, the Terra MISR samples reflectance over a 360 km wide
swath at 10:30 am local solar time.

NISTAR measures the outgoing radiation from the Earth
integrated over the entire face of Earth in four broadband

FIGURE 1 | Time series of the scattering angle between solar beam and sensor directions. (A) Scattering angle is plotted versus UTC since June 12, 2015, the first
day DSCOVR became operational. (B) Zoom. Scattering angle is plotted for days between June 1 and December 31, 2020. Horizontal dash line indicates scattering
angle of 178°; in December 10 scattering angle is 178.05° (SEV � 1.95°).
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channels: total radiation (Band A, 0.2–100 μm), total solar
reflected (Band B, 0.2–4 μm), NIR solar reflected (Band C,
0.7–4 μm) and photodiode (0.2–1.1 μm). These measurements
provide data for estimating planet’s energy budget (Trenberth
et al., 2009; Su et al., 2020).

EPIC OBSERVATIONS

To study the effect of scattering angle on the reflection from sunlit
Earth, we first focus on the EPIC 780 nm band in the year of 2020.
Figure 2 shows the total reflectance at 780 nm between
September 17 and December 10 when scattering angle first

drops from 178° to 168° and then increases back to 178°. We
use here only 2 months of data in order to limit the effect of
seasonality on total reflectance. Left panel shows global average
TOA reflectance together with averages over ocean and land.
Middle and right panels illustrate mean TOA reflectances
accumulated over ocean and land under clear sky and cloudy
conditions. The increase of both clear and cloudy reflectances
with scattering angle (especially for large angles close to the
backscattering direction) is clearly seen.

To better illustrate the dependence of TOA reflectance on
scattering angles, Figure 3 provides scatter plots of reflectances
vs. scattering angles for the whole year 2020. With exception of
cloud-free regions over ocean (lower dots in the middle panel), a

FIGURE 2 | Time series of scattering angle and top-of-atmosphere (TOA) reflectance at 780 nm between September 17 and December 10, 2020. To reduce noise,
3 days averages are used here. (A) Global TOA reflectance and its components accumulated over ocean and land; (B) TOA reflectance accumulated over cloudy and
clear sky pixels over ocean. (C) TOA reflectance accumulated over cloudy and clear sky pixels over land.

FIGURE 3 | Scatter plots of reflectance at 780 nm vs. scattering angle for the whole 2020 (from February 26 to December 20, 2020). (A)Global reflectance together
with ocean and land reflectances; (B) Ocean reflectance together with ocean cloudy and ocean clear reflectances; (C) Land reflectance together with land cloudy and
land clear reflectances.
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positive correlation between TOA reflectance and scattering angle
is clearly seen. The strongest correlation is over land that includes
both cloudy and clear pixels. These observations suggest that
radiation reflected from clouds and land exhibits a strong
sensitivity towards scattering angle near backscattering
directions.

Such correlations are also valid for all EPIC visible spectral
bands. Figure 4 (see also Table 1) illustrates scatter plots of
TOA reflectance vs. scattering angle for four different
wavelengths, 443, 551, 680, and 780 nm, corresponding to
the 168° to 178° peak-to-peak amplitude of the scattering
angle between October 25 and December 14, 2020 (for
clarity, see the right panel in Figure 2). As expected, the
correlation over land is much stronger than that over ocean
for all spectral bands. Table 1 provides the values of slopes of
reflectance versus scattering angle relationships for land and
ocean separately for all visible and NIR EPIC bands from
October 25 to December 14. The highest value (0.0088)
corresponds to the reflection from land at 780 nm.

It is also of interest to study variations in TOA reflectance of
ice and liquid clouds separately2 as viewing direction approaches
the backscattering direction. Figure 5 illustrates TOA reflectance
for the whole year 2020. Total fraction of cloudy pixels is about
60%, of which liquid clouds account for about 47% (13% over
land and 34% over ocean) and ice clouds for 13% (9.3% over land
and 3.4% over ocean). Liquid clouds dominate over ocean while

ice clouds over land. The trend towards the backscattering
direction in reflectance from cloudy pixels is very similar to
the global one shown on Figure 5.

As we see from the right panel in Figure 5 and Table 2, the
slope of the “reflectance-versus-scattering angle” dependence for
ice clouds (0.0022) is lower than for liquid ones (0.0034). More
than that, in the left panel of Figure 5 we can see the lack of
correlation for ice clouds in summer 2020 (June-September)
while there is still a good correlation in spring and fall 2020.
This is related to seasonal behavior of ice clouds, at least in 2020:
there are less ice clouds in September than in July; thus, in
September, when scattering angle riches its maximum of 178°, a
smaller number of ice clouds leads to a smaller than expected
reflectance from ice clouds.

The main contribution to global reflectance comes from an
area around the center of sunlit Earth, which is located in an
equatorial zone. Contributions from other areas decline as the
square of cosine of latitude since the amount of radiant energy
reflected from an area dS varies with solar (SZA) and view (VZA)
zenith angles as BRFcos(SZA)cos(VZA)dS. Ocean and forests are
dominant types of the Earth’s surface in the equatorial zone
(Figure 6). Ocean acts as an absorber of solar radiation at the
EPIC spectral bands and its contribution to Earth reflectance is
small. Therefore, clouds and cloud-free forests are reflectors that
control the sensitivity of TOA reflectance to the phase angle. We
will focus on analyses of radiation reflected by clouds and forests.
We start with cloud and vegetation radiative transfer models to
understand features of reflectance in near backscattering
directions.

SIMULATIONS

Cloud Model
Here we use a one-dimensional radiative transfer model (Stamnes
et al., 1988) to simulate reflectance near backscattering directions.
Figure 7 shows TOA reflectance as a function of scattering angle
for water and ice clouds for two cloud optical depths and three
SZAs. We clearly see that reflectance increases between 170 and
178 degrees of scattering angle in all cases. The increase is
substantial: 5–15% for water clouds and 10–25% for ice clouds.

FIGURE 4 | Scatter plots of spectral reflectance vs. scattering angle for the last increase of scattering angle in 2020 (from October 25 to December 14). Global
reflectance together with ocean and land reflectances. (A) 443 nm; (B) 551 nm; (C) 680 nm; (D) 780 nm.

TABLE 1 | Slope of correlation between reflectance and scattering angle from
October 22 to December 14, 2020 for Earth global, ocean, and land.

Global Ocean Land

443 44 35 75 (x 10−4)
551 44 36 74 (x 10−4)
680 51 44 80 (x 10−4)
688 32 28 50 (x 10−4)
764 19 17 31 (x 10−4)
780 54 48 88 (x 10−4)

First column is wavelength in nm.

2A threshold of 4,500 m was used to separate ice and liquid clouds.
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Vegetation Model
In vegetation canopies finite size of scatters (leaves, needles, etc.)
can cast shadows. A satellite-borne sensor sees minimal shadows
if the Sun is behind the sensor. This makes the forest looking very
bright in satellite images. With a change in view direction more
shaded leaves appear in the sensor field of view and the radiance
of the forest reflected radiation is consequently decreased. This
mechanism causes a sharp peak in retro-solar direction. This
phenomenon is known as “the hotspot effect” (Ross andMarshak,
1988; Knyazikhin and Marshak, 1991; Kuusk, 1991; Gerstl, 1999).
Its shape and magnitude depend on canopy structural
organization.

Figure 8 shows forest BRF at the NIR spectral band
simulated with the stochastic radiative transfer equation
(Huang et al., 2008; Yang et al., 2018) as functions of
VZA (left panel) and phase angle (right panel) for three
values of the SZA. It illustrates important features in
relation between BRF and sun-sensor geometry, namely, a
sharp increase in BRF as scattering direction approaches
the direction to the Sun and a rise in magnitude of

BRF and its rate with respect to the phase
angle, z(BRF)/z(SEV), as SZA increases. Thus, an increase
in SZA and/or decrease in phase angle enhances the hotspot
effect in the canopy BRF.

FOREST BRF

Let us check how much vegetated areas increase surface BRF as
observational direction approaches sun direction. As an
example, we consider the Amazon basins. The Amazonian
forests represent the largest equatorial rainforest on Earth
(Figure 6). The rainforests play a uniquely important role
in carbon and water cycles across regional to global scales as it
contains nearly 50% of the tropical forest carbon stocks and is
the most productive and biodiverse of terrestrial ecosystems
(Saatchi et al., 2011). It was found that the green vegetation
contributes significantly to the NIR global average reflectance
when the South America appears in the EPIC’s field of view
(Wen et al., 2019) suggesting a significant contribution from
the equatorial forests. The left panel in Figure 9 demonstrates
BRF of Amazonian forests derived from Terra MISR data
acquired on August 28, 2016, at 10:30 local solar time. One
can clearly see a sharp increase in BRF as scattering direction
approaches the direction to the Sun, as theory predicts (cf.
Figure 8).

Terra MISR surface product provides BRFs over a 360 km
wide swath at 10:30 local solar time and achieves global coverage
every 9 days. This obviously is not sufficient for temporal analyses
of Earth reflectivity. Therefore, we use DSCOVR EPIC BRF
(NASA/LARC/SD/ASDC-MAIAC, 2018d) which provides
global coverage at about hourly frequency (Lyapustin et al.,
2018). We use two variables to characterize angular variation

FIGURE 5 | Liquid and ice clouds. (A) Scattering angle and 780 nm reflectance from ice and water clouds between February 26 and December 20, 2020
(liquid–46.9%, ice–12.6%). (B) Scatter plot of liquid and ice reflectance vs scattering angle for 10 months of the year 2020 (from February 26 to December 20).

TABLE 2 | Slope of correlation between reflectance and scattering angle for
780 nm from February 26 to December 20, 2020 for Earth global, ocean, and
land.

Global Ocean Land

Ice 22 18 46 (x 10−4)
Liquid 34 34 47 (x 10−4)
Clouds 30 30 45 (x 10−4)
Clear 13 01 51 (x 10−4)
Ocean 33 ** ** (x 10−4)
Land 52 ** ** (x 10−4)
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FIGURE 6 |DSCOVR EPIC 10 km land cover map (NASA/LARC/SD/ASDC-VESDR, 2018a) on orthographic projection. Ocean and rainforests are dominant types
of the Earth’s surface in equatorial zone. Amazonian rainforests are shown in South America as evergreen broadleaf forest.

FIGURE 7 | Reflectance from water (A) and ice (B) clouds for optical depths 10.3 and 53.16; SZAs are 10°, 30°, and 60°. For water clouds Mie scattering phase
function was used with re � 10 μm and λ � 0.87 μm; for ice clouds MODIS band-2 (λ � 0.87 μm) C5 ice phase function was used with re � 30 μm. Both liquid and ice
phase functions are shown as inserts.
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of forest reflectance. The first one is the temporal average
normalized radiance estimated as

J(SZA, SEV) � ∑BRF(SZA,VZAxy)cos(VZAxy)

∑ cos(VZAxy)
(1)

The integration is performed over pixels (x,y) in the
Amazonian forests with given values of SZA and SEV
accumulated over a given time interval. The middle panel
in Figure 9 shows normalized radiance for the period of June
15 to August 8, 2020. As theory predicts, the normalized
radiance and its rate of variation with respect to phase
angle, zJ/z(SEV), increases with SZA. For a given sun
position in the sky, its value increases as phase angle (or
SEV) approaches to zero. All data shown in Figure 9 are
expresses in term of SZA and SEV.

The surface scattering function, P, is the fraction of the total
radiant energy incident on the surface that is scattered towards
the sensor. It depends on scattering angle and exhibits strong
diurnal variations. The right panel in Figure 9 shows two-
month average scattering function of Amazonian forests
estimated as

P(SEV) � ∑BRF(SZAxy,VZAxy)cos(SZAxy)cos(VZAxy)

∑ cos(SZAxy)
(2)

Here the integration is performed over pixels (x,y) in the
Amazonian forests with a given phase angle. As expected from
theory, it is a decreasing function with respect to phase angle (or
SEV). Thus, anisotropy of forest reflected radiation can explain
increase in Earth scattering at least when equatorial forests appear
in the EPIC image.

FIGURE 8 |Bidirectional Reflectance Factor (BRF) of forest at the NIR spectral band in the principal plane as a function of VZA (A) and phase angle (B). Phase angle
(or SEV) � VZA-SZA for SZA of 30°, 45°, and 60°. (Values of VZA with the sign “minus” are for azimuthal plane φ � π.) The BRF was simulated with the stochastic radiative
transfer equation model (Huang et al., 2008; Yang et al., 2018). Leaf area index was five.

FIGURE 9 |Reflective properties of Amazonian forests. Reflectance of other equatorial forests show similar behavior (not shown here). (A)NIR BRF of an area of 70
by 256 km in Amazonian rainforests obtained from MISR data acquired on August 28, 2016 at 10:30 am (1502:29 UTC). The MISR sensor can see this area at phase
angles up to 4°. (B) Two-months average normalized radiance over Amazonian forests derived from DSCOVR EPIC MAIAC BRF acquired between June 15 and August
08, 2020, as a function of SZA for 10 values of SEV. (C) Two-months average scattering function as a function of SEV accumulated over the same area and time
interval as in the middle panel.
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NISTAR OBSERVATIONS

NISTAR measures the outgoing radiation from the Earth
integrated over the entire face of Earth in four broadband
channels: total radiation (Band A, 0.2–100 μm), total solar
reflected (Band B, 0.2–4 μm), NIR solar reflected (Band C,
0.7–4 μm) and photodiode (0.2–1.1 μm). In addition to EPIC
observations, it is of interest to see how scattering angles affect
NISTAR measurements.

Figure 10 shows NISTAR band A and B radiance and
scattering angle for 2020. A strong positive correlation
(R∼0.98) between the scattering angle and NISTAR data is
clearly seen. This is especially pronounced for the time
interval between November 15 and December 20, 2020 with
maximum around December 10 when scattering angle reaches its
maximum of 178.1°. The left panel that illustrates radiances
plotted vs. scattering angles confirms it with high correlation
which is slightly higher for the B-band radiance. It is also true for
C-band radiance (not shown here) though with a bit lower
correlation coefficient (0.90 for band C vs. 0.98 for band B).
This is understandable since the increase of radiation near
backscattering is higher in visible than in NIR (Platnick et al.,
2017).

SUMMARY

DSCOVR EPIC and NISTAR observations from the Lagrange L1
point (about 1.5 mln km from Earth) provide a unique
opportunity to study the effect of scattering angle on TOA
reflectance near backscattering. This effect was studied for

ocean and land areas, for cloudy and clear pixels, for liquid
and ice clouds separately. All EPIC observations, except over
ocean under clear sky conditions, show a strong increase of
reflectance towards backscattering direction. The increase is
well confirmed with cloud and vegetation models. The
strongest increase is observed over land at the NIR band
(780 nm). The Amazonian basin is taken as an example of a
possible mechanism causing variation of BRF with solar zenith
and scattering angles. NISTAR observations also demonstrate an
increase with scattering angle for all bands but the strongest one is
for B-band radiance (0.2–4 μm).

To summarize, measurements of Earth reflectance near the
backscattering direction show a strong sensitivity towards
scattering angle, especially for scattering angles above 175°.
Any angular distribution model with a bin size bigger than
1°–3° near backscattering may lead to substantial errors.
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Earth Imaging From the Surface of the
Moon With a DSCOVR/EPIC-Type
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The Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory
(DSCOVR) satellite observes the entire Sun-illuminated Earth from sunrise to sunset from
the L1 Sun-Earth Lagrange point. The L1 location, however, confines the observed phase
angles to ∼2°–12°, a nearly backscattering direction, precluding any information on the
bidirectional surface reflectance factor (BRF) or cloud/aerosol phase function. Deploying
an analog of EPIC on the Moon’s surface would offer a unique opportunity to image the full
range of Earth phases, including observing ocean/cloud glint reflection for different phase
angles; monitoring of transient volcanic clouds; detection of circum-polar mesospheric
and stratospheric clouds; estimating the surface BRF and full phase-angle integrated
albedo; and monitoring of vegetation characteristics for different phase angles.

Keywords: DISCOVR EPIC, Moon, phase function, clouds, vegetation

INTRODUCTION

Numerous Low Earth Orbit (LEO) and Geosynchronous Equatorial Orbit (GEO) Earth-observing
satellites provide a broad spectral range of viable data; however, it is obtained at the expense of
limited geographical (GEO) or temporal (LEO) coverage. Satellites from near-polar Sun-
synchronous LEOs have limited observation capabilities at polar latitudes greater than 80° North
and South. These polar regions are not observable from geostationary satellites located above the
equator. Although current Earth-observing satellites can produce high-resolution views, LEO sensors
can only scan a small portion of the surface at a given time, while GEO sensors can provide
temporally continuous, though lower-resolution observations of a significant, though incomplete
and fixed portion of the Earth’s disk. The Earth Polychromatic Imaging Camera (EPIC) on the Deep
Space Climate Observatory (DSCOVR) clearly stands apart, observing the entire Sun-illuminated
Earth from the L1 Sun-Earth Lagrange point (Marshak et al., 2018). EPIC has an aperture diameter of
30.5 cm, a focal ratio of 9.38, a field of view of 0.61°, and a spatial resolution of ∼10 km/pixel. The
camera produces 2048 × 2048 pixel images in 10 narrowband channels (317.5, 325, 340, 388, 443,
551, 680, 688, 764, and 779.5 nm). The L1 location, however, restricts phase angles to ∼2°–12° (a
nearly backscattering direction), depriving the observer of any information on bidirectional surface
reflectance factors (BRFs) or on cloud/aerosol phase functions. A compact, lightweight, autonomous
EPIC-type camera on the Moon’s surface offers a unique opportunity to overcome these limitations
and advance Earth science in novel and potentially unanticipated ways (Marshak et al., 2020). An
EPIC-Moon camera would work in synergy with the DSCOVR/EPIC instrument, increasing the
efficiency of both sensors. Earth science goals of EPIC-Moon are to extend and improve the current
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DSCOVR/EPIC Earth imaging by extending spectral coverage,
increasing spatial resolution and image cadence, and expanding
coverage of circumpolar regions. Assuming the EPIC-Moon
camera produces 2048 × 2048 pixel images, the spatial
resolution would be ∼7 km/pixel for full Earth disk images or
∼2 km/pixel for a DSCOVR/EPIC-like field of view of ∼0.6°.
DSCOVR/EPIC obtains images of the entire sunlit Earth disk
every ∼60–100 min. Increasing the EPIC-Moon frame rate to
obtain images every ∼10–15 min will allow much better tracking,
for example, of drifting volcanic ash and SO2 clouds, which can
move at speeds of ∼100 km/h or more (see Volcanic SO2 and Ash
Clouds).

The acquired data will enable retrievals of aerosol scattering
phase functions and Earth surface properties. The recent Earth
Science Decadal Survey prioritized aerosols, clouds,
convection, precipitation, terrestrial vegetation and surface
albedo studies in connection with climate change (National
Academies of Sciences, 2018). As stated in IPCC AR5 Chapter
7: “Clouds and aerosols continue to contribute the largest
uncertainty to estimates and interpretations of the Earth’s
changing energy budget” (IPCC, 2014). In this paper we
analyze the features and potential benefits of an EPIC-like
camera located on the Moon (or in lunar orbit).

Note that in the coming years, lunar bases are planned for
deployment on the Moon and in lunar orbit, which will be
equipped with small telescopes for astronomical observations,
for observing the Moon and for laser communication with the
Earth. The concept presented here will be useful for assessing the
principal possibilities of observing the Earth using telescopes
located on the Moon.We do not consider sensors on the Moon as
an alternative to sensors located in LEO, GEO, and L1 orbit, but
observations from the Moon have a few useful and novel features
that are important to discuss and consider in future projects.

PHASE ANGLES OF OBSERVATION FROM
L1 AND FROM THE MOON

Here, we compare the phase angles of observation of DSCOVR/
EPIC with a sensor placed on the lunar surface. Figure 1A shows
the Sun-Earth-Vehicle (SEV) angle, which is close to the phase
observation angle, for the first 3 months (or 90 days) of 2021.

The SEV angle for DSCOVR/EPIC varies from 11.91° (01/27/
2021) to 2.09° (03/07/2021); this allows us to estimate the
approximate period of SEV change as ∼80 days. During this
time, DSCOVR/EPIC’s distance from Earth varied from

FIGURE 1 | (A) Sun-Earth-Vehicle (SEV) angle for any sunlit Earth object observed from the Moon during the first 3 months of 2021 (red line, data from Espenak,
2021), compared to DSCOVR/EPIC’s SEV (blue line, see https://epic.gsfc.nasa.gov/); (B) Distance between the Moon and Earth during the same period (Espenak,
2021).
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1.54 million km (01/01/2021) to 1.39 million km (02/03/2021).
Figure 1A shows the SEV angle for the Sun-Earth-Moon (or
lunar sensor), which varies from about 0° to 180° during the lunar
month. Figure 1B shows the distance between the Moon’s and
the Earth’s centers, which changes in 90 days from 360 × 103 to
405 × 103 km. Therefore, on average, the camera on the Moon is
4 times closer to the Earth than a sensor at the L1 point. The
location of Earth and Moon for phase angles of about 0°, 90°, and
180° is shown in Figure 2, along with an assumed view of the
Earth from the surface of the Moon. The view of the Earth will be
approximately the same from any point in the visible hemisphere
of the Moon (from where the Earth is visible). The location of the
sensor on the lunar surface is an essential observation factor in
terms of solar illumination. A sensor located in the equatorial or
mid-latitudes of the Moon will be illuminated by the Sun for only
half of the lunar month, remaining in shadow for the second half
of the month. This imposes certain constraints on the energy
sources for the sensor, as well as on its temperature parameters
and calibration.

Scientific equipment could be located at high latitudes on the
Moon, for example, in the region of the South Pole, which is an
attractive location for a lunar base. There are areas on the rim of
Shackleton crater where the Sun illuminates the lunar surface
more than 90% of the time. The view of the Earth from the South
Pole of the Moon is shown in Figure 3A. Note that the Earth is
inverted with the North Pole towards the Moon’s horizon. The

elevation of the Sun above the Moon’s horizon will change. For
∼10% of the time, the Sun will be located below the horizon
(possible positions of the Sun are shown by dashed circles).
Interestingly, lunar eclipses that occur on Earth between 2 and
5 times a year are solar eclipses from the point of view of an
observer on the Moon. Unlike an ordinary short-term solar
eclipse on Earth, a solar eclipse on the Moon can last up to
108 min. This provides a unique opportunity to make
observations without the influence of the atmosphere, for
example, to observe phenomena such as the solar corona and
its dynamics for an hour and a half, the red ring glow of the
Earth’s atmosphere, as well as relativistic displacements of the
position of stars near the Sun. Figure 3B shows the assumed view
of a solar eclipse from the South Pole of the Moon.

The proximity to the Earth and wide variations in phase angle
accessible by a Moon-based camera offer significant advantages
for Earth observation, which we will discuss in the following
sections.

SOLAR GLINTS

At least 10% of DSCOVR/EPIC images of Earth contain intensely
bright flashes of light over land, not seen by other satellites. The
physical origin of these flashes is specular reflection from
horizontally floating ice crystals in clouds. The cloud ice

FIGURE 2 | View of the Earth from the Moon at three points of the lunar orbit with phase angles of (A) 0°, (B) 90°, and (C) 180°. The image of the Earth shown here
and in Figure 3 was obtained by J. Walker based on MODIS/TERRA and Suomi/NPP images (Walker, 2021).
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crystal glints are also observed over oceans together with glints
from the ocean surface. Figure 4 provides three examples of such
flashes.

In order to test the hypothesis that the detected bright flashes
over land (see A panel) are caused by specular reflection from
horizontally oriented crystals in ice clouds, the measured latitudes

of the detected bright colorful flashes were compared with the
theoretical ones that permit specular reflection for a given time of
year and color (Marshak et al., 2017). The almost complete
coincidence of the measured latitudes for all three colors with
the theoretical curve constituted compelling evidence for the
specular reflection hypothesis. As a result, it was shown that

FIGURE 3 | The expected view of the Earth and the Sun from the Moon’s South Pole. The picture uses a photo of the lunar surface obtained during the Apollo
expedition. Images of the Earth were taken from the Earth and Moon viewer (Walker, 2021). (A) The position of the Sun above (or below) the horizon can vary (shown by
dashed circles). If the Sun sets behind the disk of the Earth, then a solar eclipse occurs on the Moon–see (B). During a solar eclipse the Earth’s atmosphere will glow with
red light, and the Sun’s corona will glowwith white light. Stars will be visible near the Sun’s corona. Image (B) uses a photograph of the solar corona during an actual
solar eclipse on August 21, 2017, where the star Regulus (constellation Leo) is visible (photo by N. Gorkavyi).

FIGURE 4 | Three examples of glints captured by DSCOVR/EPIC in 2018. The Sun-Earth-Vehicle (SEV) angle is around 9°. Note that the filter wheel used to select
EPIC wavelengths causes a time lag between the component images in these red-green-blue (RGB) composites: ∼3 min between blue (443 nm) and green (551 nm);
∼4 min between blue and red (680 nm). (A) Terrestrial glint over Australia from cloud ice crystals on February 13, 2018 (see https://epic.gsfc.nasa.gov/?date�2018-02-
13); (B) Terrestrial glint over the Pacific Ocean from marine cloud ice crystals on June 15, 2018 (see https://epic.gsfc.nasa.gov/?date�2018-06-15); (C) Ocean
surface glint on September 17, 2018 (see https://epic.gsfc.nasa.gov/?date�2018-09-17).
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tiny hexagonal platelets of ice, floating in the air in nearly perfect
horizontal alignment, are likely responsible for the glints
observed by EPIC over land. Varnai et al. (2020) also
demonstrated EPIC’s ability to distinguish ocean surface glints
(C panel) from marine ice cloud glints (B panel). Indeed, EPIC’s
observations in oxygen absorption bands (A-band over ocean)
help to uniquely distinguish between ocean surface and high ice
clouds. In addition to solar glints from ocean surface and cloud
ice, bright reflections of sunlight were also observed from high
mountains in the Andes that are likely caused by calm small lakes
(Kostinski et al., 2021).

However, the Sun-Earth-satellite geometry of DSCOVR
observations is not a particularly favorable one for glint
detection. Specular reflection tends to be much stronger for
oblique illumination and at grazing angles (Williams and
Gaidos, 2008; Robinson et al., 2010). Thus, one expects that in
observations at “crescent or half-moon” phases from the Moon,
glints will contribute more to the overall planetary radiances-
especially when accounting for the decrease in the diffuse
radiance when only a portion of the planet’s sunlit side is
visible. As a function of phase angle, Earth imaging from the
Moon will provide ocean/cloud glint reflection for different phase
angles than available from GEO, LEO, and L1.

Motivated by EPIC observations of solar glints off the
terrestrial atmosphere, it is also important to explore the
impact of starlight glints on the detection and characterization
of exoplanets. This idea goes back to 1993 when Carl Sagan and
colleagues (see p. 715 in Sagan et al., 1993) used the Galileo
spacecraft’s fly-by observation of Earth as an exoplanet control
experiment. Based solely on observations of specular reflection,
they deduced that Earth was covered in part by liquid oceans.
Their conclusions were based entirely on several Galileo images
collected on Dec. 12, 1990 while Galileo was on its way to Jupiter,
crossing a line between Sun and Earth. In Sagan et al. (1993) they
wrote “The Galileo mission constitutes an apparently unique
control experiment on the ability of fly-by spacecraft to detect
life . . ..” In addition, on p. 718 it was noted that “. . . close
examination of the images shows a region of specular reflection
in ocean but not on land.” Note that the fraction of oriented ice
crystals might be negligible (Breon and Dubrulle, 2004); hence
the effect of glints on cloud brightness is small. The sun-glint in
EPOXI [two missions: Deep Impact Extended Investigation
(DIXI) and Extrasolar Planet Observation and
Characterization (EPOCh)] was relatively minor (though the
image was intrinsically blurry; Livengood et al., 2011).
However, if some preliminary estimates of the frequency and
brightness of solar glints from EPIC are confirmed, specular
reflection observations from the Moon’s surface could have a
longer-term consequence for exoplanet science.

VOLCANIC SO2 AND ASH CLOUDS

Volcanic eruptions periodically emit large quantities of sulfur
dioxide (SO2) and aerosol into the free troposphere and
stratosphere, with potential impacts on climate, the
environment and aviation. After emission, volcanic SO2

converts to liquid sulfate aerosol particles (on timescales of
days to months), which can impact climate through the direct
aerosol effect on solar radiation. Young volcanic eruption clouds
(within a few hours of emission) also contain volcanic ash
particles which can be a significant hazard to aviation. Timely
monitoring of volcanic SO2 and ash emissions is therefore critical
for aviation safety and for assessing the impacts of volcanic
eruptions on climate. Volcanic SO2 and ash emissions have
been measured using UV satellite instruments on LEO
platforms for several decades (Carn et al., 2016), but these
observations have low (∼daily) temporal resolution. GEO
instruments can measure SO2 and volcanic ash in the IR with
high cadence, providing critical data for operational detection of
volcanic eruptions (e.g., Pavolonis et al., 2018), but are unable to
detect volcanic clouds at latitudes above ∼70–80° and retrievals
become noisy (with lower sensitivity) towards the edge of the
GEO field-of-view. LEO satellites provide coverage of the polar
regions, but with relatively low cadence and without a synoptic,
hemispheric imaging capability.

DSCOVR/EPIC is able to detect volcanic SO2 and ash
emissions (Carn et al., 2018) and has now demonstrated the
value of observations from L1 for observing high-latitude
volcanic eruptions. A major eruption of Raikoke volcano
(Kuril Islands, Russia) in June 2019 emitted SO2 and ash
clouds that initially drifted north to high latitudes and were
measured with hourly cadence by EPIC (Figure 5). EPIC was
able to map the extensive Raikoke volcanic SO2 clouds in single
images with no temporal gaps, in contrast to LEO instruments,
elucidating the dynamics of SO2 transport. Such high-latitude
eruptions occur quite frequently in active volcanic regions such as
Kamchatka, the Kuril Islands, Alaska and the Aleutian Islands,
and Iceland. In addition to Raikoke, notable high-latitude
volcanic eruptions include Kasatochi (Aleutian Islands,
United States) in 2008, Sarychev Peak (Kuril Islands, Russia)
in 2009, Holuhraun (Iceland) in 2014–15 and Alaid (Kuril
Islands, Russia) in 1981. Each of these eruptions produced
extensive SO2 clouds that drifted over the Arctic region. The
Southern Hemisphere has fewer active volcanoes at high latitudes,
but nevertheless, significant eruptions such as Cerro Hudson
(Chile) in 1991 and Cordon Caulle (Chile) in 2011 produced
volcanic clouds that drifted south around Antarctica. Hence there
is a need for improved observations of volcanic clouds at high
latitudes, given the importance of the polar regions in the context
of climate change. An EPIC-like instrument on the Moon would
provide synoptic imaging of the polar regions with higher spatial
resolution and higher cadence than provided by DSCOVR/EPIC
at L1.

In addition to improved cadence and spatial resolution of
volcanic SO2 and ash measurements, EPIC-Moon observations
would offer advantages over DSCOVR/EPIC for volcanic aerosol
detection and retrieval. Aerosol particles in volcanic clouds
include liquid sulfate aerosol, which are spherical, plus
volcanic ash particles (glass shards and crystal fragments)
which can have highly irregular shapes. Ash particle phase
functions depend on effective particle size but are typically
strongly forward scattering at UV wavelengths (Krotkov et al.,
1997; Krotkov et al., 1999), which is a limitation for observations
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FIGURE 5 | (A) EPIC SO2 and UV Aerosol Index (UVAI; green contours) measurements during the eruption of Raikoke volcano (Kuril Islands, Russia; triangle) on
June 22, 2019 at 02:56 UT. The UVAI is used to detect volcanic ash. Inset lower right shows a time-series of volcanic SO2 mass and UVAI derived from EPIC
measurements with hourly cadence during the eruption. (B) EPIC SO2 retrieval for the high-latitude Raikoke volcanic cloud on June 24 at 23:50 UTC. EPIC was able to
capture this extensive, high-latitude volcanic cloud in single synoptic images with hourly cadence, whereas such latitudes are towards the edge of the geostationary
(GEO) field-of-view and can only be covered by multiple overpasses of polar-orbiting (LEO) instruments (with inter-orbit gaps of ∼100 min).
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of volcanic ash from L1 (in the backscattering direction). Due to
changes in the phase function with particle size, the ability to
discriminate between ash particle sizes in a volcanic cloud
increases if observations at different scattering angles are
available.

Studies of particle shape effects on the phase function indicate
that, at UV wavelengths, particle non-sphericity leads to
increased scattering at side-scattering angles (120–140°) and
decreases at backscattering angles (Krotkov et al., 1997;
Krotkov et al., 1999). If ash particles are assumed to be
spherical, UV retrievals of ash optical depth will be
underestimated at backscattering angles (i.e., EPIC
observations from L1) and overestimated at side-scattering
angles. Scattering angles near 150° are optimal for optical
depth retrievals independent of particle shape. Hence the
larger range of phase angles accessible from EPIC-Moon
observations could potentially improve the accuracy of UV
volcanic ash retrievals.

POLAR MESOSPHERIC CLOUDS AND
POLAR STRATOSPHERIC CLOUDS

Numerous phenomena in the Earth’s middle and upper
atmosphere occur in layers that are typically limited in vertical
extent but cover extensive horizontal areas. Examples include
polar stratospheric clouds (PSCs) and polar mesospheric clouds
(PMCs). Localized injections into the stratosphere from below,
such as ash plumes from volcanic eruptions or smoke from
pyrocumulonimbus (pyroCb) wildfire events, can also be
transported by strong winds to spread globally and last for
months. Measurements with limb viewing geometry are
valuable in studying these phenomena because the long line-
of-sight through the atmosphere can enhance an otherwise faint
signal. Examples of limb observations for each type of event have
been published recently (Tsuda et al., 2018; Bourassa et al., 2019;
DeLand et al., 2020; DeLand and Gorkavyi, 2020; Torres et al.,
2020; Gorkavyi et al., 2021). The source material for these clouds
and plumes are primarily composed of relatively small particles
(tens of nm to few hundred nm in radius), with varying
composition (PMC � water ice, PSC � nitric acid trihydrate,
volcano � ash, and sulfate, pyroCb � smoke). The small size of
these particles means that the intensity of observed reflected light
(near-UV, visible, near-IR) will be governed by Mie theory, and
thus will vary significantly as a function of scattering angle. The
periodic variation of observing phase angle shown in Figure 1A
for a lunar sensor would be quite valuable for these atmospheric
measurements. The resulting variation in phase function (and
thus observed signal) can be used to help distinguish between
different assumptions about particle size distribution and
composition, which also affect the phase function.

MONITORING VEGETATION

Natural terrestrial surfaces scatter shortwave radiation into an
angular reflectance pattern or Bidirectional Reflectance Factor

(BRF). In vegetation canopies, the finite size of scatterers (e.g.,
leaves, coniferous shoots, etc.) can cast shadows. This causes the
canopy “hot spot” effect, i.e., a sharp increase in canopy reflected
radiation as the scattering direction approaches the direction to
the Sun (Figure 6) (Ross and Marshak, 1988; Knyazikhin and
Marshak, 1991; Kuusk, 1991; Myneni et al., 1991; Qin et al., 1996;
Gerstl, 1999). The hot spot phenomenon is strongly correlated
with canopy architectural parameters such as foliage size and
shape, crown geometry and within-crown foliage arrangement,
foliage grouping, leaf area index and its sunlit fraction (Ross and
Marshak, 1991; Qin et al., 1996; Goel et al., 1997; Knyazikhin
et al., 1998; Qin et al., 2002; Schull et al., 2011; Yang et al., 2017;
Pisek et al., 2021). Angular signatures that include the hot spot
region are critical for monitoring phenological changes in dense
vegetation such as equatorial forests (Bi et al., 2015).

Sensors onboard Earth-orbiting satellites sample reflectance
over swaths at a specific local solar time, or over a specific area of
the sunlit Earth. Such intrinsic sampling limits makes
observations of the hot spot rare in occurrence. For example,
the cross-track MODIS scanners on the Terra and Aqua near-
polar Sun-synchronous orbits can observe about 30–35% of
equatorial Amazonian rainforests along the hotspot directions
around the Equinoxes. No such observations are available from
May to July and November to December (Figure 7). The
Multiangle Imaging Spectroradiometer (MISR) on the Terra
satellite views the Earth’s surface with nine cameras
simultaneously, as opposed to the two MODIS sensors, which
are capable of only one view each. The MISR observing strategy
allows for a better angular variation of surface BRFs in the
equatorial zone (Figure 7). However, spatially and temporally
varying phase angles could be far from zero, making global
observation of the hot spot phenomenon impossible. A
spectroradiometer on the Moon’s surface offers a unique
opportunity to provide observations of every region of the

FIGURE 6 | Near-infrared BRF of Amazonian forests confined between
0° to 10°S and 60°W to 70°W from Terra MISR, Terra MODIS, and Aqua
MODIS sensors for the period between June 25 and July 10 accumulated over
a 7-years period from 2001 to 2008. The MISR sensor views the Earth’s
surface with nine cameras simultaneously, as opposed to the two MODIS
sensors, which are capable of only one view each. The MISR observing
geometry allows for measurements of angular signatures over a wider range of
phase angles.
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Earth from sunrise to sunset at a full range of phase angles. Here,
we discuss an application of surface reflectance data at a full range
of phase angles to monitor phenological changes in equatorial
forests.

Tropical forests account for approximately one-third of
Earth’s terrestrial gross primary productivity and one-half of
Earth’s carbon stored in terrestrial vegetation (Lewis et al., 2009;
Pan et al., 2011; Lewis et al., 2015; Hubau et al., 2020). They play
an essential role in surface energy partitioning and the Earth’s
carbon cycle and consequently impact regional climate (Cook
et al., 2020; Forzieri et al., 2020). Because of its large geographical
extent, any perturbations within this system can have significant
impacts on climate and on the carbon and water cycles.
Monitoring the spatial patterns, intra-annual seasonality and
their controls, inter-annual variability and long-term trends in
the structure and functioning of rainforests is crucial to our
understanding of how these biodiverse and productive
ecosystems will respond to future climate change, disturbances
and human appropriation (Cox et al., 2004; Cox et al., 2013;
Guimberteau et al., 2017).

Monitoring of dense vegetation such as equatorial rainforests
is a challenge for optical remote sensing because reflection of solar
radiation saturates and becomes weakly sensitive to vegetation
changes. At the same time, satellite data are strongly influenced
by changing sun-sensor geometry. This makes it difficult to
discriminate between vegetation changes and sun-sensor
geometry effects. Commonly used approaches for
interpretation of satellite data from single-viewing sensors
consider the viewing and solar zenith angle (SZA) dependence
of reflected radiation as a source of noise or error, requiring a
correction or normalization to a “standard” sun-sensor geometry.
Figure 6 shows the BRF in the NIR spectral band from single-
angle Terra and Aqua MODIS sensors acquired over Amazonian
rainforests. Their values are almost constant: they vary between
0.18 and 0.23 with mean, standard deviation and coefficient of
variation of 0.2, 0.08 and 4%, respectively. Most surface BRF
models would interpret such observations as radiation scattered

by Lambertian surfaces. Transformation of such data to a fixed,
standard sun-sensor geometry therefore invokes statistical
assumptions that may not apply to specific scenes. The lack of
information on the angular variation of forest-reflected radiation
introduces model uncertainties that in turn may have significant
impacts on interpretation of satellite data. For example, studies of
Amazon forest seasonality based on analyses of data from single-
viewing sensors disagree on whether there is more greenness in
the dry season than in the wet season: the observed variations in
the forest BRF were explained by an increase in the leaf area, an
artifact of sun-sensor geometry and changes in leaf age through
the leaf flush (Huete et al., 2006; Myneni et al., 2007; Brando et al.,
2010; Samanta et al., 2012; Morton et al., 2016; Saleska et al.,
2016). Conflicting conclusions among these studies arise from
different interpretations of surface reflectance data acquired
under saturation conditions (Bi et al., 2015).

FIGURE 7 | Probability density function (pdf) of the phase angle during 25 June to 10 July and 13–28 September periods over Amazonian rainforests (0°–10°S and
60°W to 70°W) for Terra MODIS and MISR sun-sensor geometries derived from MODIS and MISR data acquired from June 2000 to May 2008. MISR instrument uses
nine cameras to view the Earth’s surface in the forward and backward directions along the spacecraft’s flight track with nominal viewing zenith angles relative to the
surface reference ellipsoid of 0.0° (camera An), 26.1° (Af and Aa), 46.5° (Bf and Ba), 60.0° (Cf and Ca), and 70.5° (Df and Da). The 360 km swath width covers the
globe in 9 days. MODIS is a single view sensor that scans the Earth’s surface across the spacecraft flight track. It has a viewing swath width of 2,330 km and views the
entire surface of the Earth every 1–2 days. From Song et al., 2018.

FIGURE 8 | Angular signatures of NIR reflectance of Amazonian forests
in March (5 Mar to 20 Mar), June (25 Jun to 10 Jul), and October (15 Oct to 30
Oct) derived from MISR data.
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Figure 8 shows seasonal changes in NIR BRF of Amazonian
forests. The seasonal cycle consists of a short dry season from
June to October, and a long wet season thereafter. There are
several noteworthy features in the variation of angular signatures.
First, a distinct decrease in reflected NIR radiation in all viewing
directions from the early (October) to middle (March) part of the
wet season with no change in the overall shape of the angular
signatures. The SZA is almost the same. The observed downward
shift under similar illumination conditions can only result from a
change in canopy properties (Bi et al., 2015). Second, the shape of
the BRF changes from the beginning (June) to late (October) dry
season. Illumination conditions are different in these months. A
higher or equal reflectance at lower SZA relative to that at higher
SZA always indicates an increase in leaf area and foliage scattering
properties (Bi et al., 2015). Moreover, the intersection point of
BRFs acquired in these months deviates significantly from that
predicted by the reciprocity theorem for identical canopies under
different illumination conditions, suggesting that Amazonian
forests cannot be similar at the beginning and end of dry
seasons (Bi et al., 2015). These examples illustrate that the
availability of BRFs over equatorial forests at a full range of
the phase angle under different illumination conditions will make
monitoring their changes more reliable.

Improved measurements of albedo of the components of
Earth’s land surface–snow, ice, vegetation, and soil are among
the priority targeted observables that were ranked in the Earth
Science Decadal Survey as most important or very important
(National Academies of Sciences, 2018, p. 229). Spectral albedo
(or directional hemispherical reflectance in remote sensing
nomenclature) is the integral of the cosine weighted BRF over
scattering directions. Measurements of radiation scattered by the
land surface in all directions are therefore required to perform the
integration. An EPIC-like camera on the Moon’s surface can
provide frequent observations of every region of the Earth in the
full range of scattering directions. The availability of such data
will undoubtedly advance our ability to model
evapotranspiration, snowmelt, and retrospective reconstruction
of the snow water equivalent, which are critical for accurate
description of the surface radiation balance (National Academies
of Sciences, 2018, p. 227).

LUNAR ENVIRONMENT

Forward scattering conditions create advantages for observing the
lunar dust cloud. The lunar dust exosphere is an important factor
for the long-term residence of astronauts on the Moon, as well as
for the functioning of scientific equipment on the lunar surface
and orbiters (Elphic et al., 2014; Richard et al., 2018). Telescopic
limb observations of the scattering of sunlight (or starlight) from
the lunar dust cloud would help construct a 3Dmodel of the lunar
dust exosphere (Richard et al., 2018). We believe that preliminary
information regarding the effectiveness of observing the Earth
from the lunar surface can be obtained by analyzing photographs
of the Earth obtained using the navigation cameras of the lunar
rover VIPER (Colaprete et al., 2021). In addition, analysis of
photographs from VIPER cameras taken under conditions of

forward scattering of both sunlight and reflected light of the
Earth can provide useful information for comparison with
models of lunar dust (Richard et al., 2018). A similar program
was implemented for the Cosmic Background Explorer
(COBE) data and the model of the zodiacal dust cloud
(Gorkavyi et al., 2000). Observations from the Moon will
help improve existing models of the zodiacal cloud, which is
important for astronomical observations, e.g., by the James
Webb Space Telescope (JWST) in particular. Even a small
meteoroid with a mass of 5 kg can excavate a ∼10 m crater,
ejecting 75 tons of lunar regolith and rock on ballistic trajectories
above the Moon (Dunbar, 2021). However, “The lunar impact
rate is very uncertain because observations for objects in this
mass range are embarrassingly few” (Speyerer et al., 2016).
Accurate assessment of the meteorite hazard is required
for the effective and safe implementation of the Artemis
program (Elphic et al., 2014). Using the Earth’s atmosphere as
a detector, EPIC-Moon imaging of the night-side and limb of
the Earth will detect atmospheric impacts (either by a flash or
from dispersion of meteoritic dust clouds; see Gorkavyi et al.,
2013) from potentially threatening small (<10 m) asteroids in the
vicinity of Earth, thus improving the current highly uncertain
estimates.

CONCLUSION

Deploying an analog of DSCOVR/EPIC on the Moon’s surface
would offer a unique opportunity to image the full range of Earth
phases, potentially advancing Earth science in many ways:

1) observing ocean/cloud glint reflection for different phase
angles;

2) comprehensive whole-globe monitoring of transient volcanic
and aerosol clouds (smoke, dust), including the strategically
important (for climate studies) polar regions not covered by
GEO missions;

3) detecting of polar mesospheric and stratospheric clouds via
whole-Earth limb imaging;

4) estimating surface BRF and full phase-angle integrated albedo;
5) monitoring and quantifying changes in vegetated land;
6) simultaneous imaging of the day and night parts (i.e., the

twilight zone) during crescent phases of the Earth and
shadowed parts illuminated by the Moon.
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Evaluation of Version 3 Total and
Tropospheric Ozone Columns From
Earth Polychromatic Imaging Camera
on Deep Space Climate Observatory
for Studying Regional Scale Ozone
Variations
Natalya A. Kramarova1*, Jerald R. Ziemke2, Liang-Kang Huang3, Jay R. Herman4,
Krzysztof Wargan3,1, Colin J. Seftor3, Gordon J. Labow3 and Luke D. Oman1

1NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Goddard Earth Sciences Technology and Research
(GESTAR)/Morgan State University, Baltimore, MD, United States, 3Science Systems and Applications, Inc. (SSAI), Lanham, MD,
United States, 4University of Maryland, Baltimore County, Baltimore, MD, United States

Discrete wavelength radiance measurements from the Deep Space Climate Observatory
(DSCOVR) Earth Polychromatic Imaging Camera (EPIC) allows derivation of global
synoptic maps of total and tropospheric ozone columns every hour during Northern
Hemisphere (NH) Summer or 2 hours during Northern Hemisphere winter. In this study, we
present version 3 retrieval of Earth Polychromatic Imaging Camera ozone that covers the
period from June 2015 to the present with improved geolocation, calibration, and
algorithmic updates. The accuracy of total and tropospheric ozone measurements
from EPIC have been evaluated using correlative satellite and ground-based total and
tropospheric ozone measurements at time scales from daily averages to monthly means.
The comparisons show good agreement with increased differences at high latitudes. The
agreement improves if we only accept retrievals derived from the EPIC 317 nm triplet and
limit solar zenith and satellite looking angles to 70°. With such filtering in place, the
comparisons of EPIC total column ozone retrievals with correlative satellite and ground-
based data show mean differences within ±5-7 Dobson Units (or 1.5–2.5%). The biases
with other satellite instruments tend to be mostly negative in the Southern Hemisphere
while there are no clear latitudinal patterns in ground-based comparisons. Evaluation of the
EPIC ozone time series at different ground-based stations with the correlative ground-
based and satellite instruments and ozonesondes demonstrated good consistency in
capturing ozone variations at daily, weekly and monthly scales with a persistently high
correlation (r2 > 0.9) for total and tropospheric columns. We examined EPIC tropospheric
ozone columns by comparing with ozonesondes at 12 stations and found that differences
in tropospheric column ozone are within ±2.5 DU (or ∼±10%) after removing a constant
3 DU offset at all stations between EPIC and sondes. The analysis of the time series of
zonally averaged EPIC tropospheric ozone revealed a statistically significant drop of
∼2–4 DU (∼5–10%) over the entire NH in spring and summer of 2020. This drop in
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tropospheric ozone is partially related to the unprecedented Arctic stratospheric ozone
losses in winter-spring 2019/2020 and reductions in ozone precursor pollutants due to the
COVID-19 pandemic.

Keywords: total ozone, tropospheric ozone, EPIC, UV, ozone time series

INTRODUCTION

The DSCOVR spacecraft carrying the EPIC instrument was
successfully launched on February 11, 2015, to the Earth-Sun
Lagrange-1 (L1) point at a nominal distance of 1.5 × 106 km from
the Earth. After initial on-orbit testing, EPIC started routine
operations in mid-June 2015 (Marshak et al., 2018). The
DSCOVR EPIC instrument measures radiances in 10 narrow
spectral bands (from 317.5 to 779.5 nm) backscattered from the
illuminated portion of the Earth’s surface and atmosphere. Four
UV bands, 317.5, 325, 340 and 388 nm, are used to derive total
column ozone (TOZ) amounts (Herman et al., 2018). The high
spatial resolution of EPIC UV data (18 × 18 km2) permits
derivation of detailed synoptic maps of ozone distribution
with multiple samples (4–9) at a given geographical location
each day supporting studies of small scale, regional ozone
transport. The EPIC total and tropospheric ozone column
products, sampled from sunrise to sunset, serve as a
pathfinder and provider of intercalibration data for the
constellation of existing and future geostationary missions.
The purpose of GEO constellation is to monitor air quality
over three different continents: North America (TEMPO),
Europe (Sentinel 4) and Asia (GEMS) with a major focus on
regional pollution transport (CEOS Report, 2011). The Korean
GEMS was launched on February 18, 2020. The two other
missions are planned for launch in the next few years. From
the GEO vantage point these instruments will monitor daily
variations in ozone, nitrogen dioxide, and other key constituents
of air pollution (Stark et al., 2013; Zoogman et al., 2016; Kim et al.,
2020). EPIC views the entire sunlit portion of the Earth as it
rotates in DSCOVR’s field of view (FOV) in orbit about the L1
position, thereby connecting all three regions observed with the
geostationary missions. Additionally, EPIC provides important
measurements in the Southern Hemisphere (SH) and high
latitudes not covered by the current and planned geostationary
missions.

Herman et al. (2018) provided a detailed description of the
EPIC UV measurements, calibration techniques and ozone
retrieval algorithm. They reported that EPIC Version 2 total
ozone agreed within ±3% with ground-based and satellite
measurements. Here we present a new Version 3 of EPIC total
ozone and a new tropospheric ozone column product. The
tropospheric ozone column is derived by subtracting an
independently measured stratospheric column from the EPIC
total ozone. Version 3 processing includes several key
modifications: 1) an improved geolocation of EPIC scenes
applied in Version 3 Level 1 product (Blank et al., 2021) to
ensure accuracy of solar/view angles calculations for each EPIC
pixel; 2) an inclusion of simultaneous cloud-height information
from EPIC A-Band (Yang et al., 2019) to improve the scene

pressure and the estimated ozone amount below the cloud; 3) an
addition of corrections for ozone and temperature profile shapes
in the retrieval algorithm; and 4) an addition of column weighting
functions and algorithm/error flags for each observation to
facilitate error analysis.

In this paper we evaluate the accuracy and precision of the
EPIC version 3 total and tropospheric ozone products by
comparing them with correlative satellite and ground-based
measurements. Data and Methods describes EPIC version 3
ozone products and correlative ozone measurements used in
this study to evaluate EPIC retrievals. Data and Methods also
describes the methodologies we apply in this study to compare
and analyze the measurements. The results of comparisons are
presented in Results. Our conclusions are summarized in
Summary and Discussion.

DATA AND METHODS

EPIC Total Ozone
EPIC permits measurements of ozone, aerosol amounts, and
cloud reflectivity, using a Charge-Coupled Device (CCD)
detector with 2048 by 2048 pixels to obtain Earth images
with 10 spectral filters: four at ultraviolet channels (317.5,
325, 340 and 388 nm), four at visible channels (443, 551, 680
and 687.75 nm) and two near-IR channels (764 and 779.5 nm).
The UV filters have bandpass with full widths at half maximum
of 1.0, 1.0, 2.7 and 2.6 nm, respectively. Because of telemetry
limitations, only the blue 443 nm channel is downlinked at full
resolution, while for the other channels, four (2 × 2) individual
pixels are averaged onboard the spacecraft to yield an effective
1024 × 1024 pixel image corresponding to an 18 × 18 km2

resolution at the observed center of the Earth’s sunlit disk. The
effective spatial resolution decreases as the secant of the angle
between EPIC’s sub-earth point and the normal to the earth’s
surface (i.e., at an angle of 60°, the ground pixel size is ∼36 ×
36 km2). The result of using the Earth imaging multi-filter
EPIC instrument from the L1 point is that measurements are
derived simultaneously from sunrise to sunset over all
illuminated latitudes from 13 to 22 times per 24 h as the
Earth rotates (see Supplementary Figure S3).

Measurements for each EPIC channel are taken consecutively
at an interval of ∼27 s between adjacent wavelengths. Elaborate
preprocessing is required to determine the geolocation of each
pixel in the earth image, and to collocate images from different
spectral channels to a common latitude × longitude grid. This
geolocation procedure had been substantially improved in the
recent v3 of EPIC Level 1 product (Blank et al., 2021) leading to
notable improvements in EPIC Level 2 products, including ozone.
Particularly, it resulted in more accurate estimation of solar/view
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angles for each EPIC pixel thereby improving radiance
simulations and reducing errors in ozone retrievals. EPIC
version 3 Level 1 data have been also corrected for the dark-
current signal, flat-field, and stray-light contamination (Cede
et al., 2021). In-flight EPIC radiometric calibrations are done
by comparing EPIC measured albedo for each wavelength
channel with coincident, scene-matched measurements from
Suomi National Polar Partnership (SNPP) Ozone Mapping
and Profiler Suite (OMPS) Nadir Mapper (Herman et al.,
2018). To account for small differences in spectral resolution
between the two instruments, OMPS albedo spectra were either
interpolated (317.5 and 325 nm channels) or convolved (340 and
388 nm) with each EPIC filter transmission function. The
resulting uncertainties of the EPIC radiometric calibration
depend on the quality and stability of the OMPS calibration.
OMPS has a calibration accuracy of 2%, while its wavelength
dependence in the calibration is estimated to be better than 1%
(Seftor et al., 2014). The EPIC absolute calibrations are updated
every year.

Since the ozone retrieval algorithm relies on sun-normalized
radiances and EPIC does not take solar measurements, a high-
resolution solar irradiance spectrum (Dobber et al., 2008) is used
to calculate radiance/irradiance ratios (albedos). The TOMRAD
radiative transfer model is used to simulate EPIC radiances using
a spherical geometry correction for large solar zenith angles
(SZAs) and satellite look angles (SLAs) (Caudill et al., 1997).
These calculated radiances are also then divided by the same solar
irradiances to compute albedos. Spectrally resolved ozone
absorption cross sections are from Brion et al. (1998),
Daumont et al. (1992), and Malicet et al. (1995). The reference
solar spectrum and the calculated spectral albedos are convolved
with EPIC filter transmission functions. To speed up the retrieval
algorithm, calculated albedos at EPIC wavelengths are compiled
in a look-up table (LUT) as a function of ozone profiles, SZA/SLA
and reflecting surface pressure height. The EPIC ozone retrieval
algorithm, described in (Herman et al., 2018), uses a triplet of
wavelengths to derive total ozone column. Two ozone absorption
channels either 317.5 and 340 nm or 325 and 340 nm, depending
on optical depth conditions, are combined with the 388 nm
measurement to form a triplet. The EPIC 388 nm channel is
used to derive scene reflectivity (Herman et al., 2018). The
reflectivity is assumed to change linearly with wavelength to
account for aerosol contamination.

The triplet algorithm with wavelength-dependent reflectivity
Rλ permits adjusting both the total ozone amount and the
reflectivity at the ozone absorption wavelengths to account for
the presence of aerosols. In cases with elevated aerosol amounts,
the spectral slope in reflectivity can be significant, leading to an
increase in reported residuals at ozone absorption channels that
are computed with the 388 nm surface reflectivity. It is difficult to
validate total ozone measurements over aerosol contaminated
areas because the ground-based sensors like Dobson, Brewer and
to a lesser extent Pandora are sensitive to aerosol contamination.
To check for effectiveness of the implemented aerosol correction,
we analyze EPIC ozonemaps by comparing ozone values sampled
over aerosol contaminated areas with the surrounding aerosol-
free airmasses. Our analysis indicated that the EPIC retrieved

TOZ over contaminated regions (caused by large smoke plumes
or desert dust storm events) are consistent with those in the
surrounding area. Figure 1 shows an example of wildfires that
occurred in the western United States in summer 2020. The
aerosol index (AI) (Figure 1A) was elevated over the western
coast of United States on August 8, 2020. The aerosol corrected
EPIC retrieved TOZ maps over the affected area are very smooth
without apparent aerosol-driven features. The TOZ value
averaged over the aerosol contaminated area (24°N-35°N and
122°W-135°W) with the AI> 5 was 282.4 DU and agreed well with
280.13 DU, the average over the same area but for aerosol-free
pixels with AI<0.75. The triplet algorithm with a simple linear
model for surface reflectivity, implemented for EPIC, provides an
effective aerosol correction mechanism for background aerosol
and Sun glint (near the image center) as well.

The ozone version 3 retrieval algorithm accounts for ozone
and temperature profile shape variations using seasonal zonally
averaged climatology of ozone (McPeters and Labow, 2012) and
temperature profiles. Calculated EPIC sun-normalized radiances
stored in LUT are adjusted for differences between the seasonal
climatological ozone (or temperature) profiles and the standard
profiles.

Cloud height retrievals are obtained from EPIC oxygen
A-band absorption measurements at 764 ± 0.2 nm and its
reference wavelength 779.5 ± 0.3 nm (Yang et al., 2019). The
EPIC simultaneous cloud-height product is now used in version 3
EPIC ozone algorithm for two purposes: 1) to adjust the scene
surface pressure to properly simulate EPIC radiances; and 2) to
estimate the unretrieved amount of ozone beneath clouds. The
ozone climatology (McPeters and Labow, 2012) is used to
substitute partial ozone columns below clouds, and the error
in estimating cloud height for the high-altitude convective clouds
can lead to errors in estimating total and tropospheric ozone
columns in presence of such clouds. If the A-band cloud pressure
height is not available (∼2–3% of EPIC images that are flagged in
the L2 product), the ozone retrieval algorithm uses cloud effective
pressure height from the OMI-based Optical Centroid Pressure
(OCP) climatology (Vasilkov et al., 2008), used for all EPIC
images in previous EPIC ozone versions. Figure 2 demonstrates
how the simultaneous EPIC cloud height product helps reduce
features in the synoptic TOZ maps produced by a large-scale
convective cyclone. This is particularly important for
tropospheric ozone studies that are sensitive to errors caused
by the presence of clouds.

To evaluate consistency of EPIC TOZ, we compared retrievals
derived from two different triplets. The EPIC algorithm switches
between 317.5 and 325 nm channels depending on optical depth
conditions. At low optical depth (τ < 1.5), which corresponds to
small and moderate SZA and SLA, the algorithm uses the
317.5 nm channel. When τ > 1.5, the algorithm switches to
the 325 nm triplet that more easily penetrates to the surface.
Since the natural ozone variability in the tropics is relatively low,
we should expect very little changes in retrieved TOZ as a
function of SZA or SLA. Therefore, we can evaluate
consistency of EPIC retrievals as shown in Figure 3 by
looking at the tropical zonal mean values retrieved from two
triplets. The plots in Figure 3 show that TOZ averages derived
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with the 317 nm triplet (black lines) have very small variations at
low and moderate SZA/SLA but starts to deviate when SZA/SLA
> ∼70°. Larger errors in ozone retrievals at high SZA/SLA are
related to the accuracy of radiance simulations using an
approximation for atmospheric sphericity.

Figure 3 reveals inconsistency between EPIC 325 nm
retrievals (red lines) and 317 nm retrievals (black lines) when
they overlap. Since the 325 nm triplet has reduced ozone

sensitivity compared to the 317 nm triplet, the retrieval errors
in measured and simulated radiances will be amplified with the
325 nm triplet. These results are also supported by comparison
with external measurements. Conditions with high optical depth
typically correspond to early morning and late afternoon hours at
the edges of the EPIC images, where EPIC has larger biases
compared to other instruments (see Supplementary Figure S4).
For scientific analysis, we recommend using EPIC total ozone

FIGURE 1 | EPIC synoptic maps of the aerosol index (A) and TOZ (B) on August 8, 2020, at 18:41 UTC. Elevated levels of aerosols (AI>5) are clearly seen over
western United States from massive wildfires. The ozone algorithm’s linear spectral dependence of reflectivity provides effective corrections for aerosol contamination.
The corrected ozone fields are smooth without any apparent artificial structures imposed by wildfires. Ozone averaged over the aerosol contaminated area agrees well
with the surrounding area.

FIGURE 2 | EPIC synoptic maps of reflectivity derived from 380 nm channel (A) and EPIC retrieved TOZ processed using OPT climatology (B) and simultaneous
A-Band cloud height (C). The cyclonic activity in the tropical Pacific area west from Central America is clearly seen in the reflectivity map (A). The TOZ map derived with
climatological cloud heights (B) has artificial structures that are co-located with the cyclones.When the simultaneous cloud height product from EPIC is used in the ozone
algorithm (C) it reduces artificial structures in the derived synoptic TOZ maps.
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retrievals from 317.5 nm triplet only (which corresponds to
algorithm flag equal 1, or 101, or 111) and limiting the SZA
and SLA to less than 70°. In this study EPIC data had been filtered
using these criteria.

EPIC Tropospheric Ozone Algorithm
To derive tropospheric column ozone (TCO) from EPIC, an
independent measure of the stratospheric ozone column is
needed. The stratospheric column is then subtracted from
EPIC TOZ to obtain tropospheric column ozone. Limb
sounders like Aura MLS and OMPS LP have dense samplings
and provide an accurate estimate of stratospheric ozone with high
vertical resolution (e.g., Hubert et al., 2016; Kramarova et al.,
2018; Wargan et al., 2020). These sounders are flown on polar-
orbiting satellites and make measurements at the same local solar
time with ∼14 orbits a day. Several techniques were tested to fill
gaps between the orbits including the wind-trajectory method
and data assimilation (Ziemke et al., 2014). Our analysis shows
that the assimilated stratospheric ozone profiles provide the best
overall measure of the stratospheric column ozone. We use the
Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2) ozone fields (Gelaro
et al., 2017; Wargan et al., 2017) for this purpose. MERRA-2
assimilated stratosphere column ozone was found to agree within
±1–2 DU and standard deviations 2–4 DU with original MLS
along-track measurements from the tropics to high latitudes. The
MERRA-2 data assimilation system ingests Aura OMI v8.5 total
ozone and MLS v4.2 stratospheric ozone profiles to produce

global synoptic maps of ozone profiles from the surface to the top
of the atmosphere; for our analyses we use MERRA-2 ozone
profiles reported every 3 hours (0, 3, 6, . . . , 21 UTC) at a
resolution of 0.625° longitude × 0.5° latitude (GMAO, 2015).
MERRA-2 ozone profiles were integrated vertically from the top
of the atmosphere down to tropopause pressure to derive maps of
stratospheric column ozone. Tropopause pressure was
determined from MERRA-2 re-analyses using standard PV-θ
definition (2.5 PVU and 380 K). The resulting maps of
stratospheric column ozone at 3-h intervals from MERRA-2
were then space-time collocated with EPIC footprints and
subtracted from the EPIC total ozone, thus producing daily
global maps of residual tropospheric column ozone sampled at
the precise EPIC pixel times. These measurements of
tropospheric ozone were further binned to 1o latitude × 1o

longitude resolution. Figure 4 shows a schematic diagram that
demonstrates the residual approach.

UV measurements have reduced sensitivity to ozone changes
in the boundary layer. To facilitate error analysis, Column
Weighting Functions (CWF) have been included in EPIC
version 3 processing (see in the Supplementary Material) to
help users interpret EPIC total ozone retrievals and indicate the
weight of measurements in each layer. The shape of CWF are
determined by the sensitivity of measured albedos to changes in
ozone in different atmospheric layers. CWF are typically close to
1 in all layers except for the boundary layer (Supplementary
Figure S1) indicating that the measurements are very sensitive to
ozone changes in those layers. CWF in the lowest boundary layer

FIGURE 3 | EPIC version-3 total column observations (in DU) on July 11, 2020 averaged for an entire day over a wide equatorial zone (20°S-20°N) as a function of
SZA (A) and SLA (B). EPIC retrievals with 317.5 nm triplet are shown in black and 325 nm triplet in red. In this study, we use EPIC total ozone retrievals from 317.5 nm
triplet only (algorithm flag equal 1, or 101, or 111) and limit SZA and SLA to less than 70°.
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ranges between 0 and 0.7, with low values close to 0 observed over
high terrain or high clouds when measurements in the boundary
layer are not available. CWF represent the fraction of ozone
variations in that layer that can be retrieved. The magnitude of
CWF in the boundary layer depends on SZA/SLA, reflectivity,
and scene pressure (terrain height).

For comparisons with independent measurements like sondes,
we need to account for the limited sensitivity of UV satellite
measurements to the variability of ozone in the low troposphere
including the boundary layer (BL) below ∼700 hPa. To do this, we
used simulated tropospheric ozone derived from GEOS-Replay
(Strode et al., 2020) constrained by the MERRA-2 meteorology
through so-called replay method, whereby the analysis
increments recalculated from MERRA-2 are used by the GEOS
model in dynamical tendency calculations (Orbe et al., 2017).
This correction represents a seasonal-cycle adjustment, since
ozone variability in the troposphere including BL is largely
due to the seasonal-cycle. From the GEOS-Replay simulation
we constructed a 12-years (2005–2016) average global seasonal
climatology of tropospheric ozone columns in the BL based on
365 days of the year at 1o × 1o horizontal gridding. To estimate
adjustments to EPIC TCO, we first calculate the differences in BL
ozone between this seasonal model-based climatology and the
zonal-mean apriori values used in the EPIC retrieval algorithm
(the ML climatology from McPeters and Labow, 2012). We then
applied EPIC measured CWF to these BL ozone differences to
estimate the ozone amount that EPIC measurements miss due to
reduced sensitivity in the bottom layer (layer 0: 506 hPa
-1,013 hPa). These corrections are then added to the EPIC
tropospheric ozone columns to account for ozone variability
in the BL (see in the Supplementary Material). Our analysis
indicates that the global patterns for the corrections are very
persistent between years dominated by strong seasonal
variability.

Figure 5 shows the spatial distribution of the BL corrections
for October 20, 2020, based on the GEOS-Replay model. There is
a clear wave-1 structure in these corrections with a negative error
of ∼ 2–6 DU over the tropical Pacific Ocean. This is because the
ML apriori monthly zonal means do not capture longitudinal
ozone variability. Negative corrections also correspond to places
with high terrain. Positive corrections such as those over Africa,
the Arabian Peninsula, India, and east China are regions of
seasonally recurring biomass burning and other pollution that
cause an increase in the BL ozone.

Tropospheric ozone derived from satellite instruments prior
to EPIC has been limited to maps sampled at fixed local times. A
great advantage of EPIC is that tropospheric maps can be made
every 1–2 h from the sunlit portion of the Earth with samples
across the range of local solar times. Such maps provide
information at times not sampled by polar orbiting satellites,
allowing us to better capture and study short-scale, regional
variability of tropospheric ozone.

Correlative Satellite Measurements
To validate EPIC ozone measurements, we use data obtained
from two satellite sensors that operate on board polar orbiting
satellites, OMI (Ozone Monitoring Instrument) and OMPS
(Ozone Mapping and Profiling Suite). OMPS was launched in
October 2011 on the Suomi National Polar-orbiting Partnership
(SNPP) satellite and includes both nadir- and limb-viewing
modules. In this study we will use total ozone maps derived
from OMPS Nadir Mapper (NM). The NM is a hyperspectral
imaging push-broom sensor with a 110° cross-track field of view
(FOV), 35 cross-track bins, and a 0.27° along track slit width
corresponding to a 50 × 50 km2 resolution. It measures solar
backscattered ultraviolet radiation in a spectral range from 300 to
380 nm. The OMPS NM algorithm is based on the NASA version
8 total ozone algorithm (Bhartia and Wellemeyer, 2002) and uses

FIGURE 4 | Schematic illustration of the residuals approach for deriving tropospheric ozone columns. The left plot shows a synoptic TOZmap derived from EPIC on
June 24, 2019. The center plot shows a map of stratospheric ozone column from MERRA-2 for the same time. The TCO is derived by subtracting MERRA-2
stratospheric column from TOZ.
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a pair of wavelengths to derive total ozone. The ozone absorption
cross-sections used in the OMPSNMalgorithm are the same ones
used for EPIC (Daumont et al., 1992; Malicet et al., 1995; Brion
et al., 1998). The most recent version 2.1 of OMPS NM, which we
used in this study, has been evaluated by (McPeters et al., 2019).
They found that total column ozone data from the OMPS NM
agree well with NOAA-19 SBUV/2 with a zonal average bias of
−0.2% over the 60+ S to 60+N latitude zone.

OMI, onboard the Aura satellite, started taking regular
measurements in August 2004. OMI employs a hyperspectral
imaging CCD in a push-broom mode to observe solar
backscatter radiation in the 270–500 nm spectral range. The
OMI sensor provides 60 cross-track bins with a FOV at nadir of
about 13 km × 25 km. The wide scanning swath and 90-min
polar orbit of OMI provides daily global maps of total ozone at
13:30 local solar equator crossing time. In this study, we use
version 8.5 of OMI ozone data, processed with the version 8
algorithm (Bhartia andWellemeyer, 2002). The most significant
enhancement in OMI v8.5 is that the longer wavelengths
measured by OMI are used to infer cloud height on a scene-
by-scene basis (Vasilkov et al., 2008). OMI data are processed
using Bass and Paur (1984) ozone absorption cross-sections. In
2008 the OMI started to experience blockage of the center-right
part of each swath caused by peeling of the protective film on
the spacecraft. The affected cross-track positions are flagged
and are not used in our analysis. Comparison of OMI total
ozone retrievals with an ensemble of Brewer and Dobson
instruments and satellite SBUV measurements shows 1–1.5%
bias, and a small relative drift against SBUV of about 0.5% over
10 years (McPeters et al., 2015).

Correlative Ground-Based Measurements
We used a network of Brewer spectrophotometers at multiple
locations to evaluate EPIC TOZ measurements. The Brewer
instrument acquires measurements at five UV wavelengths
(306.3, 310.1, 313.5, 316.8 and 320.0 nm) to retrieve total
column ozone (Kerr et al., 1985). The Brewer spectrometers
are routinely calibrated with a reference triad of Brewers
located in Toronto (Fioletev et al., 2005). The daily Brewer
total ozone values are reported to the World Ozone and
Ultraviolet Data Center (WOUDC). Brewer spectrometers

perform measurements throughout the day, but there are only
a small number of stations that report hourly Brewer data with
the rest reporting daily average ozone amounts. We used Brewer
daily averages in this study.

Ozonesonde measurements launched on air balloons provide
in-situmeasurements of ozone vertical profiles in the troposphere
and low stratosphere that provide valuable validation for EPIC
TCO. In this study we use measurements from 12 stations with
several stations updated into year 2020. There is about one
measurement per week at many sonde locations. We use daily
measurements from Southern Hemisphere ADditional
OZonesondes (SHADOZ) (Thompson et al., 2017; Witte et al.,
2017), World Ozone and Ultraviolet Data Center (WOUDC) and
Network for the Detection of Atmospheric Composition Change
(NDACC). In our analysis, each ozone profile was integrated
vertically from ground up to the tropopause to derive TCO.
Tropopause height was determined the same as for EPIC TCO
using MERRA-2 analyses with standard PV-θ definition
(2.5 PVU, 380 K).

The ground-based Pandonia Global Network (PGN) uses
temperature stabilized Avantes spectrometers in each Pandora
instrument that simultaneously acquires direct-sun
measurements in 300–525 nm range in oversampled steps of
0.5 nm every 40 s. Stray light from longer wavelengths is
suppressed by using a short-wavelength bandpass filter. The
Pandora ozone retrieval algorithm is based on an optimized
spectral fitting within the ozone absorption range after
correcting for aerosol amounts (Tzortziou et al., 2012; Herman
et al., 2015; Herman et al., 2017). There are over 50 operating
Pandora instruments within PGN and a number of additional
Pandoras at various location through the world that are not yet
incorporated into the official PGN.

RESULTS

Evaluation of EPIC TOZ
To evaluate the accuracy of EPIC calibrations, we compared EPIC
version 3 TOZ retrievals with correlative satellite observations
from OMPS NM and OMI. Figure 6 shows mean differences in
Dobson Units (DU) between EPIC version 3 and OMPS and OMI

FIGURE 5 | Spatial map of the CWF adjustment for the EPIC TCO due to reduced EPIC sensitivity to BL ozone for 20 October 2021. This correction is derived by
applying EPIC CWFs for the bottom layer (506 hPa-1000 hPa) to the differences between GEOS-Replay model and ML apriori ozone.
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as a function of latitude for different seasons (color lines). The
mean differences were calculated over a period from the
beginning of the EPIC mission in June 2015 up to the end of
2020. The EPIC data have been filtered as described above in
EPIC Total Ozone. The data in Figure 6 were first averaged
monthly and zonally prior to calculating these 6-years differences.
Themean biases are mostly within ±5–7 DU (or 1.5–2.5%). The
biases between EPIC and OMI and EPIC and OMPS are
smaller and mostly positive in the tropical region (30°S-
30°N). Outside the tropics, biases are larger and vary
seasonally. In the SH biases are mostly negative with
stronger biases during SH summer in January (Figure 6,
black lines). The biases are somewhat smaller between EPIC
and OMI particularly in the tropics and NH (Figure 6B), while
differences with OMPS in the NH tend to be larger and
negative in April and October (Figure 6A). During NH
summer in July the biases between EPIC and OMPS rapidly
change at higher latitudes turning from positive to negative.
Differences between Figures 6A,B indicate the magnitude of
differences between OMI and OMPS TOZ.

To evaluate the effect of the EPIC cloud correction
implemented in version 3 by utilizing simultaneous cloud
height retrievals from the EPIC oxygen A-band channel, we
compared EPIC and OMI TOZ retrievals for different
conditions: all coincident cases with reflectivity 0 < R < 1,
low-reflectivity cases R < 0.15, and cases with large reflectivity
R > 0.7 (see Figure 7). The cloud height correction in the OMI
algorithm uses the Optical Centroid Pressure (OCP) approach
(Vasilkov et al., 2008) that utilizes OMI measurements in visible
range between 460–490 nm. This algorithm is completely
independent from the EPIC A-Band cloud heigh retrievals
(Yang et al., 2019). There is a very good agreement between
the two methods with differences less than 50 hPa over a broad
range of cloud fraction values (see Supplementary Figure S2),
which would result in an offset of less than 1 DU. The offset
between two cloud height algorithms is larger at very low cloud
fraction (<0.1), but it has almost no effect on retrieved ozone.

Our analysis has revealed that the mean biases between EPIC
and OMI TOZ remain the same for two subsets (R < 0.15 and 0 <
R < 1, see Figures 7A–F). That means the cloud correction
implemented in version 3 does not produce systematic errors in
the EPIC TOZ retrievals. There is an increase in standard
deviations of differences for the subset where all conditions (0
< R < 1) were included (Figures 7A–C). This is consistent with
our expectations that the cloud correction would produce
random noise in the retrieved ozone fields but not a
systematic bias. When the scene reflectivity exceeds 0.7 it
typically corresponds to conditions with large cloud fraction
and high-altitude, convective clouds. The biases increase in the
tropics between the two instruments for R > 0.7, but there is no
change inmid-latitudes. A fraction of these increased biases in the
tropics might be due to consistently larger cloud heights derived
from the A-Band for high cloud fractions (see Supplementary
Figure S2). Additionally, differences in cloud coverage at the time
of satellite measurements and satellites FOVs can contribute
as well.

We also examined the relative degree of agreement between
EPIC TOZ and ground-based measurements obtained from
Brewer and Pandora instruments. The list of Brewer, Pandora
and sonde stations used in this study is provided in
Supplementary Table S1. Figure 8 shows time series of daily
mean Brewer and EPIC TOZ measurements at six locations in
2018. These stations represent a wide range of latitudes with a
long available record of daily Brewer measurements in
2015–2020. We did not include stations at high latitudes to
avoid EPIC measurements at SZA and SLA that exceed 70°.
These plots show sub-seasonal changes in TOZ as measured
by EPIC and Brewers. The observed biases with Brewer
measurements are within the range of differences found with
satellite observations. There is a consistently high correlation
between EPIC and Brewer measurements (r2 > 0.96), indicating
that EPIC can accurately capture day-to-day variations in TOZ.

Figure 9 shows comparisons between EPIC and Pandora TOZ
from 4 selected sites in the NH and SH where there is a long

FIGURE 6 |Mean biases in TOZ between EPIC v3 and OMPS NM v2.1 (A) and EPIC v3 and OMI v8.5 (B) in DU. Biases are shown for 4 months (shown in different
colors) and calculated over period from June 2015 to December 2020. Only EPIC retrievals with the algorithm flag equal to 1, or 101, or 111 and SZA and SLA <70° were
used in these comparisons.
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record of ground-based data from well-calibrated Pandora
spectrometer instruments. We also compared with overpasses
derived from OMI and OMPS NM. EPIC TOZ overpasses for
each selected site include about 3–4 samples per day separated by
1–2 h, while OMI and OMPS overpasses have only 1 to 2 points
per day, with most samples consisting of 1 point per day. When
there are two points from consecutive polar orbits, they are
separated by about 90 min. The ground-based Pandora data
consists of ozone samples obtained every 40 s throughout each
day for solar zenith angles SZA less than 70°. The time span of
PGN Pandora data is much less than that for satellite data.
Because of the different fields of view FOV (EPIC 20 ×
20 km2, OMI 13 × 24 km2, OMPS 50 × 50 km2 and Pandora
about 50 × 50 m2) and different sampling times (UT), the
comparisons in Figure 9 are done for 3-months averages to
verify calibration and retrieval algorithm rather than individual
scene comparisons. The noise level in comparisons drop
significantly depending on the averaging period (see

Supplementary Figure S5). The 3-months averages (solid
lines in Figure 9) match closely for all four instruments. The
mean differences between EPIC and OMI and OMPS are smaller
than 1% at all stations and consistent with zonally averaged
results shown in Figure 6. Pandora TOZ measurements in the
current version (PGN version 0P1) have significant differences
with all three satellite instruments, but closely track the observed
TOZ variation.

To evaluate EPIC performance at short time scales, we have
compared EPIC with ground-based Pandora and coincident OMI
measurements at two ground-based locations over 1-year period
(Figure 10). There is a lot of variability in TOZ during winter and
spring at the mid-latitude station in Greenbelt, Maryland
(Figure 10A), showing that EPIC agrees well with both
Pandora and OMI. TOZ is lower in summer and autumn
months as a part of the TOZ seasonal cycle. Pandora in
Greenbelt seems to underestimate TOZ in summer months
compared to both OMI and EPIC. Measurements at

FIGURE 7 | Comparisons between coincident EPIC and OMI TOZ measurements on April 25, 2017 in Dobson Units for all conditions (A–C), for cases with low
scene reflectivity R < 0.15 with small cloud fraction and low-altitude clouds (D–F), and for cases with reflectivity values above >0.7 (G–I) that effectively corresponds to
conditions with high-altitude convective clouds. The comparisons are binned in 3 wide latitude zones: 20°N-60°N (left column), 20°S-20°N (center column) and 20°S-60°S
(right column). The mean differences and standard deviations are shown on each panel.
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FIGURE 8 | Time series of daily-average Brewer TOZmeasurements (red) and EPIC v3 daily overpasses (black) at 6 ground-based stations world-wide in 2018: (A)
Reading, United Kingdom, (B) Aosta, Italy, (C) Murcia, Spain, (D) Izana, Spain, (E) Abu Dhabi, United Arab Emirates, and (F) Hobard, Australia. The mean differences,
standard errors of the mean in DU and correlation coefficients are shown at each panel.

FIGURE 9 | A comparison of EPIC TOZ time series (black) with Pandora (red), OMI (blue) and OMPS (orange) at four ground-based stations: Buenos Aires,
Argentina (A), Comodoro, Argentina (B), Innsbruck, Austria (C), and Boulder, Colorado United States (D). The lines are a Local-Linear Least-Squares (LOESS) fit to the
data (Cleveland, 1979) equivalent to approximately a 3-months running average. The biases between EPIC and OMI (in %), indicated in each panel, are done for 3-
months averages. EPIC data had been screened as described in Earth Polychromatic Imaging Camera Total Ozone.
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Fairbanks, Alaska show a significant seasonal change where TOZ
is close to 400–450 DU in winter and then gradually dropping to
∼250 DU in the late summer - early autumn (Figure 10B). EPIC
captures these seasonal as well as smaller scale changes in TOZ
compared to both Pandora and OMI. However, at high SZA
(>70°) EPIC tends to underestimate TOZ compared to OMI. The
two instruments also see ozone variability differently at high SZA
conditions: OMI measurements are showing more small-scale
variations (blue line in Figure 10B), while the EPIC curve (black
line in Figure 10B) is smoother. This is partly because we
considered all EPIC measurements at Fairbanks, including
those from 325 nm triplet to cover winter months. These
results suggest that retrievals from the 325 nm triplet, used at
high SZA, are not just biased, but might also have less sensitivity
to real changes in ozone. Further investigations are needed to
understand the reason for reduced quality of 325 nm EPIC
retrievals. Pandora measurements in Alaska also show low
biases in summer months compared to EPIC and OMI.

Evaluation of EPIC Tropospheric Column
Ozone
To evaluate EPIC TCO we use sonde observations at multiple
stations (Figure 11). For the comparisons with sondes, we
applied corrections for the boundary layer ozone as described
in Earth Polychromatic Imaging Camera Tropospheric Ozone
Algorithm. In Figure 11 we also applied −3 DU constant
adjustment to EPIC TCO everywhere. This constant
adjustment decreases biases between EPIC and sonde TCO at
all stations. The 3 DU bias can be a result of ∼0.3% error in
317.5 nm absolute radiance calibrations of EPIC, which is
substantially below the ±1% quoted accuracy of EPIC and
OMPS calibrations. Tropospheric ozone changes significantly
with latitude and season. EPIC TCO accurately captures these
variations from one station to another with the mean biases

against independent sonde measurements of ±2.5 DU (or ∼10%).
It is important to note that there are numerous sources of errors
in the residual method used to derive EPIC TCO including
uncertainties in stratospheric ozone column, tropopause
height, cloud height. In addition, ozone sondes provide local
measurements over the station, while satellite EPIC TCO
represent gridded averages. Therefore, larger noise levels
(captured by standard deviations of differences) in these
comparisons are expected.

Figure 12 shows the monthly zonal mean EPIC TCO as a
function of time and latitude. It shows that on average TCO
values in the SH are smaller than those in the NH, in agreement
with our understanding of tropospheric ozone chemistry. The
seasonal cycle is not very strong in the SH, while it is very
pronounced in the tropics and NH. In the tropics, the seasonal
cycle in TCO peaks in September-November due largely to
lightning and biomass burning, with a minimum seen in
January-March (e.g., Sauvage et al., 2007). In the NH, the
seasonal peak varies from spring months in the tropics/
subtropics to summer months in the mid-latitudes due to
variations in combined spring-summer stratosphere-
troposphere exchange (STE) and pollution (Lelieveld and
Dentener, 2000; de Laat et al., 2005; Ziemke et al., 2006; and
references therein).

EPIC did not make observations between late June 2019 and
February 2020 due to malfunctioning of the satellite positioning
(now corrected). After measurements resumed, there were no
significant calibration changes. However, a substantial drop of
∼3–4 DU (∼5–10%) in TCO over much of the NH in spring and
summer of 2020 can be seen in Figure 12. A part of these TCO
reductions in 2020 appears to be related to the unprecedented
strong, cold, and long-lasting stratospheric polar vortex over the
Arctic in winter and spring 2019–2020 (Lawrence et al., 2020;
Manney et al., 2020) that led to substantial polar ozone losses
(e.g., DeLand et al., 2020). Ground-based ozone observations

FIGURE 10 | Comparisons of EPIC TOZ (in DU) with ground-based Pandora and satellite OMI TOZ measurements in 2018 at two locations: (A) Greenbelt, MD,
United States and (B) Fairbanks, Alaska, United States. Plots show time series of TOZ measurements derived by fitting the LOESS (equivalent to a 3-weeks moving
average) to all available EPIC (black lines), Pandora (orange) and OMI (blue) measurements at both locations. The red curve shows the average SZA for all EPIC
measurements with a scale shown on the right hand. At Greenbelt only EPIC measurements with SZA <70° were used, while at Fairbanks all available EPIC
measurements were included.
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(Steinbrecht et al., 2021) confirmed a reduction in both total and
tropospheric ozone in spring and summer 2020 attributing ∼25%
of the reduction to the 2019/2020 Arctic ozone depletion.

Another factor that potentially contributed to the observed
reduction in EPIC TCO in the NH is related to the global
COVID-19 pandemic. COVID-related measures in spring and
summer 2020 resulted in the reduction of anthropogenic
emissions including Volatile Organic Compounds (VOCs) and
NOX (NO + NO2) which are precursors for tropospheric ozone
production (e.g., Liu et al., 2020). Steinbrecht et al. (2021) found
from ozonesonde analyses about 7% reduction in tropospheric
ozone throughout the NH free troposphere in spring-summer
2020. The 2–4 DU (5–10%) reductions in zonal-mean EPIC TCO
in the NH (Figure 12) are consistent with the 7% reductions
described by Steinbrecht et al. (2021).

We also compared EPIC daily TCO with daily TCO derived
from OMI and OMPS nadir-mapper satellite instruments. For
OMI and OMPS (similar to EPIC), MERRA-2 stratospheric
columns were space-time collocated with total ozone pixel
measurements to derive TCO. Figures 13A–C show maps of
TCO on July 7, 2020, as observed by these three satellite

FIGURE 11 | Time series of EPIC (blue lines) and sonde (red squares) daily TCO in 2015–2019 at 12 ground-based locations: (A) Leginowo, Poland; (B)
Hohenpeissenberg, Germany; (C) Payerne, Switzerland; (D)Madrid, Spain; (E) Naha, Japan; (F) Hilo, United States; (G) Paramaribo, Suriname; (H) Nairobi, Kenya; (I)
Natal, Brazil; (J) Ascension Island; (K) Lauder, New Zeland; (L) Marambio, Antarctica. Mean differences and standard deviations in DU between EPIC and coincident
sonde TCO measurements are quoted in each panel.

FIGURE 12 | EPIC monthly zonal mean TCO as a function of time and
latitude. These TCO values were adjusted with CWF to account for reduced
sensitivity to the boundary layer. Results are shown with 3 DU steps.
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instruments. We note that EPIC TCO measurements in
Figure 13, as with all EPIC TCO measurements presented in
this study, include the CWF correction for the boundary layer
ozone discussed in Earth Polychromatic Imaging Camera
Tropospheric Ozone Algorithm, while OMPS and OMI TCO
have not been corrected. There is a good agreement in spatial
patterns of TCO such as increased tropospheric ozone over the
Midwest and eastern coast of the United States that extends over
the Atlantic Ocean due to extra-tropical weather variability.
There are missing data in OMI measurements caused by the
sensor’s row anomalies (i.e., seen as black bands in Figure 13B for
OMI), but similarities in global patterns are seen. Figures 13D–I
show one-to-one comparisons between EPIC TCOwith OMI and
OMPS TCO for three latitude zones (indicated). There is a good
agreement in the NH and tropics with mean biases of less than

±2 DU, but there are strong negative biases of −4 to −5 DU in the
SH with increased standard deviations. Similar negative biases
were also observed in EPIC TOZ in the SH extra-tropics with
respect to OMI and OMPS (see Figure 6) with the largest biases
in July and January of about −5 DU.

We compared coincident EPIC daily TCOwith OMI and OMPS
daily TCO over the entire EPIC operational period between June
2015 and December 2020 and calculated offsets and standard
deviations as a function of month and latitude (Figure 14). We
found that in the NH the biases are mostly positive and ranging
between 1 and 3 DU. The biases with respect to OMPS become
negative and increase at high northern latitudes. In the SH, EPIC
TCO tends to have negative biases with OMI and OMPS,
particularly in winter and summer months. A similar pattern can
be seen in Figure 6 between EPIC and OMPS TOZ. The

FIGURE 13 | The three upper color panels show daily maps of TCO (in DU) derived from EPIC (A), OMI (B) and OMPS (C) on July 7, 2020. The lower panels (D–I)
show scatter plots of EPIC TCO against coincident OMI (center row,D–F) and OMPS (lower row, (G–I)). The scatter plots are shown for three wide latitude zones: 20°N-
60°N (left column,D,G), 20°S-20°N (center column,E,H) and 20°S-60°S (right column, F,I). Themean differences and corresponding standard deviations (both in DU) are
shown in each panel along with correlation coefficients.
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comparisons are less noisy in the tropics and during mid-latitude
summer in the NH with standard deviations of 3–5 DU (10–15%).
In wintertime in the NH the noise tends to increase almost by a
factor of two up to 9 DU (or 40–50%), even though the seasonal
peak in TCO occurs during the summer. These indicate that the
main uncertainties in the tropospheric ozone detection are related to
increased errors in deriving TOZ at high SZA and reduced accuracy
of stratospheric ozone columns in wintertime. Stratospheric ozone
variability is increasingly larger in the winter hemisphere (e.g.,
Kramarova et al., 2018) as well as variations in tropopause
heights, which would result in increased uncertainties in
estimating stratospheric ozone columns from MERRA-2.

SUMMARY AND DISCUSSION

In this study we evaluated EPIC ozone products processed with the
version-3 ozone algorithm, which includes several modifications
compared to previous version 2 (Herman et al., 2018). First, an
improved geolocation of EPIC scenes is applied in Version 3 Level 1
product (Blank et al., 2021) that ensures the filters are viewing the
same geographic scene and solar/view angles are accurately estimated
for each EPIC pixel thereby reducing errors in ozone retrievals.
Second, the inclusion of simultaneous cloud-height information from
EPICA-Band (Yang et al., 2019) improves the scene pressure and the
estimated ozone amount below the cloud. We have demonstrated in
this study that the cloud correction based on the simultaneous EPIC

A-Band retrievals reduces features in the EPIC total ozone fields
imposed by cyclonic activity and does not produce systematic biases
in ozone. The third change is the addition of corrections for ozone
and temperature profile shapes in the retrieval algorithm. And finally,
version 3 includes column weighting functions and algorithm/error
flags for each observation to facilitate error analysis.

Comparisons of EPIC total ozone columns with satellite
instruments (SNPP OMPS and Aura OMI) demonstrated good
agreement with mean biases within ±5–7 DU (or 1.5–2.5%).
Outside of the tropics, biases with other satellite instruments
show seasonal variability. In the SH, EPIC shows mostly negative
biases compared to both OMI and OMPS with stronger biases
during SH summer in January. Comparisons of daily EPIC total
ozone columns with ground-based Brewer instruments at 6 sites
show good agreement between EPIC and Brewers in capturing
day-to-day variations in total ozone with consistently high
correlation (r2 > 0.9). The mean differences between EPIC and
Brewers are within the same range as with satellite observations,
and there are no obvious latitudinal patterns.

We examined EPIC tropospheric ozone columns derived by
subtracting MERRA-2 stratospheric ozone columns from EPIC
total ozone measurements and adjusted for reduced EPIC
sensitivity to the boundary layer ozone. We compared daily
TCO with matching TCO derived from ozonesondes at 12
stations over the period 2015–2019. We found that after
removing a constant 3 DU offset between EPIC and sondes
globally (at all stations) the biases in tropospheric column

FIGURE 14 | Differences (in DU) between coincident EPIC TCO daily values and those from (A) OMI and (B) OMPS over the period between June 2015 and
December 2020 shown as function of month and latitude. The positive differences are shown as solid lines in a-b, and negative as dashed lines and shaded. The
corresponding 1-sigma standard deviations of the differences with OMI and OMPS are plotted as (C–D), respectively.
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ozone are within ±2.5 DU (or ∼±10%). We found that EPIC TCO
captures latitudinal and seasonal variations in tropospheric
ozone. The 3 DU offset can be a result of ∼0.3% error in
317.5 nm absolute radiance calibrations of EPIC (note, that it
is substantially lower than the quoted accuracy, ±1%, of EPIC and
OMPS calibrations). In addition, we compared coincident EPIC
daily TCO with OMI and OMPS daily TCO over the entire EPIC
operational period between June 2015 and December 2020 and
found that biases in tropospheric column ozone have similar
magnitude and patterns to those seen in total ozone comparisons.

Analysis of time series of zonal mean EPIC TCO indicated a
substantial drop of ∼2–4 DU (∼5–10%) over much of the NH in
spring and summer of 2020, which is consistent with the 7%
reductions in tropospheric ozone from ground-based
observations described by Steinbrecht et al. (2021). A part of
this reduction is related to unprecedented Arctic stratospheric
ozone losses in winter-spring 2019/2020 and to reductions in
ozone precursor pollutants due to the COVID-19 pandemic.

In this study, wemostly used EPIC data derived from the 317 nm
triplet and limited SZA and SLA to less than 70°. Our analysis
revealed consistent biases between EPIC retrievals derived from the
two triplets (317 and the 325 nm) that cannot be explained by the
natural ozone variability.We demonstrated that the inclusion of the
325 nm EPIC retrievals led to substantial increase in systematic
biases. The EPIC ozone algorithm switches to 325 nm triplet for
conditions with high optical depth, which typically correspond to
high SZA and SLA. The exact reasons for increased errors in EPIC
ozone retrievals derived from the 325 nm triplet are under
investigation. Errors in radiance simulations with a pseudo-
correction for atmospheric sphericity at high SZAs and SLAs,
reduced sensitivity to ozone at 325 nm compared to 317 nm,
and uncertainties in absolute calibrations of the two EPIC
channels are the main factors to consider. The current exclusion
of EPIC 325 nm retrievals limits applications of EPIC data for
studying ozone variability in early morning and late afternoon
hours or at polar latitudes in months with high SZAs.
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Atmospheric Correction of DSCOVR
EPIC: Version 2 MAIAC Algorithm
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NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2University of Maryland Baltimore County, Baltimore, MD,
United States, 3Universities Space Research Association, Columbia, MD, United States, 4IEX Group, New York, NY,
United States, 5Earth and Environment Department, Boston University, Boston, MA, United States

The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate
Observatory (DSCOVR) provides multispectral images of the sunlit disk of Earth since
2015 from the L1 orbit, approximately 1.5 million km from Earth toward the Sun. The
NASA’s Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has
been adapted for DSCOVR/EPIC data providing operational processing since 2018. Here,
we describe the latest version 2 (v2) MAIAC EPIC algorithm over land that features
improved aerosol retrieval with updated regional aerosol models and new atmospheric
correction scheme based on the ancillary bidirectional reflectance distribution function
(BRDF) model of the Earth from MAIAC MODIS. The global validation of MAIAC EPIC
aerosol optical depth (AOD) with AERONET measurements shows a significant
improvement over v1 and the mean bias error MBE � 0.046, RMSE � 0.159, and R �
0.77. Over 66.7% of EPIC AOD retrievals agree with the AERONET AOD to within ± (0.1 +
0.1AOD). We also analyze the role of surface anisotropy, particularly important for the
backscattering view geometry of EPIC, on the result of atmospheric correction. The
retrieved BRDF-based bidirectional reflectance factors (BRF) are found higher than the
Lambertian reflectance by 8–15% at 443 nm and 1–2% at 780 nm for EPIC observations
near the local noon. Due to higher uncertainties, the atmospheric correction at UV
wavelengths of 340, 388 nm is currently performed using a Lambertian approximation.

Keywords: aerosol, surface reflectance, bidirectional reflectance distribution function, multi-angle implementation
of atmospheric correction, atmospheric correction, EPIC

INTRODUCTION

The Earth Polychromatic Imaging Camera (EPIC) is a 10-channel Charge Coupled Device
(CCD) onboard the Deep Space Climate Observatory (DSCOVR) satellite that orbits around the
Sun–Earth Lagrange-1 (L1) point with a distance of about 1.5 million kilometers from the Earth
(http://epic.gsfc.nasa.gov). Due to DSCOVR’s unique Lissajous orbit, EPIC provides continuous
observations of Earth’s entire sunlit surface. EPIC has a relatively coarse spatial resolution but
high temporal sampling rate as compared with polar-orbiting earth observing sensors. It
produces up to 22 daily images in boreal summer and up to 13 images in boreal winter
(Marshak, et al., 2018) giving 10–12 daytime observations over the same surface area in summer,
and 6-7 images in winter. This provides diurnal observations during times that are unavailable
from the A-train sensors (e.g., early morning and late afternoon), for instance, for climatically
important tropical regions of the world such as Amazonia where tropical convection generates
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more clouds in the afternoon. Another important feature of
EPIC is its continuous observations in the backscattering range
of angles near the “hotspot” (e.g., Gerstl, 1999). It allows
unique measurements of the sunlit part of the leaf area
index (SLAI) for vegetation. As the rate of photosynthesis is
different for leaves under the direct and diffuse sunlight,
knowledge of this parameter is important to modeling of
the global bio-productivity (Yang et al., 2017).

EPIC acquires images in 10 narrowband channels, 317, 325,
340, 388, 443, 551, 680, 688, 764 and 779 nm, using 2048 ×
2048 pixel CCD camera. The measurements are 2 × 2 pixels
aggregated onboard except for the blue (443 nm) band. The
standard calibration of the EPIC’s raw imagery includes the
dark, latency, temperature, stray-light and flat-field
corrections (Cede et al., 2021). To track the post-launch
changes and on-orbit trending of calibration, the EPIC’s
calibration is continuously updated using the underflight
comparisons with other Earth observing instruments, e.g.,
Moderate Resolution Imaging Spectroradiometer (MODIS),
Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone
Mapping and Profiler Suite (OMPS) on Suomi National Polar-
orbiting Partnership (SNPP) satellite etc. (e.g., Geogdzhayev
and Marshak, 2018; Herman et al., 2018; Doelling et al., 2019;
Geogdzhayev et al., 2021).

To provide atmospheric correction of EPIC data over
land, we adapted the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) algorithm originally
developed for MODIS (Lyapustin et al., 2011a, Lyapustin
et al., 2011b; Lyapustin et al., 2012; Lyapustin et al., 2018).
The version 1 (v1) MAIAC EPIC Level 2 dataset was released
in May 2018 and is available from the Atmospheric Science
Data Center (ASDC) at NASA Langley Research Center
(https://doi.org/10.5067/EPIC/DSCOVR/L2_MAIAC.001).
This initial version used a global Sinusoidal projection with
gridded products at 10 km resolution. It also used a
simplified Lambertian model to perform atmospheric
correction.

The goal of this paper is to present an updated v2 MAIAC
EPIC algorithm which recently completed re-processing of the
EPIC record of measurements since 2015 based on improved v3
geolocation (Blank et al., 2021). The important v2 MAIAC
updates include 1) a switch from global to regional (rotated)
Sinusoidal projection which minimizes spatial distortions; 2)
replacing approximate Lambertian atmospheric correction with
more rigorous algorithm based on ancillary bidirectional
reflectance distribution function (BRDF) database from
MAIAC MODIS; 3) a new algorithm to simultaneously
retrieve aerosol optical depth (AOD) and spectral absorption
over land (Lyapustin et al., 2021a). The current paper focuses on
cloud detection, aerosol retrieval and atmospheric correction over
land, and provides the list of reported data products. Below,
Gridding describes the v2 MAIAC gridding approach for EPIC.
Cloud Detection, Aerosol Retrieval Over Land, and Atmospheric
Correction Over Land provide technical details about cloud
screening, aerosol retrievals and implemented atmospheric
correction. The paper is concluded with a summary in
Concluding Remarks.

GRIDDING

Gridding allows MAIAC to 1) track the same grid cell over time;
and 2) store and dynamically update surface-related information
for each grid cell for the cloud detection and aerosol retrievals.
MAIAC stores spectral surface BRDF information (see Retrieving
Bidirectional Reflectance Distribution FunctionModel Parameters);
3 × 3 standard deviation at 0.44 and 0.68 μm characterizing local
surface heterogeneity; normalized difference vegetation index
(NDVI); surface reflectance spectral ratio or spectral regression
coefficient (SRC); and spectral water leaving reflectance over the
ocean. This local information is updated with the rate of EPIC’s
cloud-free observations. Due to computer memory and
computational power constraints, the global image is divided
into eight 1000 × 1000 pixel tiles (Figure 1). Each tile is
processed independently and in parallel with others to achieve
optimal computational performance. The data are gridded to
10 km resolution which is close to the nadir resolution of the
443 nm channel and oversamples all other bands.

The v1 MAIAC EPIC used a global Sinusoidal projection
(Figure 1, left). This is an equal area projection which is an
important property for the land analysis and applications. A
serious limitation of this projection is the geographic distortions
which grow away from the Greenwich meridian and equator. We
introduced a rotated Sinusoidal projection (Figure 1, right) in v2
MAIAC EPIC. It is the same Sinusoidal projection rotated 90°

four times to represent an entire landmass as well as the global
ocean with significantly reduced distortions. There is a certain
overlap between tiles, for instance Alaska can be found at the edge
of tile 03 and near center of tile 02. The new projection keeps an
equal area property, reduces geographic distortions, and can be
easily re-projected to any standard projection without loss of
information. It also keeps the same total number of pixels by
filling in the significant empty space in the global Sinusoidal
projection. For convenience, we offer data users a global mask of
pixels with best representation (minimum distortions) to address
the problem of overlap.

CLOUD DETECTION

MAIAC EPIC cloud mask algorithm consists of a group of tests that
are designed to detect clouds with different spectral/spatial
characteristics from the clear-sky conditions. As MAIAC does not
require cloud type information, the cloud tests are applied
sequentially, and the processing is terminated once cloud is detected.

Brightness Test
The brightness test aims to detect optically thick bright clouds
that have a high albedo in the visible spectrum. A pixel is masked
as cloud if the measured reflectance (Rm) exceeds the theoretical
value at maximal AOD � 6 of the MAIAC look-up table (LUT) at
a given view geometry (Rmax) with a certain threshold:

Rm >Rmax + Thresh (1)

The threshold is 0.1 over bright Sahara region and 0.05
otherwise. The brightness test uses the EPIC blue channel
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(443 nm), where the surface is generally dark, and the reduction
of TOA reflectance by absorbing aerosols (smoke/dust) and the
difference in reflectance with non-absorbing clouds is maximal
compared to longer wavelengths.

Spatial Variability Test
In general, clouds exhibit a larger spatial variance than aerosol
and the ocean surface. The spatial variance test computed using
3 × 3 pixel window has been a standard technique for cloud
detection over the ocean at moderate resolution ∼1 km (e.g.,
Martins et al., 2002). Based on simulated EPIC observations from
1 km MODIS data, we selected the spatial variance threshold of
0.005 which achieves a reasonable balance between cloud filtering
and fraction of clear pixels.

Over land surfaces, using a global threshold is problematic
due to spatial variability of the land surface reflectance, in
particular over bright deserts, in the urban regions and over
agricultural areas. Working with gridded data, MAIAC keeps
memory of the 3 × 3 standard deviation (σ) for each 10 km
grid cell derived in cloud-free and low aerosol conditions.
Similar to MAIAC MODIS, σ is computed for the red and
blue bands and updated on cloud-free days from observations
closest to nadir, when the observation footprint is minimal
and spatial variance from surface is maximal. The
implementation for EPIC follows test (C.4) in Lyapustin
et al. (2018).

High Cloud Test
Detection of optically thin high clouds relies on EPIC
measurements in the oxygen A-band. While this signal is low
in cloud-free conditions due to absorption by molecular oxygen,
presence of high clouds creates a relatively strong signal.
Detection of high clouds employs a reflectance ratio
measurement of oxygen A-band to the window channel
(780 nm) divided by a theoretical reflectance ratio for surface
elevation (Z) (Zhou et al., 2020):

Rmeas
764 /Rmeas

780

Rtheo
764 (Z)/Rtheo

780 (Z) �
exp(−mτO2A)

exp( −mτO2A,Z)
(2)

where τO2A and τO2A,Z are optical depth values due to O2

absorption from the measured ratio and from the theoretical
LUT, respectively, and m � 1/μ0 + 1/μ is an atmospheric airmass
factor depending on cosines of solar (μ0), and view (μ) zenith

angles. A simple threshold-based approach is then used for high
cloud detection: the pixel is considered cloudy if
τO2A,Z − τO2A> 0.056.

Similarly to MAIAC MODIS, the above tests only serve for an
initial cloud screening. The cloud mask is significantly enhanced
following aerosol retrievals by limiting the small-scale spatial
variability of AOD, and during the atmospheric correction
through comparison of spectral reflectance with the predicted
values based on the BRDF model.

AEROSOL RETRIEVAL OVER LAND

Aerosol Models
Following MAIAC MODIS Collection 6 algorithm, we are using
eight prescribed regional aerosol models to represent variability
of aerosol properties over global land. Geographic distribution
and model parameters are provided in Lyapustin et al. (2018,
Figure 4 and Table 1).

One known issue in MAIAC C6 was underestimation of
AOD for the biomass burning aerosol at high AOD (e.g.,
Lyapustin et al., 2018; Schutgens et al., 2020; Sogacheva
et al., 2020). As a remedy, in MODIS MAIAC C6.1 we
adjusted the model parameters at AOD>0.6 based on the
regional climatology analysis of the AERONET (Holben
et al., 1998; Giles et al., 2019; Sinyuk et al., 2020) record.
Similarly, to correct the known low bias of the mineral dust
AOD over Western Sahara, we introduced a new
corresponding region with the more absorbing dust model.
These amendments are used in the v2 MAIAC EPIC and will be
described in detail elsewhere.

Aerosol Retrieval Algorithm
MAIAC processing uses the ancillary NCEP ozone and column
water vapor information. The over ocean processing also uses the
NCEP wind speed.

Retrieval of SRC is a central component of MAIAC: it
provides separation of the surface and atmospheric signals in
the TOA measurements, and is required for aerosol retrievals.
Because EPIC lacks the 2130 nm channel used in MAIAC
MODIS, we define SRC as the ratio of the surface reflectance
in Blue to Red (SRC � ρL,Blu/ρL,Red) bands. Reflectance ρL,λ is a
Lambertian reflectance resulting from the Rayleigh

FIGURE 1 | (left)Global Sinusoidal projection in v1MAIAC, and (right)Rotated Sinusoidal projection with global land cover types in v2MAIAC EPIC algorithm. Also
shown are the respective tiling systems.
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atmospheric correction with low background aerosol. SRC is
obtained as a minimum value over the 2-month period of
time. Following Lyapustin et al. (2018), we are using two
independent lines of update, shifted by 1 month. Thus, the
SRC is dynamically updated at least every month or more
frequently if a new minimum value is found. SRC is
characterized in 4 bins in cosine of the solar zenith angle
1–0.9, 0.9–0.7, 0.7–0.45, and 0.45–0.2. The SRC for the
morning and the afternoon observations is separate
because of the change in geometry at a near-constant
scattering angle, e.g., depending on the part of the orbit,
the view zenith angle (VZA) may be higher than the solar
zenith angle (SZA) in the morning but symmetrically lower in
the afternoon and vice versa.

The AOD is obtained by matching the observed and
theoretical TOA reflectance at 443 nm based on the look-up
table. The surface reflectance ρB is evaluated from the
atmospherically corrected ρL,Red (AOD) at 680nm, ρL,Blu �
SRC*ρL,Red. This AOD is derived using the corresponding
regional background aerosol models. When derived AOD is
high (>0.6) and absorbing smoke or dust is detected, the v2
MAIAC runs a separate inversion of UV-vis observations
providing AOD and spectral aerosol absorption (Lyapustin
et al., 2021a, this issue).

At high altitudes (over 3.5 km, e.g. Tibetan plateau) where
AOD is generally very low and MAIAC AOD retrievals do not
have sufficient accuracy, we assume a fixed climatology AODmin �
0.02 for the atmospheric correction.

AERONET AOD Validation
To assess accuracy of AOD retrieval, we conducted AERONET
validation for 2015–2020 using level 2.0 AERONET version 3
data (Giles et al., 2019). The comparison uses EPIC AOD at
443 nm averaged over the 5 × 5 pixels window (50 km) with
AERONET data selected within 30 min from the satellite
observation. The EPIC data were filtered according to the Sun
and view zenith angles less than ∼63° and at least 50% coverage in
the spatial window.

The validation results are presented in Figure 2. The site-level
global statistics shows the correlation coefficient (R), root mean
square error (RMSE) and the mean bias error (MBE,
MAIAC–AERONET). MAIAC shows a good retrieval
accuracy, with R ≥ 0.7–0.8 and low RMSE and MBE, over
vegetated parts of the world including North and South
America, north-central Eurasia and Oceania. AOD is generally
overestimated over bright surfaces such as western United States
and Australia. Such bias is typical for aerosol products based on a
single-view satellite measurement, and it is exacerbated for EPIC
due to unfavorable view geometry near the backscattering
direction. The underestimation of AOD is obvious in regions
of strong biomass burning, including central Africa, Indo-
Gangetic plain and south Asia. Similar to the bias, the RMSE
is generally low globally with the exception of the major dust and
biomass burning aerosol source regions which also have a much
higher annual average AOD. The correlation is generally high in
regions with higher magnitude and variability of AOD. On the
contrary, the low correlation is observed over regions with low

FIGURE 2 | Global AERONET validation of MAIAC EPIC AOD at 443 nm. The geographic distribution of the site-level results is displayed for the regression
coefficient (R), root mean square error (RMSE) and the mean bias error (MBE). The two scatterplots show the summary validation using all AERONET sites (A) and its
subset with 12 bright sites (see Aeronet AOD Validation) excluded.
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aerosol loading and low natural variability, such as Australia or
south of the South American continent.

The two scatterplots on the right summarize the global validation
analysis. The left one 1) shows all AERONET sites. On the right
scatterplot (b), we excluded 11 bright surface sites over the Western
United States (Bakersfield; Goldstone; KeyBiscayne; Neon_ONAQ;
Railroad Valley; Sandila_NM_PSEL; TableMountain_CA; Tucson;
UACJ_UNAM_ORS; White_Sands_HELSTF; Yuma) and one site
over Australia (Birdsville). These sites are located in arid regions with
low AOD and low AOD variability where MAIAC EPIC
overestimates AOD and shows low R-values. Due to low
cloudiness, these sites also contribute a disproportionate ∼9% of
the total matching points. Considering the right scatterplot as a
baseline, MAIAC shows an overall correlation of 0.77 with RMSE ∼
0.159 and a mean bias of 0.046. Over 66.72% ofMAIAC EPIC AOD
agree with AERONET within the expected error (EE) of ±(0.1 +
0.1AOD). The v2 shows an improvement over v1 which had a global
statistics of R � 0.69, RMSE � 0.17, MBE � 0.03 (unpublished).

ATMOSPHERIC CORRECTION OVER LAND

Following cloud detection and aerosol retrieval, the atmospheric
correction (AC) algorithm derives spectral surface reflectance and
updates the Ross-Thick Li-Sparse (RTLS, Lucht et al., 2000)
BRDF model parameters,

ρ(μ0, μ,φ) � kL + kVfV(μ0, μ,φ) + kGfG(μ0, μ,φ) (3)

Here, volumetric (fV) and geometric-optics (fG) kernels are
functions of the view geometry, and pixel-specific weights (kL, kV,
kG) describe different BRDF shapes. To account for the surface
reflectance increase in the backscattering view geometry of EPIC,
the volumetric kernel is multiplied by the hot-spot factor as
suggested by Maignan et al. (2004) based on POLDER
observations.

Atmospheric Correction: MAIAC Scaling
Approach
The v1 MAIAC EPIC algorithm used a Lambertian model for
the atmospheric correction, where the surface reflectance is
derived from the following approximation to the TOA
reflectance:

FIGURE 3 | The monthly average RGB surface BRDF for February (left) and July (right) of 2016 from MAIAC MODIS MCD19A3 product.

FIGURE 4 | Analysis of different schemes of atmospheric correction of
EPIC over North America on June 13, 2020. The first and second columns
show the EPIC’s TOA and atmospherically corrected RGB BRF images.
Columns 3–6 show the relative difference between anisotropic BRF and
Lambert (ρL) reflectance (BRF-ρL/ρL)×100% in the Blue and Red bands, where
BRF was computed using the scaling (S) and the “direct term” (D) methods.
The last column displays the cosine of the solar zenith angle.
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RTOA(μ0, μ,φ) ≈ RA(μ0, μ,φ)

+ ρTd(μ0)T
u(μ)/(1 − sρ), ρ ≡ ρ(μ0, μ,φ) (4)

Eq. 4 only requires the knowledge of atmospheric (path)
reflectance (RA), upward (Tu) and downward (Td) atmospheric
transmittance as functions of the cosines of Sun (μ0) and view (μ)
zenith angles and relative azimuth (φ), and spherical albedo of
atmosphere (s). In the EPIC view angles near the hotspot where
surface is brighter than in the other directions, the Lambertian
approximation underestimates the surface reflectance (e.g., Wang
et al., 2010). An analysis of Lambertian biases was recently given
by Lyapustin et al. (2021b) based on a comparison between the
two MODIS surface reflectance products, the standard surface
reflectance (SR) MOD09 based on Lambertian assumption, and
the bidirectional reflectance factors (BRF) of algorithm MAIAC
(MCD19A1).

The MAIAC atmospheric correction uses a rigorous
expression for the TOA reflectance. Taking advantage of
linearity of the RTLS function, it represents the TOA
reflectance explicitly using weights of the RTLS model:

RTOA(μ0, μ,φ) �RA(μ0, μ, φ) + kLF
L(μ0, μ) + kVF

V(μ0, μ,φ)

+ kGF
G(μ0, μ,φ) + Rn1(μ0, μ)

(5)

Here, F-functions are integrals of the atmospheric path
radiance incident on surface and atmospheric Green’s function
(Lyapustin and Knyazikhin, 2001) with respective kernels of the
RTLS model. Rnl is a weakly non-linear function of the surface
reflectance, describing multiple light scattering between the
surface and the atmosphere. The F-functions and Rnl are
computed analytically using eight primary functions which are
stored in the MAIAC LUT (e.g., Lyapustin et al., 2011a). For the
purpose of atmospheric correction, let us re-write Equation 5 as
follows:

RTOA(μ0, μ,φ) � RA(μ0, μ, φ) + cRSurf(μ0, μ,φ) (6)

where RSurf is a surface-reflected term combining the last four
terms of Eq. 5, and c ≡ cλ is a spectrally dependent scaling factor.
The RSurf is computed using the BRDF model parameters stored
in MAIAC memory for each grid cell (e.g., 1 km for MODIS and
10 km for EPIC). Then, the BRF is given by a scaled value:

rλ � cλRTLSλ(μ0, μ,φ) (7)

where RTLSλ is the BRDF model value for a given geometry.
Because RSurf is a nonlinear function of the surface reflectance,
solving eqs. (6) and (7) takes 2 iterations (see Lyapustin et al.,
2018, p. 5753).

Implementing rigorous atmospheric correction given by Eqs.
(6) and (7). requires knowledge of the entire BRDF shape to
correctly represent surface reflection of the direct Sun beam and
of the diffuse (sky) light. In v2 MAIAC EPIC, we used the global
Collection 6 MAIAC MODIS 1 km BRDF product MCD19A3 to
develop an ancillary BRDF dataset for the EPIC 10-km grid from
the closest MODIS channels. The AC based on Eqs. (6) and (7).
uses scaling approach and only requires knowledge of the relative

BRDF shape rather than the absolute reflectance. For this reason,
the wavelength difference between the EPIC and MODIS
channels is not important as long as the land surface
reflectance among the paired channels, and thus the BRDF
shape, remain similar. The ancillary 10 km BRDF for EPIC
was created for every month starting in 2015. Figure 3
illustrates the global RGB BRDF for nadir view and Sun at 45°

for January and July of 2016.
Figure 4 gives an example of atmospheric correction based on

scaling (S) in the Blue and Red bands in columns 3 and 5,
respectively. The result is shown as an excess of anisotropic over
the Lambertian reflectance (BRF-ρL)/ρL (%). In agreement with
theory, the difference is lowest when the Sun is near zenith, and it
grows with the atmospheric airmass factor. It also increases with
the total atmospheric optical thickness from NIR to Blue, for
instance from ∼3% at 780nm, ∼10% at 680nm to 60–80% at
443 nm at high Sun/view zenith angles (μ0,μ ∼ 0.2). While this
pattern agrees with theoretical expectations in general, the strong
increase of BRF at high zenith angles, in particular at 443nm, does
not seem realistic.

Atmospheric Correction: Separation of the
Direct and Diffuse Reflectance
The scaling approach Eqs. (6) and (7) assumes that the BRDF
model gives a good description of the surface reflectance at the
angles of satellite observations. In this case, direct and diffuse
surface-reflected signals at the TOA can be scaled using the same
multiplier c. This approach works for MAIAC MODIS where the
BRDF represents the view geometry sampled by MODIS. The
ancillary MODIS BRDF was derived for the range of SZA
observed near the local noon around 10:30 am (Terra) and 1:
30 pm (Aqua) equatorial crossing time. Thus, it can be considered
representative of the EPIC’s view geometry within about ±2 h of
the local noon. Outside of that range, at higher SZA both earlier in
the morning and later in the afternoon, the MODIS BRDF can
still be used to compute the reflection of the diffuse sky irradiance
assuming BRDF reciprocity, at least for the range of SZA agreeing
with the VZA range of MODIS, ∼0–62° accounting for the Earth’s
curvature. However, it cannot represent correctly the direct TOA
reflectance ρ(μ0,μ,φ)exp(−mτ), where τ is an atmospheric optical
depth, as MODIS does not make measurements at higher SZAs
near the hotspot.

In this case, we can single out the direct reflectance in Eq. 6:

RTOA(μ0, μ,φ) �RA(μ0, μ,φ) + ρ(μ0, μ,φ)e
−mτ

+ gλR
Dif(μ0, μ,φ)

(8)

where the diffuse component of the surface-reflected signal at
TOA is:

RDif(μ0, μ,φ) � RSurf(μ0, μ,φ) − RTLS(μ0, μ,φ)e
−mτ (9)

Above, ρ is the true surface BRF, and RDif and RTLS are
computed with the ancillary MODIS BRDF. The gλ is the spectral
adjustment factor designed to account for the surface reflectance
difference from the spectral shift between the paired EPIC -
MODIS channels, e.g., for the Blue (443/465.5 nm), Green
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(555/553.5 nm), Red (680/644.9 nm) and NIR (779.5/
855.6 nm) EPIC/MODIS center wavelengths, respectively. For
each 10 km pixel, we compute the spectral adjustment factor gλ
using scaling atmospheric correction (Eqs. (6) and (7) near the
local noon (within Δμ0 of ±0.1) where MODIS BRDF should be
valid for both direct and diffuse terms, as we discussed above. In
this case, gλ is equivalent to the scaling factor cλ. The gλ is
computed daily for each cloud-free 10 km grid cell at low AOD
and is stored in MAIAC memory until updated with the next
retrieval. Such approach allows us to evaluate the diffuse reflected
term using the ancillaryMAIACMODIS BRDF, and compute BRF
(ρ) from the direct reflected term in Eq. 8.

The described “direct term” (D) algorithm is more generic
than the scaling approach. The resulting BRFD (columns 4 and
6 of Figure 3 for the Blue and Red bands, respectively) can be
compared to the scaling BRFS in Figure 4. BRFD shows a more
constrained increase over the Lambertian reflectance up to
SZA∼70° which grows only to ∼35% in the Blue band instead of
∼60–80% for the scaling approach. Importantly, the
anisotropic enhancement (of the Lambertian reflectance)
remains nearly constant in the range of SZA∼0–60°, though
the uncertainty Δρ increases at high EPIC SZA/VZA. The
uncertainty is twofold: it is related to both the aerosol retrieval
uncertainty (Δτ) and to the uncertainty in the diffuse signal
RDif introduced by the MODIS BRDF (ΔRTLS) which was
defined for a relatively narrow range of SZA values of MODIS
Terra and Aqua at a fixed overpass time, and the limited range
of VZA≤62°. Moreover, while working well in the range of
SZA/VZA∼60°, the RTLS BRDF model has the problem of
unconstrained growth of both geometric-optics and
volumetric kernels at higher SZA/VZA, proportionally to a
combination of terms 1/μ0, 1/μ (e.g., Gao et al., 2000). Finally, a
significant uncertainty is related to the increase of the EPIC’s
footprint with VZA faster than 1/μ while the ancillary BRDF
generated from 1 km MODIS still closely represents the 10 km
grid box. For these reasons, the atmospheric correction
problem (Eqs. (6) and (7) at high zenith angles becomes ill-
posed and poorly constrained, with an exponential
propagation of uncertainties:

Δρ(μ0, μ, φ) ∼ −emτ{ΔRA(Δτ) + gλR
Dif(Δτ,ΔRTLS)} (10)

Atmospheric Correction for EPIC
The above analysis showed limitations of both scaling and the
“direct term” atmospheric correction methods, in particular at
high SZA/VZA. The main limitations stem from the limited
angular sampling of EPIC prohibiting deriving the self-
consistent BRDF model in the full hemisphere of angles of
incidence and reflection, and from the growing uncertainties
of the ancillary MODIS BRDF model at high SZA/VZA in
application to EPIC. Both Lambertian and scaling algorithms
reproduce well the spatial pattern and the RGB color of the EPIC
TOA images while, respectively, underestimating and
overestimating the true BRF, especially at high zenith angles.
The “direct term” algorithm shows rapidly growing
uncertainties at high zenith angles. As it depends on the

absolute ancillary BRDF model, this approach is also prone
to spatial and spectral distortions in the resulting RGB BRF
images. At the same time, this algorithm provides a realistic
more constrained BRF increase over the Lambertian value, and a
near-constant u � BRF/ρL ratio in the wide range of zenith
angles up to ∼50–60°. This ratio fully agrees with the BRF/ρL
ratio of the scaling method evaluated for the observations near
the local noon.

Given these findings, the MAIAC EPIC v2 AC approach in
RGB and NIR bands is implemented as follows:

- Compute the Lambertian reflectance (ρL,λ) from Eq. 4;
- Compute BRF as ρ(μ0,μ,φ) � ρL,λuλ;
- The anisotropic conversion factor uλ is derived from
“scaling” BRFS, uλ � BRFS/ρL,λ, computed near the local
noon where the scaling approach is valid. It is updated daily
from the cloud-free observations near the local noon (within
Δμ0 of ±0.1) and is stored in MAIAC′ memory for each
10 km grid cell.

The anisotropic conversion factor near the local noon gives the
increase over the Lambertian reflectance from 1–2% at 780 nm to
8–15% at 443 nm. The uncertainty of the reported BRF is low for
the EPIC observations near the local noon, and it is expected to
significantly increase at zenith angles above ∼60°. The selected
empirical AC approach is fast and does not create spectral
distortions, but it probably underestimates BRF at higher
zenith angles. In near future, we plan to further explore both
“scaling” and the “direct term”AC algorithms using BRDFmodel
from the geostationary satellites which provide the full range of
the solar zenith angle variations.

The MAIAC v2 algorithm reports both ρL and BRF reflectance
values in the RGB and NIR channels. In the UV, where
uncertainties are the largest, only the Lambertian reflectance is
reported.

Figure 5 gives an example of atmospheric correction for
the 1-month period of June 2–July 2, 2020, for a single 10 km
bright surface grid cell in Arizona, United States. The derived
surface reflectance displays a well-reproducible daily pattern
in the visible–near infrared with surface reflectance
increasing with SZA. The strongest growth is observed in
the NIR in agreement with (Marshak, 2021). The pattern
becomes less certain at UV wavelengths: the SR points tend to
cluster within about ±0.01 of the mid-day value with
occasional high and low outliers at both 388 and 340 nm
wavelengths. On average, the AC produces a correct pattern
with ρ340<ρ388 at μ,μ0 above ≈0.6 (53°), and unstable result at
higher SZA/VZA. This result is rather systematic and holds
over both bright and dark vegetated surfaces. As the
uncertainty in the UV SR rapidly grows with the airmass
factor, the most accurate SR values at 340 and 388 nm are
reported near the local noon.

Retrieving BRDF Model Parameters
Following computation of BRF, MAIAC proceeds with
calculation of the RTLS parameters (K-coefficients) using the
multi-angle dataset accumulated in the MAIAC Queue memory
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for each grid cell (up to 40 observations). This retrieval is
performed for the four visible and near-IR bands only. After
inversion, the new BRDF goes through several tests verifying
“correctness” of its shape, and its consistency with the previous
solution (Lyapustin et al., 2012). Figure 6 shows the daily BRF
pattern (dots connected by solid lines) in the Blue-NIR EPIC
bands for the pixel displayed in Figure 5 on two different days in
June of 2020. The best-fit BRDF model is shown by the dashed
lines. While the BRDF model error can reach several absolute
percent of reflectance at high zenith angles, the typical rmse of the
fit is low, within ∼0.001–0.002.

It should be mentioned that the derived BRDF model
describes only the range of the EPIC observations within
4–12° from the backscattering direction, and is not
representative of the general BRDF shape. A failure of the
DSCOVR gyroscopes in late June of 2019 led to EPIC
being placed in a safehold mode till March of 2020.
This period was required to find the engineering solution
for the satellite navigation using startrackers and update
the geolocation algorithm. After resuming operation, the
DSCOVR orbit became less constrained and allows the range
of angles ∼2–12° from the exact backscattering since
March 2020.

CONCLUDING REMARKS

This paper described the version 2 MAIAC land algorithm
developed for processing of the DSCOVR EPIC data. The full
MAIAC processing includes cloud detection, aerosol retrieval and
atmospheric correction over both land and ocean.

Following MODIS, the standard MAIAC aerosol retrieval uses
the regional background aerosol models to derive AOD. A global
validation of AOD using AERONET for the period of 2015–2020
shows the overall good performance with R � 0.77, RMSE � 0.159,
andMBE � 0.046. The v2 shows an improvement over v1MAIAC
(R � 0.67, RMSE � 0.17) and compares favorably to MAIAC
MODIS Collection 6 (R � 0.84, RMSE � 0.12, MBE � 0.01
(Lyapustin et al., 2018)) despite coarse spatial resolution and
the backscattering view geometry. The positive bias of v2 MAIAC
EPIC mostly comes from the retrievals over bright surfaces.

In cloud-free conditions, the retrieved AOD along with the
ancillary NCEP ozone and water vapor information is used for
the atmospheric correction of EPIC. MAIAC v2 reports AC
results using both Lambert and anisotropic SR models. The
Lambert model systematically underestimates SR in the EPIC’s
view geometry. The anisotropic atmospheric correction uses the
ancillary monthly BRDF database based on MAIAC MODIS C6

FIGURE 5 | The time series of surface reflectance in EPIC’s UV-vis-NIR bands over the bright pixel in Arizona, United States, in June–early July of 2020. The bottom
plot shows cosine of solar zenith angle and retrieved AOD at 443 nm. The x-axis counts consecutive EPIC observations from June 2 through July 2 of 2020.
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RTLS BRDF. The uncertainties of anisotropic AC come from very
different view geometries of MODIS and EPIC which overlap
only for EPIC observations near the local noon. For this reason,
the standard MAIAC scaling AC algorithm works only for the
range of EPIC observations near the local noon. On the other
hand, BRF retrieval from the direct surface-reflected term show a
stable (BRF-ρL)/ρL ratio in the wide range of EPIC’s SZA. This led
us to adapt a simple AC approach in the vis-NIR bands by
upscaling the Lambertian SR, where the scale factor is computed
from the EPIC observations near the local noon. At low to
moderate AOD, the typical (BRF-ρL)/ρL ratio near the local
noon is ∼1–2% in the NIR, and ∼8–15% in the Blue EPIC bands.

Due to higher uncertainties, the AC in the UV uses the
Lambertian model. It produces rather consistent results with
uncertainty of about ±0.01 or less for Sun/view zenith angles
less than ∼53°, with most reliable retrievals near the local noon. At
higher zenith angles, the UV SR may become unstable.

Over land, the MAIAC EPIC product suite includes the
background model AOD at 443 and 550 nm, Lambert surface
reflectance at 340, 388, 443, 551, 680 and 780 nm, and BRF and
the BRDF model parameters for the RTLS model at 443, 551, 680

and 780 nm. It is important to note that the BRDF model is only
relevant for the near hot-spot cone of the scattering angles
observed by EPIC, although it covers the full range of
variation in the Sun and view zenith angles. The reported
spectral BRF is used as an input for Level 2 Vegetation Earth
System Data Record (VESDR) (Yang et al., 2017; NASA/LARC/
SD/ASDC-VESDR, 2021).

Over water, MAIAC data products include AOD, fine mode
fraction (FMF) and Angstrom exponent, and “ocean color”
(water-leaving reflectance) at 340, 388, 443, 551, 680 and 780 nm.

For detected absorbing smoke and dust aerosols, the v2
MAIAC retrieves AOD and spectral imaginary refractive index
characterizing aerosol absorption from EPIC’s UV-vis
measurements. This capability was described in Lyapustin
et al. (2021a). In this case, the v2 MAIAC reports AOD, single
scattering albedo (SSA) at 443 nm, spectral absorption exponent
(SAE) and imaginary refractive index at 680nm, and the goodness
of fit for two effective heights of aerosol layer at 1 and 4 km.

The daily rate of global MAIAC retrievals ranges on average
from 15 to 27%, reaching maximum during the boreal summer.
This number is a proxy of the global cloud- and snow-free
fraction of the Earth. The MAIAC product is distributed as
compressed HDF5 files. The lossless compression gives
approximately a 10-fold reduction of the file size, resulting in
an average size of ∼30 Mb.

The re-processing of version 3 EPIC L1B dataset for
2015–June 2021 with v2 MAIAC algorithm has been
completed. The MAIAC EPIC products will soon be available
for downloading from the Atmospheric Science Data Center
(ASDC) at NASA Langley Research Center.
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FIGURE 6 | An example of the retrieved BRF (dots connected by solid
lines) and the best-fit BRDF model (dashed lines) for the bright surface pixel
displayed in Figure 5. The BRF and BRDF are shown for 2 different days in
June of 2020 in RGB bands (in respective color) and in the NIR (in
brown). The SZA is positive in the morning, and negative in the afternoon.
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Lagrange Point Missions: The Key to
next Generation Integrated Earth
Observations. DSCOVR Innovation
Francisco P. J. Valero1*, Alexander Marshak2 and Patrick Minnis3

1Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States, 2Goddard Space Flight
Center, Greenbelt, MD, United States, 3Science Systems and Applications, Inc., NASA Langley Research Center, Hampton, VA,
United States

A new perspective for studying Earth processes has been soundly demonstrated by the
Deep Space Climate Observatory (DSCOVR) mission. For the past 6 years, the first Earth-
observing satellite orbiting at the Lagrange 1 (L1) point, the DSCOVR satellite has been
viewing the planet in a fundamentally different way compared to all other satellites. It is
providing unique simultaneous observations of nearly the entire sunlit face of the Earth at a
relatively high temporal resolution. This capability enables detailed coverage of evolving
atmospheric and surface systems over meso- and large-scale domains, both individually
and as a whole, from sunrise to sunset, under continuously changing illumination and
viewing conditions. DSCOVR’s view also contains polar regions that are only partially seen
from geostationary satellites (GEOs). To exploit this unique perspective, DSCOVR
instruments provide multispectral imagery and measurements of the Earth’s reflected
and emitted radiances from 0.2 to 100 µm. Data from these sensors have been and
continue to be utilized for a great variety of research involving retrievals of atmospheric
composition, aerosols, clouds, ocean, and vegetation properties; estimates of surface
radiation and the top-of-atmosphere radiation budget; and determining exoplanet
signatures. DSCOVR’s synoptic and high temporal resolution data encompass the
areas observed during the day from low Earth orbiting satellites (LEOs) and GEOs
along with occasional views of the Moon. Because the LEO and GEO measurements
can be easily matched with simultaneous DSCOVR data, multiangle, multispectral
datasets can be developed by integrating DSCOVR, LEO, and GEO data along with
surface and airborne observations, when available. Such datasets can open the door for
global application of algorithms heretofore limited to specific LEO satellites and
development of new scientific tools for Earth sciences. The utility of the integrated
datasets relies on accurate intercalibration of the observations, a process that can be
facilitated by the DSCOVR views of the Moon, which serves as a stable reference. Because
of their full-disc views, observatories at one or more Lagrange points can play a key role in
next-generation integrated Earth observing systems.
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INTRODUCTION

Satellite remote sensing of the Earth has long relied on
instruments aboard platforms in either low-Earth orbits (LEO,
∼500–2000 km altitude) or geostationary orbits (GEO, at
∼36,000 km). Although they can produce high-resolution
views, LEOs can only scan a small portion of the surface at a
given time, while a GEO can provide temporally continuous,
though lower-resolution observations of a significant, though
incomplete and unchanging portion of the Earth’s disk. The
entire disk of the planet can only be observed at the same
time from a single platform at a great distance, such as the
Lagrange points at ∼1.5 million km, the Moon, or in transit to or
from another heavenly body. The placement of satellites around
the Lagrange L1 and L2 points was considered early in the satellite
era by Farquhar (1960, 1968). The “Blue Marble” images of the
Earth taken by the 1972 Apollo 17 spacecraft crew on their way to
the Moon inspired then Vice President, Al Gore, in 1998 to
propose to NASA a mission named Triana that would produce a
continuous movie-like view of the Earth from L1 for
dissemination via television and the internet as an inspiration
and educational tool. Later that year, NASA issued a “request for
proposals” to scientifically exploit the unique orbit of Triana.
Thus, began the long and hard-fought battle for the Triana
spacecraft, renamed the Deep Space Climate Observatory
(DSCOVR) in 2003 (Valero, 2006), to reach the L1 position.

After traversing the customary stringent scientific peer-review
process with nine other submissions, the winning proposal,
authored by a team of scientists from several academic,
government and private institutions led by the Scripps
Institution of Oceanography, University of California, San
Diego1, would enhance the solar-viewing instruments on the
Triana spacecraft with two new Earth-viewing instruments.
Work to transform the concept into reality was immediately
started by the science team and the NASA Goddard Space Flight
Center which designed and built the spacecraft and managed the
project. Soon thereafter, NASA requested a follow up review of
the scientific value and justification of the mission, this time by
the National Academy of Sciences/National Research Council
(NAS/NRC). Although this request temporarily halted work on
mission preparations, the ensuing review served to highlight the
exceptional and innovative science and potential for future
scientific advances that could be pioneered by this
experimental mission.

In a December 1999 response to the NAS/NRC request, the
Triana science team prepared and submitted a report describing
the mission scientific objectives (Valero et al., 1999). Following its
review of the report and an oral review, the NAS/NRC released its
conclusions on the scientific merits of the mission (National
Research Council, 2000). A few notable conclusions in the NAS/
NRC report are paraphrased below:

• “As an exploratory mission Triana has experimental and
innovative aspects that carry more than usual risks but have
the potential to make unique scientific contributions. The
use of L1 for making Earth observations is itself
experimental, since it will test the algorithms used to
reduce remotely sensed data from a new combination of
solar zenith angle and viewing backscattering angles”. (Page
11 of the report)

• “Furthermore, the full-disk Earth observations provide a
unique perspective from which to develop new databases
and validate and augment existing and planned global
databases. As an exploratory mission, Triana may well
open up the use of deep space observation points such as
L1 for Earth science. The task group believes that the
potential impact is sufficiently valuable to Earth science
that such a mission might have been viewed as an earlier
NASA priority had adequate technology been available at
reasonable cost.” (Page two of the NAS report cover letter).

• “The task group therefore recommends that NASA seriously
consider increasing the level of effort invested in
development and testing of data reduction algorithms for
the core Earth data products as soon as possible. In addition,
it is concerned that there may be insufficient funding for
scientific analysis of the data.” (Page two of the NAS report
cover letter).

In summary, Triana (DSCOVR) was found to be a strong and
scientifically vital and feasible mission that will contribute unique
data on Earth’s climate systems. This positive final judgement of
the NAS/NRC review of the mission scientific goals moved NASA
to restart work on the Triana (DSCOVR) mission. In 2001, the
instruments and spacecraft were built, but Triana was placed in
“Stable Suspension” and finally cancelled due to shifting priorities
within NASA.

Later, in November 2008, another agency, the National
Oceanic and Atmospheric Administration (NOAA), discovered
a solution to ensure continuing observation of critical space
weather parameters. DSCOVR, already built and equipped
with solar monitoring instrumentation (a magnetometer, an
electron electrostatic analyzer and a Faraday Cup), was chosen
by NOAA as the replacement for its aging Advanced
Composition Explorer (ACE) spacecraft (e.g., Clark, 2009).
Launch preparations were re-initiated. In 2012, the U.S. Air
Force allocated funds to procure a launch vehicle, the SpaceX
Falcon nine rocket, and fund its operations. After more than
12 years in storage, suspensions, cancellations, reactivations and
refurbishment and almost 17 years after the initial proposal,
DSCOVR was finally launched on February 11, 2015.

To scientifically exploit the Earth-viewing instrument data,
NASA issued a new request for proposals in 2013 to develop and
utilize algorithms and processes to generate daytime products
from data measured by those sensors. Proposals were selected in
2014 and funded later that year. Work on the algorithms began
shortly thereafter and since 2016 a variety of Earth and
atmosphere products have been generated for climate research.
NOAA has also been providing important DSCOVR space
weather data since July 27, 2016.

1Original Science Team Membership: Valero, F.P.J., Doolittle, J.H., Hutchinson
K.D., Gerstl, S.A.W., Lubin, D., Pope, S.K., Bush, B., Bucholtz, A., Ramanathan, V.,
Minnis, P., Pilewsky, P., Ride, S.K., Smith, G.L. and Wiscombe, W.J., Herman, J.R.
joined the team immediately after NASA accepted the proposal.
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Because DSCOVR is the first Earth-observing satellite at the
Sun-Earth Lagrange L1 point, it is an exploratory mission that
tests and validates the scientific and observational concepts that
motivated the original Triana mission. This paper serves as an
introduction to the DSCOVR mission, its history, and its
scientific findings. In particular, it discusses the unique
features of the DSCOVR observations that demonstrate the
potential of deep space observatories for advancing the Earth
sciences. Also presented is the possibility of developing a globally
Integrated Earth observation system by the synergistic association
of data from space-based, airborne, and surface platforms, as
enabled by DSCOVR.

Remote Sensing Instruments on DSCOVR
In addition to its space weather package, DSCOVR carries the
Scripps’ specified (built by Lockheed Martin) Earth
Polychromatic Imaging Camera (EPIC) and the National
Institute of Standards and Technology Advanced Radiometer
(NISTAR). The EPIC consists of a telescope, a filter wheel, and a
2,048 × 2,048 pixel charged couple device (CCD) coated with
hafnium. The Cassegrain telescope has a 0.62° field of view (FOV)
that includes the full disc of the Earth, which subtends a solid
angle of 0.5°, and some surrounding space. Light that comes into
the telescope passes through some field lenses then through one
of the filters on the wheel and is focused on the CCD. Ten
narrowband filters, hereafter referred to as channels (Table 1),
reside on the wheel providing measurements in the ultraviolet
(UV) range (first column in Table 1), and in the visible (VIS), and
near-infrared (NIR) bands. Some of the VIS/IR channels
correspond to their counterparts on the latest operational LEO
and GEO imagers (column 2 in Table 1), while two others are in
the oxygen A and B absorption bands (last column, Table 1).
Including the instrument’s point spread function yields a pixel
resolution of 10 km at nadir. To reduce transmission time, the
images for each channel, except at 443 nm, are reduced by
averaging 2 × 2 arrays of pixels to yield a 1,024 × 1,024 pixel
image. The resulting effective resolution is ∼18 km at nadir. Due
to a loss of transmission receivers around the globe during the
hibernation of DSCOVR, the original planned hourly imagery has
been reduced to between 13 and 22 images per day in boreal
winter and summer, respectively. This sampling, however, is
sufficient for most climate research (e.g., Holdaway et al.,
2016a,b).

Creating an image from the raw radiance measurements is not
a straightforward process. In addition to applying at least six
electronic and thermal corrections to obtain a raw calibration for
each spectral image, the 10 images must be geolocated to

common footprint in time and space. Each image requires a
dwell time of 0.5–4.0 min for a given filter on the wheel. During
that time, the Earth rotates and the spacecraft moves in its orbit.
The spacecraft also undergoes a small amount of jitter and the
atmospheric refraction alters the linear path of reflected light to
the telescope. Marshak et al. (2018) describe the process used to
correct for distortions in and discrepancies among the spectral
images at a given time slot. Using an automated coastline
detection approach, Molina-García et al. (2019) have improved
the geolocation of the EPIC images. The result is ten images that
are projected onto a reference grid at the same common universal
time (UTC).

EPIC’s initial raw pixel data consist of 12-bit counts. Before
being converted into physical units, the counts are corrected for
various effects such as non-linearity in the response and stray
light contamination (Cede et al., 2021). The corrected raw images
are calibrated by regressing the raw EPIC counts against
calibrated radiances from LEO imagers having similar
channels. That process requires matching the EPIC and LEO
imagers in time and space with the same viewing and illumination
conditions. To calibrate the UV channels, Herman et al. (2018a)
used reflectances measured by the Ozone Mapping and Profiler
Suite (OMPS) on the Suomi National Polar-orbiting Partnership
(S-NPP) satellite. The VIS/NIR channels outside of the oxygen
absorbing bands have been calibrated using reflectances from the
MODerate-resolution Imaging Spectroradiometer (MODIS) on
the Terra and Aqua platforms and from the S-NPP Visible
Infrared Imaging Suite (VIIRS) (Haney et al., 2016;
Geogdzhayev and Marshak, 2018; Doelling et al., 2019a;
Geogdzhayev et al., 2021). Since the lunar disc occasionally
passes through the EPIC FOV (Figure 1) and the Moon has
no atmosphere, the Moon is used to calibrate the EPIC oxygen
absorption bands relative to their non-absorbing neighbors at

TABLE 1 | EPIC Channels: Central wavelength is λ, and full width, half maximum is
FWHM.

λ (nm) FWHM (nm) λ (nm) FWHM (nm) λ (nm) FWHM (nm)

317.5 1.0 443.0 2.6 687.75 0.84
325.0 1.0 551.0 3.0 764.0 1.02
340.0 2.7 680.0 1.6
388.0 2.6 779.5 1.8

FIGURE 1 | Lunar transit of Earth observed in an EPIC RGB image,
February 11, 2021. “Back” side of Moon is visible to the east of Australia.
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680.0 and 779.5 nm (Marshak and Ward, 2018; Geogdzhaev and
Marshak, 2018).

The NISTAR comprises a set of three single-pixel active cavity
radiometers that measure broadband irradiance from the entire
Earth hemisphere in three wavelength regions: shortwave (SW,
0.2–4.0 µm), NIR (0.7–4.0 µm), and total (0.2–100 µm).
Measurements in those bands are taken every 4 minutes by
placing the appropriate filter over each radiometer for 2 min
followed by a shutter over the cavity for another 2 min to measure
the offset. While originally designed to continuously monitor the
sunlit side of the Earth, the small signal-to-noise ratios require
averaging over a 4-h period to obtain a reliable flux. The raw
filtered NISTAR irradiances are determined using prelaunch

system-level optical calibration and the on-orbit offset
measurements. To obtain a radiance from the Earth, the raw
irradiances are first converted to radiances by dividing by the
solid angle of the Earth disc. The resulting radiances are then
unfiltered to obtain the “true” irradiance. Su et al. (2020) detail the
processing of the NISTAR data and their conversion to usable
scientific quantities.

Earth-Observing Characteristics of
DSCOVR
As noted, the Lagrange points, L1 and L2, are unique locations for
observing Earth from deep space. L1 and L2 are found along the
Earth-Sun line: L1 between the Sun and the Earth and L2 beyond
the Earth. Observational platforms at L1 and L2 would orbit the
Sun in synch with Earth (the same orbital period as the Earth),
thus, keeping their position “in line” with the Sun.

As a result, L1, L2 and the Earth orbit the Sun keeping on the
same radial line as shown in Figure 2. From L1 the satellite has a
continuous view of the entire sunlit face of the rotating Earth,
including details of large-scale and mesoscale evolution of
processes affecting the Earth’s weather. L2 has a full view of
the unilluminated opposing disc, so it can only use instruments
that measure at non-solar wavelengths.

The equilibrium at the L1, L2 (and L3) points is unstable. If a
spacecraft at L1, for example, drifted toward or away from Earth, it
would fall toward the Sun or Earth. This is the reason why there is
no accumulation of “space debris” or asteroids at these points. The
contrary happens at the stable points, L4 and L5. To station a
spacecraft at L1 or L2, it is necessary to place it in a non-repeating

FIGURE 2 | L1 and L2 are positions on the Ecliptic plane where the net
gravitational pull of the Earth and Sun equals the centripetal force required to
orbit the Sun with the same orbital angular velocity as the Earth. Satellites at L1
and L2 keep the same Sun-Earth relative position and continuously view
the full planet as the Earth rotates around its axis.

FIGURE 3 | Schematic of (A) Earth-Sun-DSCOVR geometry and (B) portion of sunlit Earth disc viewed by DSCOVR and the portion that would be viewed at L2
(right). Golden area on left is the daytime area fraction, Av, visible to DSCOVR and the black area, Ad, is the nighttime fraction seen by DSCOVR. The dark fraction is
enhanced for purposes of illustration. The golden area on the right indicates the sunlit fraction, Ah, not seen by DSCOVR. Not to scale. (Adapted from Su et al., 2018).
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elliptical Lissajous orbit around the Lagrange point perpendicular
to the Earth-Sun axis. Using this orbit can take DSCOVR off the
axis by 4–12° (2–12° after March 2020) relative to Earth. In doing
so, it keeps solar fluxes from interfering with transmissions, but
alters the amount of sunlit Earth observable by the satellite as
drawn in Figure 3. The relative azimuth angle ϕD, or off-axis angle
due to the Lissajous orbit is shown Figure 3A. Also indicated is a
set of scattering angles Θ illustrating the multidirectionality of the
reflected sunlight. Figure 3B is a schematic of the sunlit and unlit
fractions, Av and Ad, respectively, seen by DSCOVR and the sunlit
portion, Ah, that would be observed at L2. As ϕD approaches 180°,
Av tends toward unity. Thus, a small portion, 3–8%, of the sunlit
disc is actually missed because of the Lissajous orbit.

Because of the tilt of the planet's axis of rotation, the northern
or southern polar regions are observable from L1 during their
respective summer solstices. The diagram in Figure 4 depicts
the conditions applicable to the southern hemisphere around
the summer solstice and the northern hemisphere during the
winter solstice. The EPIC images in Figure 5 demonstrate this
oscillating view. The northern polar region, including all of
Greenland, is clearly seen on June 20, 2020 near the summer
solstice in the Northern hemisphere (Figure 5A), while
Figure 5B illustrates the DSCOVR view near the autumnal
equinox on September 20, 2020. Most of Antarctica becomes
viewable around the December solstice (Figure 5C). Because of

the large viewing zenith angles (VZAs) and increased pixel size
near the edge of the disc, the discernible detail is greatly reduced.

For the cases in Figures 5A,C a DSCOVR-like satellite at L2
would view the northern hemisphere polar region during the
winter solstice and vice versa, respectively, giving full coverage of
the globe. Thus, addition of a satellite at L2, performing
measurements from local sunset to local sunrise (nighttime)
would enable observations during the complete diurnal cycle,
day (L1) and night (infrared observations) (L2), which again,
highlights the importance of adding a second platform at L2.

These nearly complete disc views contrast with the smaller areas
observed by LEO and GEO satellites, as noted earlier. To obtain
imagery or derived products that would provide 13–22 observations
of the sunlit Earth as seen by DSCOVR requires stitching together of
images from five GEOs and three or more LEOs. That process still
necessitates inclusion of data taken up to 3 h from the nominal time
(Khlopenkov et al., 2017). Combining all of those satellite images is a
challenging task, requiring excellent intercalibration, significant
angular adjustments, and edge blending to minimize artificial
discontinuities. And that is only for some VIS/NIR imagery. No
GEO UV or oxygen A and B band imagers are in operation, thus,
only LEO satellites have been providing the information needed for
retrieving ozone concentrations, surface UV irradiances, and various
cloud and aerosol properties.

For example, the LEO Total Ozone Mapping Spectrometer
(TOMS) samples the Earth in strips between 2000–3,000 km wide
around local noon. The left image in Figure 6 depicts the ozone
concentrations determined from TOMS UV data acquired over a
period of ∼45min. All points are seen near local noon only (Sun
synchronous satellite). The right panel shows the ozone
concentrations determined from EPIC UV data on April 19, 2016
over a period of a few minutes (plus ∼15min data transmission
time). As the Earth rotates, points are seen from sunrise to sunset at
continuously changing solar illumination conditions. Construction
of an ozone data set from TOMS or a similar instrument would
require at least five appropriately equipped satellites in Sun-
synchronous orbits with equally spaced equatorial crossing times.

Some LEOs are in precessing orbits such that their equatorial
crossing times increment forward or backward in time each day
depending on the direction and inclination of the orbit. Those

FIGURE 4 | In this diagram the Earth orbits the Sun in the ecliptic plane in
the direction perpendicular to the drawing. It represents the southern
hemisphere near the summer solstice and the northern hemisphere near the
winter solstice.

FIGURE 5 | EPIC RGB enhanced images (https://epic.gsfc.nasa.gov) during 2020 (A) Northern hemisphere summer solstice, (B) Autumnal equinox, and (C)
Southern hemisphere summer solstice.
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LEOs can cover the diurnal cycle for part of the Earth, but it
usually takes a month or more to cover all local hours (e.g.,
Harrison et al., 1983). Obviously, GEOs cover the complete
diurnal cycle each day but only for a fourth or fifth of the
globe equatorward of 60° latitude or so. The edge of the GEO
FOV along the subsatellite meridian is at ∼72° latitude. Even so,
data taken poleward of 60° are of minimal usability. Again, to
cover all hours around the globe, data from four or five GEOs
must be combined with all of the attendant issues noted above.

Each type of satellite has its unique viewing and illumination
limitations. GEOs observe a given area at a constant VZA, but the
solar zenith (SZA) and relative azimuth (RAA) angles change
over the course of the day. Imagers on Sun-synchronous LEOs
typically view an area over a wide range of RAA and VZA, but the
range of SZA over a given area is constrained to those angles
corresponding to ∼±45 min around the equatorial crossing time.
DSCOVR views a given location from a relatively constant RAA,
i.e., ϕD in Figure 2, while both SZA and VZA vary in synch over
the course of the day. The points on the surface that are in the
ecliptic plane will be observed at VZAs and SZAs that range from
90° at sunrise to 0° at noon and back to 90° at local sunset. For
points off the plane, the minimum VZA and SZA at local noon
will increase latitudinally from the ecliptic. SZA and VZA will
always be within a few degrees of each other. The result is that
light reflected from any location on the planet is observed from
DSCOVR at a scattering angle, 168°< Θ < 178°, close to direct
backscatter at 180°. During many seasons, measurements are
taken relatively infrequently at those scattering angles from LEO
and GEO satellites [e.g., Minnis et al. (1998), Figure A1], so
DSCOVR’s nearly constant scattering angle everywhere on Earth
is markedly different from those associated with other satellites.
Yet, each scattering angle configuration has its advantages and
problems, Marshak et al., 2021).

As pictured in Figure 2A, light is reflected anisotropically
from the Earth-atmosphere system. The distribution of the
radiant intensity varies over the hemisphere above a given
location as a function of many factors such as surface type,
terrain, and vegetation; cloud cover, height, phase, particle size

and shape, and horizontal and vertical structure; aerosol type and
optical depth; and absorbing gas concentrations among other
parameters. To correct for the anisotropy, remote sensing of the
Earth from LEO and GEO satellites typically employs
bidirectional reflectance distribution functions (BRDFs), also
referred to as anisotropic directional models (ADMs). It is no
different for DSCOVR, except that only a small portion of the
BRDF is used at a given SZA because of the constrained angular
range. Thus, it is important to know the BRDF very accurately for
DSCOVR views because there are no measurements at other
angles to balance out any biases that may be in the BRDF at a
given scattering angle. GEO and LEO measurements are taken
over a wide range of scattering angles and, hence, cover various
portions of a given BRDF and, hence, averaging over several
measurements can minimize any biases in the BRDF at any one
set of viewing and illumination conditions.

SCIENTIFIC PRODUCTS AND ANALYSES

Surface and Atmospheric Properties
The proposed products from the EPIC observations include
physical parameters related to land surface and ocean
properties, atmospheric gases, and cloud and aerosol
properties, while NISTAR data were to be used to study the
top-of-atmosphere radiation budget. These parameters and
others are being determined from DSCOVR data on an
ongoing basis and used in a variety of scientific studies.
Marshak et al. (2018) provide a review of the scientific results
up to the time of that paper’s acceptance. Many additional
analyses of the DSCOVR measurements have been published
since then, including those in this issue, and they are continuing.

Surface irradiance is derived over the sunlit part of the day
from the EPIC reflectances. This includes broadband shortwave
(Hao et al., 2019, 2020), photosynthetically active radiation at the
ocean and land surfaces (Frouin et al., 2018; Hao et al., 2019,
2020; Zhang et al., 2020), and UV erythemal radiation that is
harmful to life on the surface (Herman et al., 2018b, 2020).
Spectral (Gao B.-C. et al., 2019) and broadband radiation leaving
the surface is also derived from the EPIC data for the entire
daylight period. Wen et al. (2020) exploited DSCOVR’s L1
location to determine the impact of the 2017 total solar eclipse
on the broadband shortwave surface radiation budget as the Sun’s
shadow traveled around the globe. The health and condition of
vegetation is also monitored from DSCOVR by estimating the
leaf area index (Yang et al., 2017), the enhanced vegetation index
(Weber et al., 2020), and the clumping index (Pisek et al., 2021).
The oxygen-B band on EPIC allows the computation of a
normalized difference vegetation index that represents an
improvement over that computed using the typical visible and
NIR channels on lower-orbit satellites (Marshak and Knyazikhin,
2017).

As noted earlier, the UV channels on EPIC are quite valuable
for tracking ozone loading in the atmospheric column
throughout the day (Herman et al., 2018a, 2020). Figure 7
provides an example of the column ozone and erythemal UV
irradiance retrieved from EPIC at 18:40 UTC, June 21, 2016.

FIGURE 6 | (A) LEO (TOMS) vs. (B) DSCOVR views (Adapted from
Herman et al. 2018a).
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When combined with climatological information, the column
ozone retrievals are converted to vertical profiles of ozone
concentrations (Yang and Liu, 2019). Tracking of sulfur
dioxide emitted into the atmosphere within volcanic ash
plumes is also enabled by using the EPIC UV channels (Carn
et al., 2016a, 2016, 2018). Torres et al. (2020) used the EPIC UV
reflectances combined with a limb profiler and the lidar on the
Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) satellite to detect and follow smoke
plumes injected into the stratosphere by large forest fires in
Canada. This tracking includes retrievals of the UV aerosol
optical depths (AODv) and single scattering albedos (SSAv) of
the smoke particles, which can reside a relatively long time in the
atmosphere (e.g., Ahn et al., 2021). The UV aerosol index
(UVAI), a standard EPIC product along with SO2 and O3

column loading and SSAv and AODv, has been employed
with satellite-based lidar profiles of aerosol concentrations and
modeling to quantify the impacts of pyrocumulonimbus
injections of smoke aerosols into the upper troposphere and
lower stratosphere (Christian et al., 2019).

Monitoring of aerosols is not confined to use of the UV
channels. Aerosol optical depth is retrieved for each of the
VIS/NIR channels for cloud-free regions. Additionally, the
oxygen A and B bands are employed to retrieve smoke and
dust aerosol layer heights with an RMSE ∼0.5 km (Xu et al., 2017,
2019). Recently, Lyapustin et al. (2021) have combined the
retrievals of UV and VIS/NIR aerosol optical depths (AOD)
and single scattering albedos (SSA) using an innovative
retrieval algorithm that utilizes sequences of EPIC images. The
initial results are quite promising for improved estimates of those
parameters at all wavelengths and development of the algorithms
continues (e.g., Sasi et al., 2020).

Detection of clouds and retrievals of their properties using the
EPIC channels for the original Trianamission were limited due to
the absence of infrared window channels that are valuable for
estimating cloud height and detecting thin cirrus and clouds in
sunglint. During the refurbishment of DSCOVR after its long
storage, two of the original channels were replaced with the
oxygen A and B bands. That change mitigated the inability to
determine cloud top height/pressure from EPIC. These channels

along with other VIS/NIR channels have been used to determine
cloud fraction (Yang et al., 2019; Delgado-Bonal et al., 2020),
cloud phase and optical depth (Meyer et al., 2016) and cloud-top
height/pressure (Yang et al., 2013, 2019; Davis et al., 2018a; Yin
et al., 2020). An example of the cloud fraction retrieved from
EPIC is compared with the higher resolution cloud retrieval
composite from Khlopenkov et al. (2017) in Figure 8. EPIC
retrievals have been supported with a body of radiative transfer
studies that have determined how accurately certain parameters
can be derived within the constraints of the EPIC characteristics
(Davis et al., 2018b; Gao M. et al., 2019; Molina García et al.,
2018a,b; Tian et al., 2020). Lacking any shortwave infrared
channels (e.g., 1.6 µm), detection of clouds over snow and ice-
covered surfaces has been difficult. Zhou et al. (2020, 2021) have
greatly improved cloud detectability over those surfaces and in
sunglint conditions over water surfaces using the oxygen A and B
bands. Yang et al. (2019) describe the standard EPIC cloud
products and their evaluation. As seen in the above citations,
the cloud algorithms, like those for the other products, are
evolving as more is learned about the information in the views
from DSCOVR and in the EPIC channels.

As a result of DSCOVR’s unique perspective, some of that
information has been quite unexpected. Sun glints are flashes of
bright specularly reflected light observed in the appropriate
conditions over both water and land surfaces. Marshak et al.
(2017) and Li et al. (2019) show that glints over land are caused by
reflection from horizontally oriented ice platelets in cirrus clouds
that are often quite thin. Detecting the glitter from those clouds at
such a great distance was a surprise. In addition to sun glint
observed from ocean surfaces and clouds (Varnai et al., 2020),
Kostinski et al. (2021) detected extremely bright glints in EPIC
reflectances from apparently small calm lakes at high altitudes in
the Andes. Varnai et al. (2021) extracted the spectral properties of
cloud glitter from various EPIC channels. Comparing glint
observations with model simulations may provide new
information on atmospheric dynamics.

Finally, in support of the Artemis mission, Gorkavyi et al.
(2021) recently discussed what an EPIC-type
instrument would see from the Moon’s surface (see
Figure 10). They showed that the lunar surface offers a

FIGURE 7 | Example of someUV-based products from EPIC, 18:40 UTC, June 21, 2016. (A)RGB image, (B) column ozone in Dobson units, and (C) Erythemal UV
in Wm−2. O3 levels are greatest in frontal areas and lowest in tropics. The erythemal UV decreases toward edge of disc because of increasing SZA. Relative maxima
correspond to clearest areas. (Adapted from Herman et al., 2018b).
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unique opportunity to observe cloud glint reflection for
different phase angles, to detect polar mesospheric
and stratospheric clouds using whole-Earth limb
imaging, and to estimate a full phase angle integrated
albedo. In addition, observations from the Moon’s surface
will allow simultaneous imaging of the day and night
parts during crescent phases of the Earth as well as the
shadowed parts illuminated by lunar reflection of solar
radiation.

Top-Of-Atmosphere Radiation
Measuring the daytime Earth radiation budget (ERB) using
NISTAR was one of the prime objectives of the original
Triana mission. There are many ways to measure the
components of this essential climate parameter: the solar
shortwave (SW) irradiance absorbed and longwave (LW)
irradiance emitted into space by the Earth-atmosphere
system. The former is inferred by measuring the solar
radiation reflected by the planet and subtracting it from the
incoming. The latter component can be measured using a
radiometer with the appropriate spectral filter or by
measuring the total irradiance and subtracting from it the
reflected solar irradiance. In the absence of broadband
radiometers, narrowband measurements have been employed
to estimate the broadband fluxes with the aid of the appropriate
conversion functions (e.g., Minnis and Harrison, 1984; Doelling
et al., 2013).

The best estimates of the ERB to date have come from the
Clouds and the Earth’s Radiant Energy System (CERES; e.g.,
Loeb et al., 2018) and, yet, the initial CERES analyses (Loeb
et al., 2009) found an improbably large imbalance in the budget
(e.g., Charlson et al., 2005; Valero and Charlson, 2008). This
large imbalance, ∼6.5 Wm-2, since reduced to 4.3 Wm-2 in the
CERES Edition 4 product (Loeb et al., 2018), is the result of
calibration, diurnal correction, and ADM uncertainties. To
obtain a better balance, the fluxes are adjusted at one time to
be consistent with the measured heat storage in the ocean-

atmosphere system. Measuring the radiation budget from
DSCOVR would provide an independent assessment of that
adjustment.

To begin the process of determining the TOA radiation
budget from NISTAR, it is necessary to establish BRDF
values for the globe as viewed from DSCOVR (Minnis et al.,
2001). Su et al. (2018) utilized the high-resolution cloud
properties from the GEO/LEO cloud composite of Su et al.
(2017) to select BRDF values for each EPIC pixel from the
ADMs of Su et al. (2015a,b). The ADMs for the LW were
selected in the same manner by Su et al. (2020). An example of
the EPIC ADMs is shown in Figure 9 along with the EPIC RGB
image and the composite cloud fraction for 12:17 UTC, May 15,
2017. The SW BRDFs were convolved with pixel broadband
radiances estimated from the EPIC 443, 556, and 680-nm
channels to compute the global reflected SW radiance and
single valued SW BRDFs for the entire disk at each EPIC
time. The SW result agreed with the CERES daily global
albedos to within 2% with monthly RMS differences of
3.2–5.2 Wm-2, values within the calibration and algorithm
uncertainties. This excellent agreement demonstrates the
robustness of the BRDF values computed for each time slot.
Su et al. (2020) found similar values by computing the global SW
and LW ADMs by convolving the SW and LW ADM average
radiances for each EPIC pixel in the same manner instead of
using the EPIC-based radiances.

The remaining step is to divide the NISTAR radiances by
the BRDFs for each EPIC image. With that approach, Su et al.
(2020) found that the NISTAR SW reflected flux is well
correlated with CERES, but, on average, is 13.3 Wm-2

greater than CERES. The NISTAR LW flux exceeds that of
CERES by 4.8 Wm-2, but is poorly correlated. While much of
the difference can be attributed to the uncertainties in the
retrievals, explaining the SW flux bias requires more research.
Part of the problem may be the lack of recalibrating the
NISTAR after it was in long-term storage. Despite those
differences, the NISTAR fluxes are still quite useful and

FIGURE 8 | Cloud fraction at 08:00 UTC, September 15, 2015. (A) EPIC RGB, (B) EPIC cloud mask, and (C) GEO/LEO cloud fraction for each EPIC pixel. GEO/
LEO product is based mainly on a cloud mask using data with horizontal resolutions of 1–4 km. Good agreement is found in most areas. Monthly averages differ by only
1%. (Adapted from Yang et al. 2019).
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have already been employed to evaluate climate model global
albedo variability at time scales ranging from less than a few
hours to several years (Feldman et al., 2021). Ratios of fluxes
from the NISTAR broadband NIR and full SW channels
provide information that can also be used to constrain
climate models and to serve as signatures of life on
exoplanets (Carlson et al., 2019).

In addition to aiding the computation of the global BRDFs for
NISTAR, the EPIC data have been employed in a variety of ways
to study the spectral characteristics of the globe. Using four EPIC
channels, Yang et al. (2018) found that the distributions of land
and water surfaces on the sunlit Earth strongly affect the diurnal
variation of global reflectance, while clouds dominate the seasonal
cycles in average reflectance. Song et al. (2018) established that
LEO and GEO imagers tend to overestimate the spectral
reflectivity of the planet relative to that from EPIC. Herman
et al. (2018b) were able to determine that the August 21, 2017
total eclipse reduced the sunlit Earth reflectance by ∼10% in five
nonabsorbing channels between 380 and 780 nm. The spectral
variations in EPIC global reflectivity over the seasonal and
diurnal cycles also provide information that can be used to

determine the likelihood of biological activity on exoplanets
(Jiang et al., 2018; Wen et al., 2019).

The Future: An Integrated Earth
Observation System
From L1, the synoptic coverage and relatively high time
resolution of the daytime radiances from the planet’s surface
and atmosphere, including the polar regions, represent a major
enhancement of our ability to understand the processes and
daily evolution of the Earth systems and climate/climate change.
At each time slot, nearly the entire sunlit half of the globe is
observed. Thus, any LEO or GEO imager observing the Earth at
that time will also be in the EPIC field of view. Since the
temporal resolution of GEO imagers is currently 15 min or
better, there are large portions of the daytime disc where there
will be nearly simultaneous matches of EPIC and GEO data and
reasonable contemporaneity with LEO imager data over many
other areas. The matching is not limited to VIS/IR imagers or
satellites. Data from airborne and surface instruments, as well as
active instruments such as lidars and microwave imagers on

FIGURE 9 | Anisotropic directional models selected for each EPIC pixel at 12:17 UTC, May 15, 2017. (A) EPIC RGB image, (B) GEO/LEO cloud fraction for each
EPIC pixel, (C) SWADM, and (D) LWADM. Ocean has less back scatter than land and other surfaces, except in sun glint. Global weighted average SW and LWADMs for
this scene are 1.275 and 1.041, respectively. (Adapted from Su et al., 2020).
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LEOs, are also within the EPIC footprints. Thus, the temporal
resolution and broad coverage have great potential for a variety
of synergistic and complementary studies that could yield
improved and new products.

To facilitate those studies, Yi et al. (2001) proposed the
development of a comprehensive dataset consisting of
observations from LEOs and GEOs attached to time and
space-matched EPIC footprints. The composite developed by
Khlopenkov et al. (2017) is the first step in realizing that
possibility. While the comprehensive dataset proposed by Yi
et al. (2001) has not yet been fully constructed, many of the
papers cited earlier have begun the process of exploiting the

matching potential of DSCOVR at L1. Among others, they
include combined use of EPIC and lidar data from CALIPSO
and the International Space Station (Christian et al., 2019),
matched surface and EPIC data (e.g., Hao et al., 2019), and
matched LEO/GEO and EPIC retrievals. Yet, there remain many
possibilities for creatively and productively using combined
datasets. For example, multiangle and multispectral retrievals
of cloud (e.g., Chepfer et al., 2002; Pierce et al., 2010) and aerosol
(e.g., Abdou et al., 2005) properties and perhaps surface
characteristics (e.g., Chopping, 2008) could be accomplished
with relative ease using such data. Moreover, they would
provide complete diurnal and global coverage unavailable from

FIGURE 10 | Example diagram of a potential future integrated Earth observational system showing some LEO (cyan), GEO (magenta), and Lagrange point (white)
satellites, and the Moon. (Surface and airborne platforms not shown.) (Adapted from NASA image, https://www.nasa.gov/image-feature/nasas-fleet-of-satellites-keep-
an-eye-on-earth).

Frontiers in Remote Sensing | www.frontiersin.org September 2021 | Volume 2 | Article 74593810

Valero et al. Lagrange Point Mission. DSCOVR Innovation

132

https://www.nasa.gov/image-feature/nasas-fleet-of-satellites-keep-an-eye-on-earth
https://www.nasa.gov/image-feature/nasas-fleet-of-satellites-keep-an-eye-on-earth
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


LEO instruments specifically designed for such retrievals (e.g.,
Diner et al., 1998; Parol et al., 2004). Other multiangle studies
employing GEO and EPIC data could be utilized to more
thoroughly examine the reflectance fields at VZAs beyond the
roughly 70° limit of LEO scanners.

Critical to using combined satellite datasets is accurate
intercalibration of the individual instruments. As noted
earlier, some of the EPIC channels were calibrated using
data from similar channels on LEO/GEO satellites (e.g.,
Geogdzhayev and Marshak, 2018). Other channels were
calibrated using the “back” side of the Moon viewed about
4 times each year in transit across the Earth disc. Lunar transits
provide the opportunity to “calibrate” the Moon for each of
those channels using EPIC data already normalized to a
reference sensor such as VIIRS. That would provide a
temporally stable reference for continued reliable calibration
of the EPIC sensor array in the future. Because of its broad view
and nearly hourly sampling, EPIC then could be used to
monitor and adjust the calibration of similar channels on
the host of current and upcoming LEO and GEO
instruments as well as extraterrestrial probes (e.g., Doelling
et al., 2019b). Having the comprehensive matched dataset
would ease that process.

DSCOVR is the first satellite operating at a Lagrange point to
serve as an Earth remote sensing platform. It was designed more
than 2 decades ago and is operating at half of its initial capacity
because of reduced Earth data receivers and transmission rates.
Nevertheless, the DSCOVR project has clearly been successful
and has demonstrated great potential for studying the Earth,
especially in conjunction with other surface, satellite, and
airborne datasets. With its broad view of the Earth and
calibration potential, DSCOVR could act as the anchor for an
integrated Earth observing system (IEOS) using the suggested
comprehensive combined observations could serve as the core
dataset.

In the future, the IEOS should include both day and night
observations of the whole planet using two satellites, one at L1
and another at L2. These are shown schematically in Figure 10
with some of the existing LEO (cyan) and GEO (magenta)
satellites that would comprise the system along with surface
and airborne sensors. The instruments on both satellites
should use the latest technology to observe radiances in
additional solar and infrared wavelengths and, perhaps,
include polarization for some channels. While the solar
channels may not be necessary for the L2 satellite, they could
provide some basic scientific information by measuring the
shorter wavelength radiation refracted around the Earth’s edge
and the crescent of reflected radiation by the small illuminated
portion of the disc (see Figure 3). Infrared and broadband LW
observations at L2 are technically challenging because the orbit
allows some direct solar radiation to impact the spacecraft. The
Earth signal would be swamped without appropriate shielding,
precise thermal control, and minimization of the Lissajous orbit
radius off the Earth-Sun axis. The latter is more feasible in the L2
position since there is minimal solar interference of signals
transmitted from the spacecraft to Earth.

Temporal and spatial resolution of the Earth observations
should also be greatly enhanced by employing a larger telescope
on EPIC to reduce dwell time and by employing a denser CCD
array, respectively. A larger telescope would also enable better IR
spectral measurements at both L1 and L2. Taking advantage of
such enhancements would require a faster onboard data
processing and transmission system as well as additional
ground receiving stations. Currently only one at Wallops,
Virginia is used by DSCOVR.

Improved Lagrange-point radiation budget measurements are
also possible. A revised version of NISTAR that includes a larger
optical aperture, better thermal control and better calibration just
prior to launch would provide a more stable and valuable
complement to CERES. Inclusion of broadband channels on a
revised EPIC would greatly reduce signal-to-noise ratios for
radiation budget studies and provide a means for direct
intercalibration with CERES or any LEO system making
similar measurements.

A satellite in an artificial Lagrange orbit (ALO) is also included
at the top of Figure 10 to show a possible expansion beyond L2.
An ALO is accomplished by employing the solar wind to
maintain the orbit, which aligns the satellite above either of
the poles, providing continuous GEO-like coverage of those
regions at azimuth angles greatly different from those at L1
(Lazzarra et al., 2011).

CONCLUDING REMARKS

The instruments on DSCOVR are providing for the first time,
synoptic, simultaneous mesoscale and large-scale spatial coverage
of the Earth at high temporal-resolution from sunrise to sunset
with periodic plain views of the sunlit polar regions, as well as the
Moon, which serves as a spectro-radiometric calibration
reference. The results of the DSCOVR-generated research to
date are by themselves the validation of the scientific concepts
that first motivated the original Triana mission. They
demonstrate the scientific potential of observing the globe
from deep space platforms. Data taken from satellites at
Lagrange points can be easily combined with nearly all
observations taken nearer the Earth to play a central role in
building a globally integrated Earth observational system. At a
minimum, Earth remote sensing from deep space should be
incorporated into the NASA Earth Observing System and
follow-on Lagrange point satellites should be designed and
launched to fully exploit the unique potential of viewing the
globe from deep space.
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Global Daytime Mean Shortwave Flux
Consistency Under Varying EPIC
Viewing Geometries
Wenying Su1*, Lusheng Liang2, David P. Duda2, Konstantin Khlopenkov2 and
Mandana M. Thieman2

1Science Directorate, NASA Langley Research Center, Hampton, VA, United States, 2Science Systems and Applications Inc.,
Hampton, VA, United States

One of the most crucial tasks of measuring top-of-atmosphere (TOA) radiative flux is to
understand the relationships between radiances and fluxes, particularly for the reflected
shortwave (SW) fluxes. The radiance-to-flux conversion is accomplished by constructing
angular distribution models (ADMs). This conversion depends on solar-viewing geometries
as well as the scene types within the field of view. To date, the most comprehensive
observation-based ADMs are developed using the Clouds and the Earth’s Radiant Energy
System (CERES) observations. These ADMs are used to derive TOA SW fluxes from
CERES and other Earth radiation budget instruments which observe the Earth mostly from
side-scattering angles. The Earth Polychromatic Imaging Camera (EPIC) onboard Deep
Space Climate Observatory observes the Earth at the Lagrange-1 point in the near-
backscattering directions and offers a testbed for the CERES ADMs. As the EPIC relative
azimuth angles change from 168◦ to 178◦, the global daytime mean SW radiances can
increase by as much as 10% though no notable cloud changes are observed. The global
daytime mean SW fluxes derived after considering the radiance anisotropies at relative
azimuth angles of 168◦ and 178◦ show much smaller differences (<1%), indicating
increases in EPIC SW radiances are due mostly to changes in viewing geometries.
Furthermore, annual global daytime mean SW fluxes from EPIC agree with the CERES
equivalents to within 0.5 Wm−2 with root-mean-square errors less than 3.0 Wm−2.
Consistency between SW fluxes from EPIC and CERES inverted from very different
viewing geometries indicates that the CERES ADMs accurately quantify the radiance
anisotropy and can be used for flux inversion from different viewing perspectives.

Keywords: radiance, flux, angular distribution models, radiance-to-flux inversion, Earth radiation budget

1 INTRODUCTION

The Deep Space Climate Observatory (DSCOVR) was launched on Feb. 11, 2015 and is the first Earth-
observing satellite at the Lagrange-1 (L1) point, about 1.6 million kilometers fromEarth. DSCOVR is in
an elliptical Lissajous orbit around the L1 point and is not positioned exactly on the Earth-Sun line;
therefore, only about 92–97% of the sunlit Earth is visible to DSCOVR (Su et al., 2018). Onboard
DSCOVR, the National Institute of Standards and Technology Advanced Radiometer (NISTAR)
provides continuous full disc global broadband irradiance measurements over most of the sunlit side of
the Earth at near-backscattering relative azimuth angles (Figure 1). DSCOVR also carries the Earth
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Polychromatic Imaging Camera (EPIC) which provides 2048 by
2048 pixel imagery 10 to 22 times per day in 10 spectral bands from
317 to 780 nm. DSCOVR’s elliptical Lissajous orbit is a quasi-
periodic orbit and its distance and viewing geometries change from
day to day. Figure 2 shows the relative azimuth angles between
DSCOVR and the solar plane from 2017 to 2020. From January
2017 to June 2019, the relative azimuth angles show small month-
to-month variations and themaximum value does not exceed 175◦.
However, the relative azimuth angles of 2020 show largemonth-to-
month changes (about twice the amplitude of previous years), with
the maximum relative azimuth angle exceeding 178◦ in December.

Su et al. (2018) developed a methodology to derive global daytime
shortwave (SW) flux from EPIC spectral measurements. While EPIC
does not measure the entire sunlit side of Earth, we refer to EPIC
measurements as “global’ daytime for simplicity. Their approach
includes three steps: 1) derive broadband SW radiances from the
EPIC narrowbandmeasurements using pre-determined narrowband-
to-broadband regression relationships and calculate the global
daytime mean radiances (Isw); 2) derive global daytime mean
anisotropy factors (Rsw) using angular distribution models (ADMs,
Su et al., 2015a) developed by the Clouds and the Earth’s Radiant
Energy System (CERES) project, and using cloud properties in the
EPIC cloud composite product (Khlopenkov et al., 2017) for scene
identification; 3) derive global daytime mean SW flux:
Fsw � πIsw/Rsw. These EPIC-based Fsw agree with the CERES

fluxes within the EPIC view to within ±2%, well within the
calibration and algorithm uncertainties of each instrument. This is
the first time that CERES ADMs have been applied to the near-
backscattering direction to derive flux and the good agreement
indicates that CERES ADMs accurately account for the Earth’s
anisotropy in the near-backscattering direction.

Changes in the EPIC relative azimuth angles in 2020 offer another
opportunity to examine whether CERES ADMs can capture the
changes in radiance anisotropy as the relative azimuth angles
moved from 170° to 178°. Anisotropies at these near-backscattering
angles are rarely used to invert fluxes for CERES cross track
observations. Theoretically, radiative fluxes inverted from different
viewing geometries at a given solar zenith angle should be identical.
Thus, good agreement between global daytime mean fluxes from
EPIC and CERES that are derived using observations from near-
backscattering directions and side-scattering directions can be used as
an indication of the validity of the ADMs, similar to the consistency
tests that have been done to validate the CERES ADMs (Su et al.,
2015b). This paper will examine how Isw and Rsw vary with relative
azimuth angles and compare Fsw from EPIC derived at different
backscattering directions with CERES counterparts to investigate if
CERES ADMs capture the radiance anisotropy changes at different
backscattering angles. Section 2 briefly describes the method used to
derive EPIC-based broadband SW radiance and compares the
radiances from EPIC under different relative azimuth angles. To
convert radiances to fluxes, we rely on CERES ADMs which are
functions of scene types defined using many variables (i.e., surface
type, cloud fraction, cloud optical depth, cloud phase, etc). Section 3
describes the EPIC cloud composite product developed from cloud
retrievals using imagers on low-Earth orbit and geostationary
satellites. The EPIC cloud composite is used to provide scene
identification for anisotropy characterization. Section 4 provides an
overview of the CERES ADMs. EPIC-based SW fluxes and
comparisons with CERES product are provided in section 5 and
conclusions are in section 6.

2 DERIVING GLOBAL DAYTIME MEAN
BROADBAND SHORTWAVE RADIANCES
FROM EPIC MEASUREMENTS
EPIC channels of 443 nm, 551 nm, and 680 nm are used to derive
the broadband SW radiances following the methodology

FIGURE 1 | DSCOVR viewing geometry, θ0 is the solar zenith angle, θ is
the DSCOVR viewing zenith angle, and ϕ is the relative azimuth angle between
DSCOVR and the solar plane.

FIGURE 2 | Year-to-year variation of the relative azimuth angle for DSCOVR.
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developed by Su et al. (2018). The narrowband-to-broadband
regression coefficients are derived using collocated Moderate
Resolution Imaging Spectrometer (MODIS) narrowband
reflectances (469, 550, and 645 nm) and CERES broadband
reflectances within the CERES Single Scanner Footprint TOA/
Surface Fluxes and Clouds (SSF) Edition 4 A product separately
for ocean and non-ocean surfaces for all-sky conditions.

These narrowband-to-broadband regressions are then applied
to the EPIC measurements to derive the “EPIC broadband” SW
reflectance for each EPIC pixel. The pixel-level broadband SW
reflectances are converted to radiances first, and the global
daytime mean SW radiance at each EPIC image time is
calculated following the simple average proposed by Yang
et al. (2018).

Figure 3 shows the global daytime mean SW radiances (Isw) at
the EPIC image times for May and December of 2017 and 2020.
Relative azimuth angles are also included in Figure 3. The
magnitude of Isw depends on many factors: fractions of land,
ocean, snow, and ice within the EPIC image, amount of clouds
and cloud properties (optical depth, thermodynamical phase, and
particle size, to a lesser extent), and also the viewing geometries.
For a specific observation time (same date and time of different
year), EPIC views the same portion of the Earth disc. Thus,
changes in clouds and viewing geometries are the dominant
factors affecting the magnitude of Isw. For May, Isw of 2017
are greater than those of 2020 during the first half of the month
when the relative azimuth angles differ the most between 2017
and 2020. Thereafter, the relative azimuth angles converge and
the differences start to decrease. For December, Isw of 2020 are
consistently greater than those of 2017 except for the last few days
of the month, and the largest difference exceeds 10Wm−2sr−1

(>10%). Next we demonstrate why it is unlikely any changes in

clouds and/or aerosols can cause radiance changes of this
magnitude, changes in viewing geometries are therefore a
more plausible reason. Note the relative azimuth angels are
between 176◦ and 178◦ during early December 2020, while
they are close to 170◦ for the same period of 2017. The
radiances from many Earth scenes can be very different when
viewed at these different azimuth angles (Gatebe and King, 2016).

3 GLOBAL CLOUD PROPERTY
COMPOSITE FOR EPIC

The Earth’s surface and atmosphere are anisotropic reflectors
resulting in a relatively complex variation of radiance leaving the
Earth as a function of the viewing and illumination angles. Thus,
converting radiances from EPIC to fluxes requires the use of
ADMs to account for the reflectance anisotropies. We use the
most comprehensive ADMs developed by the CERES team (Su
et al., 2015a) and these ADMs are functions of scene types defined
using many variables (i.e., surface type, cloud amount, cloud
phase, cloud optical depth, etc). The EPIC cloud composite was
developed to provide scene identifications for each EPIC pixel to
determine the anisotropy factors (Khlopenkov et al., 2017; Su
et al., 2018, 2020). The composite data include cloud property
retrievals from multiple imagers on low Earth orbit (LEO)
satellites (including MODIS, VIIRS, and AVHRR) and
geostationary (GEO) satellites (including GOES-13, -15, -16,
and -17, METEOSAT-8, -9, -10, and -11, MTSAT-2, and
Himawari-8). All cloud properties were determined using a
common set of algorithms, the Satellite ClOud and Radiation
Property retrieval System (SatCORPS, Minnis et al., 2008a, 2016),
based on the CERES cloud detection and retrieval system (Minnis

FIGURE 3 |Comparison of global daytime mean EPIC shortwave radiances (left axis, solid lines) and relative azimuth angels (right axis, dashed lines) between
2017 and 2020 for (A) May and (B) December. Blue lines are for 2017 and red lines are for 2020.
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et al., 2008b, 2011; 2010; Trepte et al., 2019). Cloud properties
from these LEO/GEO imagers are optimally merged together to
provide a seamless global composite product at 5-km resolution
by using an aggregated rating that considers five parameters
(nominal satellite resolution, pixel time relative to the EPIC
observation time, viewing zenith angle, distance from day/
night terminator, and Sun glint factor to minimize the usage
of data taken in the glint region) and selects the best observation
at the time nearest to the EPIC measurements. The global

composite data are then remapped into the EPIC field of view
by convolving the high-resolution cloud properties with the EPIC
point spread function (PSF) defined with a half-pixel accuracy to
produce the EPIC composite. PSF-weighted averages of radiances
and cloud properties are computed separately for each cloud
phase, because the LEO/GEO cloud products are retrieved
separately for liquid and ice clouds (Minnis et al., 2008a).
Ancillary data (i.e. surface type, snow and ice map, skin
temperature, precipitable water, etc.) needed for anisotropic
factor selections are also included in the EPIC composite.
These composite images are produced for each observation
time of the EPIC instrument (typically 300 to 600 composites
per month).

Figure 4 shows retrieved liquid and ice cloud properties for
January 4, 2017 at 11:15 UTC. The EPIC RGB image taken at this
time is shown in Figure 5. At this image time, 56% of the daytime
portion of the Earth is covered by clouds and about 2/3 of the
clouds are of liquid phase. The optical depths of liquid clouds are
mostly less than 6, but there are some very thick clouds with
optical depth exceeding 22 in the Southern Ocean. The effective
cloud heights of these liquid clouds are between ∼ 1 and 6 km and
the effective radii are less than 25 μm. The optical depths of ice
clouds are of similar magnitude as liquid clouds. As expected, the
ice clouds are higher and with larger radii than liquid clouds.

Cloud fractions for the EPIC pixels can be averaged to provide
the global daytime mean cloud fraction (fd) at each EPIC image
time. Figure 6 shows fd at each EPIC image time for May and
December using data from 2017 to 2020. Strong diurnal cycle is
evident for fd, this is because the sunlit side of the Earth is
centered over the Pacific Ocean where clouds are prevalent
during earlier UTC hours and centered over Africa where
there are few clouds over Sahara desert around 12 UTC.

FIGURE 4 | Cloud properties retrieved from the LEO/GEO EPIC composite for January 4, 2017 at 11:15 UTC. Figures from left to right show cloud fraction (%),
cloud optical depth, cloud effective height (km), and cloud effective droplet radius (μm) for liquid phase clouds (top row) and ice phase clouds (bottom row).

FIGURE 5 | The RGB image from EPIC observation taken at 11:15 UTC
on January 4, 2017.
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Cloud fractions within the EPIC views are a few percent higher in
December than in May. This is because the very cloudy Southern
Ocean and Antarctic are not within the EPIC view in May. The
overall fd are fairly consistent from year to year, though there are
some small variations in fd due to transient weather systems.
Thus, cloud change is not the cause for the large variations of Isw
shown in Figure 3.

4 ANGULAR DISTRIBUTION MODELS

Angular distribution models (ADMs) describe the relationship
between radiance (I) and flux (F):

F(θ0, χ) � πI(θ0, θ, ϕ, χ)
R(θ0, θ, ϕ, χ) , (1)

where θ0 is the solar zenith angle, θ is the satellite viewing zenith
angle, ϕ is the relative azimuth angle between the instrument and
the solar plane, and R is the anisotropic factor that relates
radiance to flux. For isotropic surfaces, the radiance does not
depend on viewing geometry (θ, ϕ) and R is reduced to one for all
viewing geometry. However, all surfaces on Earth exhibit
anisotropic characteristics that can vary drastically from one
scene to another which make determining the radiative flux
from radiance measurement very challenging. Thus,
quantifying the relationships between radiance and flux over
different scene types is a critical part of determining fluxes
from satellite radiance measurements.

Currently the most comprehensive ADMs available are the
ones developed by the CERES team (Loeb et al., 2005; Su et al.,
2015a). Realizing the importance of quantifying the anisotropies

over different scene types and the deficiencies of the 12 scene-type
ADMs developed for ERBE (Suttles et al., 1988), the CERES
instruments are designed to fly together with an imager (MODIS
for Terra and Aqua) and are also equipped with a special rotating
azimuth plan (RAP) scan mode (Wielicki et al., 1996). When an
instrument is placed in RAP mode, the instrument scans in
elevation as it rotates in azimuth, thus acquiring radiance
measurements from a wide range of viewing combinations.
There are two CERES instruments on Terra and Aqua. At the
beginning of their missions, one of the CERES instruments was
always placed in RAP mode to maximize the angular coverage,
while the other instrument was in cross track mode to maximize
the spatial coverage. Figure 7 shows the logarithm sample
number distributions using Aqua flight model 3 (in RAP
mode) and Aqua flight model 4 (in cross track mode)
observations of April 2004 when solar zenith angles are
between 40◦ and 50◦. When CERES instrument is placed in
RAP mode, the observations are almost evenly distributed across
all (θ, ϕ) bins, except when θ > 80◦. However, when CERES
instrument is in cross track mode, the observations are
concentrated in limited side-scattering angular bins. The
sample distributions of RAP and cross-track mode are very
similar for other solar zenith angle ranges. Figure 7 illustrates
the critical role that RAP scan mode plays in collecting data for
developing R(θ0, θ, ϕ). It also indicates that only a small angular
fraction of R(θ0, θ, ϕ) is used in the CERES radiance-to-flux
conversion.

As mentioned early, DSCOVR at the L1 point observes the
Earth in near-backscattering directions and offers a testbed for
the CERES ADMs in these unique directions. Su et al. (2018) used
the CERES ADMs and the scene identification provided by the

FIGURE 6 |Comparison of global daytimemean cloud fraction derived from EPIC composite between 2017 and 2020 for (A)May and (B)December. Blue lines are
for 2017 and red lines are for 2020.
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EPIC cloud composite product to derive the global daytime mean
anisotropy factors to convert the global daytime mean radiances
to fluxes. They derived the EPIC SW fluxes for 2017. These fluxes
agree with those derived from CERES synoptic products to within
±2% and demonstrate that the CERES ADMs accurately account
for the Earth’s anisotropy in the near-backscatter direction.

Note the relative azimuth angles range between about 170◦

and 174◦ during 2017, whereas the relative azimuth angles can be
as large as 178◦ during 2020 (see Figure 2). As the EPIC
observation moves closer to the due backscattering directions,
the radiance anisotropy increases for liquid cloud due to glory
feature and for clear vegetated surface due to hot spot feature
(Gatebe and King, 2016). CERES ADMs capture these changes
when viewing geometries move from near-backscattering
directions to backscattering directions. Figure 8 shows how
anisotropic factors change as the relative azimuth angle moves
from 170◦ (near backscatter) to 179◦ (backscatter) for clear
cropland (a) and water clouds over ocean (b). For clear
cropland, the CERES ADMs are constructed using the Ross-Li

model (Roujean et al., 1992; Li and Strahler, 1992) that accounts
for the hot spot effect (Maignan et al., 2004) on regional and
calendar month basis. The clear cropland anisotropic factor
increases by up to 30% around θ � 40◦ (the hot spot) when the
relative azimuth angle moves from 170◦ to 179◦. For liquid
clouds, the CERES ADMs are constructed as a function of ln
(fτ) using measured radiances with an angular resolution of 2◦

(Su et al., 2015a). Figure 8B shows the anisotropic factors for
ln (fτ) � 8, they increases by up to 9% around the glory (θ �
60◦) when the relative azimuth angle moves from 170◦

to 179◦.
Figure 9 shows the anisotropic factors at the EPIC pixel

level for December 5 for 2017 and 2020 at UTC hours around
06:00 and 11:00. As shown in Figure 3B, the relative azimuth
angle for December 5, 2017 is around 170◦ and is around 177◦

for December 5, 2020. Shifting to larger relative azimuth
angles in 2020 results in larger anisotropic factors, most
notably over land regions due to the hot spot effects. For
the two EPIC image times, Rsw are 1.343 and 1.375 for

FIGURE 7 | Logarithm of sample numbers in each 5◦ viewing zenith angle and 5◦ relative azimuth angle bin of all observations within 40◦ and 50◦ solar zenith angles
for the Aqua CERES instrument in RAP mode (A) and in cross track mode (B) using data of april 2004. Grey color indicates no observations.

FIGURE 8 | Anisotropic factors at near-backscattering directions for relative azimuth angle of 179◦ (red), 175◦ (blue), and 170◦ (green) for (A) clear cropland in
December with solar zenith angle of 40◦ and (B) for liquid clouds (ln (fτ)�8) over ocean with solar zenith angle of 60◦.
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2020 compared to 1.241 and 1.254 for 2017, representing
8–10% increase in radiance anisotropy.

5 EPIC SW FLUX

Using Isw and Rsw described above, we can calculate Fsw for each
EPIC image time. Figure 10 compares Fsw between 2017 and
2020 for May and December. Despite the large differences in Isw
between these 2 years, especially for December (see Figure 3), Fsw

are similar. For May 2017, Fsw is 198.6 Wm−2; and for May 2020,
Fsw is 196.5 Wm−2. For December 2017, Fsw is 223.4 Wm−2; and
for December 2020, Fsw is 220.1 Wm−2.

As there are no direct TOA flux measurements, global daytime
mean SW fluxes from EPIC are compared against CERES Edition
4 Synoptic radiative fluxes and cloud product (SYN1deg, Doelling
et al., 2013). SYN1deg data product provides hourly cloud
properties and fluxes for each 1◦ latitude by 1◦ longitude.
Hourly fluxes within SYN1deg are from CERES observations
at the CERES overpass times and for the hours between CERES
observations they are inferred from hourly GEO imager
measurements. The GEO visible and infrared measurements
are used to derive broadband radiances using observation-

based narrowband-to-broadband regression relationships and
radiance-to-flux conversion algorithms. These GEO derived
fluxes are used to fill in the hour boxes between CERES
observations between 60◦S and 60◦N. For regions in the high
latitudes, CERES instruments on the polar-orbiting Terra and
Aqua satellites provide sufficient temporal coverage. Several
procedures are implemented to ensure the consistency between
the MODIS-derived and GEO-derived cloud properties, and
between the CERES fluxes and the GEO-based fluxes. These
include calibrating GEO visible radiances against the well-
calibrated MODIS 0.65 μm radiances by ray-matching MODIS
and GEO coincident radiances; applying similar cloud retrieval
algorithms to derive cloud properties from MODIS and GEO
observations; and normalizing GEO-based broadband fluxes to
CERES fluxes using coincident measurements (Doelling et al.,
2013).

The hourly gridded SYN1deg fluxes are integrated by
considering only the grid boxes that are visible to the EPIC to
produce the global mean daytime fluxes that are comparable to
those from the EPIC measurements following the method
developed by Su et al. (2018). Figure 11 compares the global
daytime mean hourly fluxes from EPIC and SYN1deg for May
2017 (a) and May 2020 (b). The biases and root-mean-square

FIGURE 9 | Anisotropic factors at the EPIC pixel level for December 5, 2017 (top row) at image time of 05:32 UTC (A), and 10:56 UTC (B), and for December 5,
2020 (bottom row) at image time of 06:10 UTC (C), and 11:34 UTC (D).
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(RMS) errors are comparable for the EPIC SW fluxes for both
May 2017 and May 2020, despite changes in EPIC viewing
angles. For May 2017, the relative azimuth angle at the
beginning of the month is 173◦ and decreases to about
171◦ near the end of the month. For May 2020, the
relative azimuth angle starts around 168◦ and increases to
close to 174◦ near the end of the month (see Figure 3A).
Figure 12 compares the global daytime mean hourly fluxes
from EPIC and SYN1deg for December 2017 (a) and
December 2020 (b). Similar to the comparison results for
May, both Decembers compare favorably with the global
daytime fluxes from SYN1deg with the mean biases less

than 0.6 W m-2 and RMS error less than 3 W m-2, despite
that December 2020 has the largest relative azimuth angles
(∼ 178◦) seen during the entire DSCOVR observational
period. Additionally, the relative azimuth angles are quite
different for December 2017 and December 2020. For
December 2017, the relative azimuth angle stayed close to
170◦ until December 22 and then started to increase slightly.
For December 2020, the relative azimuth angle started around
175◦ and reached the maximum around December 10 before
decreasing to about 172◦ by the end of the month. The good
agreement shown in Figures 11, 12 demonstrate that the
CERES ADMs used for radiance-to-flux conversion capture

FIGURE 10 | Comparison of global daytime mean EPIC shortwave fluxes between 2017 and 2020 for (A)May and (B) December. Blue lines are for 2017 and red
lines are for 2020.

FIGURE 11 | Comparison of global daytime mean shortwave flux between EPIC and CERES SYN for May 2017 (A) and May 2020 (B).
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FIGURE 12 | Comparison of global daytime mean shortwave flux between EPIC and CERES SYN for December 2017 (A) and December 2020 (B).

FIGURE 13 | Comparison of coincident hourly SW fluxes from EPIC and CERES SYN1deg for 2017–2020.
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the radiance anisotropy changes for EPIC observations taken
at different relative azimuth angles from 168◦ to 178◦.

Figure 13 compares SW fluxes from CERES SYN1deg product
with those from EPIC at all coincident hours of 2017–2020.
Excellent agreements are found between these two datasets with
the mean biases of 0.5 Wm−2 and RMS errors less than 3 Wm−2,
despite large changes in viewing geometries (Figure 2). The SW
flux agreement between these two data sets is within the
uncertainties from CERES calibration, EPIC calibration,
narrowband-to-broadband regression, and the angular
distribution models. This comparison indicates that the
method developed to calculate the global anisotropic factors
from the CERES empirical ADMs using the EPIC cloud
composites for scene identifications is robust and that the
CERES angular distribution models accurately account for the
Earth’s anisotropy in the near-backscattering to due-
backscattering directions.

CONCLUSION

DSCOVR is the first Earth-observing satellite at the Lagrange-1
(L1) point with two Earth observing instruments aim to provide
continuous observations of the sunlit side of the Earth. DSCOVR
is in an elliptical Lissajous orbit around the L1 point where the
EPIC and NISTAR view the Earth from a small range of relative
azimuth angle from 168◦ to 178◦. This viewing geometry is
unique to EPIC as instruments (i.e., MODIS and CERES) on
Terra and Aqua view the Earth mostly from side-scattering
angles. Thus applying the CERES ADMs to EPIC observations
offers an opportunity to test the performance of radiance-to-flux
conversion in the near back-scattering angles.

Previous study by Su et al. (2018) demonstrates that the
CERES ADMs accurately account for the Earth’s anisotropy
using 2017 EPIC observations when the relative azimuth angle
is between 170◦ and 174◦. However, the relative azimuth angle in
2020 shows large month-to-month variations, changing from
168◦ to 178◦. The SW radiances change rapidly within these
angular ranges and can increase significantly for many scene
types, most notably for liquid clouds and vegetated surface. EPIC
observations indeed show that the global daytime mean SW
radiances can increase by as much as 10% as the relative
azimuth angle increases from 170◦ to 178◦. The increase in
SW radiance is the result of EPIC viewing angle shifts closer
to due-backscattering direction, and it is not because the Earth is
more reflective (which could happen with significant increases of
aerosols and clouds). When the anisotropies of the radiance fields
are considered the resulting fluxes are very similar and do not
show systematic differences.

The EPIC SW fluxes derived at different relative azimuth
angles are compared against the CERES SYN1deg hourly SW
fluxes. The biases of monthly mean fluxes (EPIC-SYN1deg) are
less than 1.3 Wm−2 and RMS errors are less than 2.7 Wm−2

between EPIC and SYN1deg SW fluxes. These biases and RMS
errors are independent of the EPIC viewing geometries, even for
the largest relative azimuth angle differences observed between
December 2017 and December 2020. The comparison is extended
to include all coincident hours for data collected from 2017 to
2020. The annual global daytime mean SW fluxes from these two
datasets agree to within 0.5 Wm−2 and the RMS errors are less
than 3.0 Wm−2. This study demonstrates that the CERES ADMs
capture the anisotropy changes for relative azimuth angles
between 168◦ and 178◦. Furthermore, CERES instruments
view the Earth mostly from side-scattering angles and the
good agreement between global daytime mean fluxes from
EPIC and CERES SYN1deg shows that fluxes inverted from
different viewing angles are consistent with each other. Flux
consistency is an indication that the CERES ADMs provide
accurate characterization of the anisotropy for different Earth
scenes and can be used for flux inversion from different viewing
perspectives.
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A series of huge smoke plume events from the largest wildfire season recorded in
California’s modern history has occurred in 2020. Here, a research algorithm was
modified to retrieve the aerosol optical centroid height (AOCH) and aerosol optical
depth (AOD) from Earth Polychromatic Imaging Camera (EPIC) measurements. The
research focus is to gain insights of the algorithm’s feasibility in heavy smoke
conditions to study the diurnal variation of AOCH; this is only made possible via EPIC
due to its unique position at Lagrange-1 point and its equipment of O2 B-band at which the
vegetated surface reflectance is low. Vicarious calibration is applied to the EPIC 443, 680
and 688 nm channels based on the Tropospheric Monitoring Instrument (TROPOMI)
observation. This new calibration leads to a better agreement of AOCH values between
EPIC retrievals and the counterparts derived from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) aerosol extinction vertical profile. The hourly variation of AOCH up to
0.45 km on September 7 is shown to have important implications for estimating hourly
change of surface PM2.5, although more quantitative studies are needed in the future.

Keywords: DSCOVR EPIC, thick smoke layer, AOCH, California fires, surface PM2.5, hourly variation, aerosol
retrieval algorithms

INTRODUCTION

The vertical distribution of smoke aerosols from wildfires has several important effects on the
weather, climate and air quality. First, via absorbing and scattering of radiation, the altitude of smoke
plumes can influence how aerosols alter the thermodynamic structure of atmosphere in the vertical
dimension, thus affecting the formation and lifecycle of clouds (Wilcox, 2012). Second, the smoke
aerosols can be entrained into the clouds and serve as condensation nuclei for cloud formation,
thereby affecting the microphysics and radiative effect of clouds. This process highly depends on the
vertical distance between aerosol layer and clouds (Rajapakshe et al., 2017). Third, the relative
vertical position of aerosols and clouds determines the sign and magnitudes of the aerosol radiative
effects (Wang and Christopher, 2006a; Zarzycki and Bond, 2010; Ge et al., 2014). Lastly, the
characterization of smoke vertical distribution is also very important for the retrieval of aerosol
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optical depth and single scattering albedo using near-UV
observations (Torres et al., 1998; Ahn et al., 2021), as well as
the remote sensing of surface air quality (Wang and Christopher,
2003). On the one hand, for a given total column aerosol loading,
the lower the smoke layer is, the more severe the surface
particulate matter pollution would be (Val Martin et al., 2013;
Seo et al., 2015; Griffin et al., 2020). On the other hand, the aerosol
layer height (ALH) regulates the transport of aerosol particles,
with high altitudes favoring the long-range transport, thereby
affecting the air quality and human health over the downwind
region (Wang et al., 2006b; Val Martin et al., 2013; Tian et al.,
2017).

Unfortunately, the operational datasets of ALH from
observational sources are very limited. Although spaceborne
lidars, such as Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP), can provide accurate aerosol vertical
extinction profile, their footprint diameters are narrow (90 m
for CALIOP) at the ground, and consequently, the lidar data is
very sparse over time and space. Passive satellite remote sensing
has a much wider swath but contains less information of aerosol
vertical distribution (Xu et al., 2018). In addition, the diurnal
variation of the ALH is not well understood, because most passive
sensors with the capability of retrieving ALH are placed at the
sun-synchronous orbits. The deficiency of aerosol vertical
distribution information leads to large uncertainty and inter-
model variability in the simulation of aerosol vertical profile by
current climate models (Koffi et al., 2012; Kipling et al., 2016;
Koffi et al., 2016), which brings large uncertainty in climate
change prediction and air quality forecasting.

Here we present a first attempt to map hourly variation of
smoke vertical distribution from space during the 2020 severe fire
season. This study builds upon the past work that presented an
algorithm to retrieve hourly aerosol optical centroid height
(AOCH) from the oxygen absorption A- and B-bands of the
Earth Polychromatic Imaging Camera (EPIC) for the smoke
plumes over Hudson Bay–Great Lakes area (Xu et al., 2017;
Xu et al., 2019). The EPIC is onboard the Deep Space Climate
Observatory (DSCOVR) satellite that is parked at Lagrange-1
point (Marshak et al., 2018). This study, however, differs from the
past work in several aspects. First, we update the EPIC calibration
via the vicarious calibration study that uses the accurate radiance
measurements by the Tropospheric Monitoring Instrument
(TROPOMI) observation in the oxygen absorption bands. This
is needed because EPIC does not have the onboard calibration,
and the official after-launch calibration of EPIC measurements at
visible and near infrared (NIR) channels (Geogdzhayev and
Marshak, 2018) has not been updated since 2017 (https://epic.
gsfc.nasa.gov). In addition, the uncertainty of EPIC calibration is
probably larger than we expected before (See section Data, EPIC
L1B). Second, we seek to retrieve AOCH for the smoke plumes
that are optically much thicker than the cases that were studied in
the past work. Few studies have studied the altitudes of the smoke
plumes associated with the fires in August-December of 2020, the
largest wildfire season in California’s modern history (Morris and
Dennis, 2021). The two most severe smoke pollution events
occurred on September 7–9 and September 14–16,
respectively, and they are therefore selected for this study.

Finally, not only the change of smoke layer height from both
source and downwind regions but also the implications of this
work to estimate surface PM2.5 pollution are demonstrated. Of
particular interest is the diurnal variation of AOCH that can be
uniquely observed by EPIC, as well as its implication for surface
air quality.

DATA

EPIC L1B
The EPIC imager is aboard the DSCOVR platform, which was
launched in February 2015 to the Lagrange-1 point that gives
EPIC a unique viewing perspective to provide the measurements
of the sunlit Earth disk every 1–2 h. The EPIC level 1B data used
in this study are obtained from NASA Aura Validation Data
Center (https://avdc.gsfc.nasa.gov/pub/DSCOVR/Level1b_v03/).
The EPIC instrument uses a 30-cm aperture Cassegrain telescope
to measure the backscattered solar radiance at 10 narrow bands
including oxygen A and B bands with a spatial resolution of
10 km at nadir and 20 km at a viewing zenith angle of 60°. The raw
data from EPIC are post-launch calibrated using the well-
calibrated measurement from Ozone Mapping and Profiler
Suite (OMPS) for four UV (ultraviolet) channels, MODIS
Aqua and Terra level 1B top-of-atmosphere (TOA) reflectance
for four visible and NIR channels, and EPIC lunar observations
for two oxygen absorption bands (Geogdzhayev and Marshak,
2018; Marshak et al., 2018). However, the official calibration
coefficients for the EPIC measurements at visible and NIR
channels have not been updated since 2017 (https://epic.gsfc.
nasa.gov).

Besides from Geogdzhayev and Marshak (2018), several
other studies carried out the calibration for EPIC visible and
NIR channels using MODIS, Visible Infrared Imaging
Radiometer (VIIRS) or Multi-angle Imaging
Spectroradiometer (MISR) data as references (Haney et al.,
2016; Doelling et al., 2019; Geogdzhayev et al., 2021). The
inter-comparison of calibration coefficients from different
studies indicates that the accuracy of EPIC inter-calibration
depends on the referenced satellite sensor, the platform upon
which the sensor resides and the calibration methodology.
For example, the uncertainties of MODIS (Aqua and Terra)
and VIIRS/S-NPP (Suomi National Polar-Orbiting
Partnership) onboard calibration for reflective solar bands
(RSB) are both ∼2% (Choi et al., 2016; Xiong et al., 2017), but
a 6% positive bias exists for the VIIRS/S-NPP M5 band
(672 nm) with respect to MODIS/Aqua B1 channel
(646 nm) after accounting for the different spectral
response functions of the two instruments (Sayer et al.,
2017). However, Doelling et al. (2019) reported that the
relative difference in EPIC calibration at 680 nm between
using VIIRS/S-NPP M5 band and MODIS/Aqua B1 band is
only 3%, indicating an uncertainty of at least 1.5% in their
calibration process itself, which is higher than the calibration
discrepancy of 0.3% at 680 nm between ATO-RM (all-sky
tropical ocean ray-matching) and DCC-RM (deep convective
cloud ray-matching) algorithms adopted by their study.
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Additionally, the calibration difference in the specific
referenced sensor onboard different platforms also
contributes to the uncertainty of EPIC calibration. The
calibration differences between MODIS Aqua and Terra
for RSB are within 1.5% (Xiong et al., 2020), but MODIS/
Aqua-based EPIC calibration coefficients at 780 nm is 2%
lower than that derived from MODIS/Terra (Geogdzhayev
et al., 2021). The calibration coefficients for VIIRS/S-NPP at
RSB are lower than that of VIIRS/NOAA-20 by 3–7% (Xiong
et al., 2020). The MODIS-based EPIC calibration by Doelling
et al. (2019) agrees with Geogdzhayev and Marshak (2018)
within 1.6% and Geogdzhayev et al. (2021) within 2.6%.
Overall, the uncertainty of EPIC calibration using MODIS
or VIIRS data as references can be up to 8.5% as we analyzed
above, with 7% attributable to the satellite data used as
reference (Sayer et al., 2017; Xiong et al., 2020) and at
least 1.5% attributable to the calibration process itself.

There are also disagreements regarding the degradation of
EPIC instruments among different studies. For instance,
Geogdzhayev and Marshak, (2018) reported that there is little
degradation of EPIC instruments for four visible and NIR
channels based on an 18-month EPIC calibration using
MODIS (Aqua and Terra) data. In contrast, Doelling et al.
(2019) concluded that the trend of EPIC gain is within 0.15%
per year based on a 4-year calibration using VIIRS/S-NPP data.
However, Geogdzhayev et al. (2021) found the trend of EPIC
calibration coefficient at 443 nm is statistically significant (p �
0.006) with a value of 0.27% per year based on a 5-year EPIC
calibration derived from multiple Low Earth Orbit (LEO)
instruments. These disagreements again underscore the need
to adjust EPIC calibrations for aerosol retrievals. Considering
the degradation trend at 443 nm of 0.27% per year (Geogdzhayev
et al., 2021) from June 2015 to September 2020, the total
uncertainty of EPIC 443 nm in September 2020 could be up to
10%. Indeed, it is not uncommon that the algorithms for aerosol
retrievals need further calibration adjustment to the satellite L1B
data, such as the empirical corrections to the MISR data
(Limbacher and Kahn, 2015; Garay et al., 2020) and MODIS
data (Sayer et al., 2015).

EPIC L2 UVAI
The EPIC level 2 UV aerosol product (version 3) obtained
from the NASA Langley Research Center Atmospheric
Science Data Center (https://doi.org/10.5067/EPIC/
DSCOVR/L2_AER_03) are also used in this study. The
EPIC UV aerosol retrieval algorithm (Ahn et al., 2021)
uses a set of aerosol models, which are identical to those
assumed in OMI (Ozone Monitoring Instrument) algorithm
(Herman et al., 1997; Torres et al., 2007; Jethva and Torres,
2011; Torres et al., 2013), to represent the carbonaceous
aerosols from wildfires and biomass burning, dust and
sulfate-based aerosols. The EPIC UV Aerosol Index
(UVAI) is derived from 340 to 388 nm radiances for all
sky conditions (Torres et al., 2018; Ahn et al., 2021). It is
indicative of the presence of absorbing aerosols (smoke, dust,
or both particles) at free troposphere and above. The UVAI is
sensitive to ALH, aerosol optical depth (AOD) and single

scattering albedo (SSA) (Hsu et al., 1999). Jeong and Hsu
(2008) retrieved SSA by using UVAI derived from OMI data,
MODIS AOD and ALH from CALIOP, then they derived
ALH by constraining UVAI, AOD and SSA. Lee et al. (2020)
followed the same idea but replace MODIS AOD and OMI
UVAI with VIIRS AOD and UVAI from OMPS-NM (Ozone
Mapping and Profiler Suite Nadir Mapper). Xu et al. (2019)
found the relationship between EPIC UVAI and EPIC ALH
varies with different AOD values. In summary, there is no
monotonic relationship between UVAI and ALH, because of
the dependence of UVAI on the aerosol loading and
absorption properties; for the same UVAI value, it can be
a result of various combinations of AOD, SSA, and ALH.

CALIOP L2 Aerosol Profile
CALIOP is an elastic backscatter lidar measuring the
attenuated backscattered signal at both 532 and 1,064 nm.
It is aboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) spacecraft in a sun-
synchronous orbit with an equatorial crossing time of
around 13:30 local time and a repeat cycle of 16 days
(Winker et al., 2009). Vertical profiles of aerosol extinction
coefficient at 532 nm are obtained from CALIOP level 2
Aerosol Profile product (https://doi.org/10.5067/CALIOP/
CALIPSO/CAL_LID_L2_05kmAPro-Standard-V4-21),
which has a vertical resolution of 60 m and a horizontal
resolution of 5 km. The aerosol extinction profile from
CALIOP level 2 product is used to validate the EPIC
AOCH retrievals.

TROPOMI L1B
The calibrated hyperspectral measurements at visible and near
infrared bands from TROPOMI level 1B product (UVIS bands:
https://doi.org/10.5067/SENTINEL5P/S5P_L1B_RA_BD3_HiR.
1; NIR bands: https://doi.org/10.5067/SENTINEL5P/S5P_L1B_
RA_BD6_HiR.1) are convolved to conduct the soft-calibration
for EPIC level 1B data. TROPOMI is aboard the Sentinel-5
Precursor (S5P) satellite, which was launched to a sun-
synchronous polar orbit on October 13, 2017. With a local
overpassing time of around 13:30, TROPOMI can cover the
near-global domain in a single day (Veefkind et al., 2012).
TROPOMI contains 4 spectrometers covering the ultraviolet
(UV), visible (UVIS), NIR and shortwave infrared (SWIR).
The spectral resolutions for UV, UVIS, NIR and SWIR bands
are 0.45–0.5, 0.45–0.65, 0.34–0.35 and 0.225–0.227 nm,
respectively. The footprint size is 5.5 × 7 km2 for SWIR bands,
5.5 × 3.5 km2 for UVIS, NIR and UV band 2 (300–332 nm) and 5.
5 × 28 km2 for UV band 1 (267–300 nm).

TROPOMI has the onboard calibration capacity. Its regular
calibration is conducted on the eclipse side of the orbit with the
internal light sources of TROPOMI to correct the degradation
and gain drifts of UV, UVIS and NIR detectors over time. The
uncertainty of pre-launch calibration for absolute radiance and
irradiance at UVIS and NIR bands is in the range of 0.8–1.3%
(Kleipool et al., 2018), and the gain drifts with respect to pre-
launch calibration can always be corrected to below 0.1%. The
solar angular dependence of the irradiance radiometry is
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calibrated after launch with higher accuracy and angular
sampling than pre-launch calibration. The inconsistency of the
absolute irradiance calibration in the overlapped spectral range
between UV and UVIS bands are corrected during the in-flight
calibration. See more details in Ludewig et al. (2020). The
reflectance data from TROPOMI is estimated to have an
uncertainty of 1% (Kleipool et al., 2018; Ludewig et al., 2020).

TROPOMI L2 Aerosol Layer Height
The smoke AOCH values retrieved from EPIC are also compared
with the ALH from S5P_L2__AER_LH version 1 product
(https://doi.org/10.5270/S5P-j7aj4gr) provided by TROPOMI.
The TROPOMI ALH retrieval uses the optimal estimation
method for spectral fitting with various aerosol layer pressures
and aerosol optical thicknesses in the oxygen A-band. By training
a neural network model, the hyperspectral TROPOMI TOA
radiance can be simulated with high speed to reduce the
computation cost in the ALH algorithm (de Graaf et al., 2019;
Nanda et al., 2019). The TROPOMI ALH retrieval algorithm
assumes a uniform distribution of aerosols in a single layer with a
constant thickness of 50 hPa, and it adopts a single aerosol model
with single scattering albedo equal to 0.95 and the Henyey-
Greenstein phase function for which the asymmetry factor is
0.7 (de Graaf et al., 2019). The TROPOMIALH is shown to have a
mean negative bias of more than 2 km over land, as compared
with CALIOP data, primarily due to the high surface reflectance
in O2 A-band that is not favorable for aerosol retrievals (Griffin
et al., 2020; Nanda et al., 2020).

EPA Surface PM2.5
Hourly measurements of surface PM2.5 concentrations are
collected from United States Environmental Protection Agency
(EPA) Air Quality System (https://www.epa.gov/aqs). The PM2.5

dry mass concentrations are measured by Beta Attenuation
Monitor (Schweizer et al., 2016), Tapered Element Oscillating
Microbalance (Sofowote et al., 2014) techniques, and other
methods (Wang et al., 2006b). The data closest to the EPIC
overpass time are used to investigate the relationship of smoke
layer height and surface PM2.5 pollution.

MODIS/Aqua L2 AOD and AERONET AOD
Aqua is a sun-synchronous satellite passing over the equator in
the local afternoon, with a payload imaging sensor MODIS
onboard. MCD19A2 AOD product (https://doi.org/10.5067/
MODIS/MCD19A2.006) at 1 km resolution based on MODIS
MAIAC algorithm is used in this study to compare the AOD
retrieved from EPIC. The validation of global MAIAC AOD
retrievals during 2000–2016 shows 66% of total retrievals agree
with AERONETwithin ±0.05 ± 0.1 (Lyapustin et al., 2018), where
is AOD measured by AErosol RObotic NETwork or AERONET.
The AERONET AOD is derived based on Beer-Lambert-Bouguer
law from the direct sun measurements by ground-based sun
photometers at multiple wavelengths. The AERONET
instruments are calibrated routinely at least twice per year,
and the absolute uncertainty of AOD from a newly calibrated
field instrument is no larger than 0.01 at the wavelength longer
than 440 nm under cloud-free condition (Holben et al., 1998).

METHODS
Vicarious Calibration of EPIC With
TROPOMI Data
Hyperspectral measurements at UVIS and NIR bands from
TROPOMI are convolved to EPIC narrow bands at 443, 551,
680, 688, 764 and 780 nm using the spectral response function
of the EPIC instrument (Chen et al., 2021). To evaluate and
update the EPIC level 1B calibration, we picked four boxes
with each box containing 10 × 10 EPIC pixels over a
convective cloud in eastern United States on September 15,
2020 and compared the EPIC TOA reflectance with
convolved and well-calibrated TROPOMI TOA (top-of-
atmosphere) reflectance (Figure 1). The near-Lambertian
reflectance of convective cloud weakens the geometric
dependence of TOA reflectance and thus minimizes the
discrepancy between EPIC and TROPOMI observations
(Doelling et al., 2013). High-resolution TROPOMI
observations are re-gridded to EPIC grid size. The
atmospheric window channel 443 nm is used for the EPIC
AOD retrieval and the ratio of O2 B absorption band to the
continuum band (688/680) plays an important role in EPIC
AOCH retrieval. Therefore, we scale the original EPIC L1B
data based on the ratios of TROPOMI TOA reflectance to
EPIC counterparts at 443, 680 and 688 nm. 764 and 780 nm
are not scaled since the ratio of 764/780 nm from EPIC is very
close to that of TROPOMI data (Figure 1). No other channels
are used in our algorithm.

There are several advantages in using TROPOMI data to
derive the EPIC calibration coefficients compared to using
MODIS and VIIRS data. First, as a young mission launched
in October 2017, TROPOMI has a lower calibration uncertainty
(∼1%) for the reflectance at the TOA (Kleipool et al., 2018;
Ludewig et al., 2020) than MODIS and VIIRS (∼2%) (Choi et al.,
2016; Xiong et al., 2017); this superiority is due to TROPOMI’s
onboard calibration facility including the daily measurements of
spectral radiances directly from the Sun. Second, the
convolution of hyperspectral measurements of TROPOMI to
EPIC narrow bands using EPIC spectral response functions
avoids the complex correction accounting for the different
position and bandwidth between EPIC and MODIS (or
VIIRS) channels. MODIS (or VIIRS) channels have
bandwidth of 10 nm or larger, while EPIC bands have
bandwidth of ∼2 nm or less. Finally, any systematic bias in
TROPOMI spectrometers could be cancelled out since the
TROPOMI measurements used in the vicarious calibration
are reflectance-based, because all optical elements for the
Earth-view mode are included in the optical path for solar
irradiance measurement in TROPOMI instrument (Ludewig
et al., 2020).

EPIC Retrieval
The smoke AOCH algorithm was originally developed and
described in detail by Xu et al. (2017) and Xu et al. (2019). It
assumes a quasi-Gaussian aerosol vertical profile characterized
by total column AOD and the extinction peak height with a
half-width parameter of 1 km following Xu et al. (2017). The
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height at which the aerosol extinction peaks retrieved by our
algorithm is the optical centroid height, so that it is called AOCH
(aerosol optical centroid height). The ALH is a broader
terminology referring to the aerosol vertical position
information retrieved from passive satellite remote sensing
techniques, such as aerosol stereo height from MISR (Nelson
et al., 2013), aerosol injection height from MODIS MAIAC
thermal technique (Lyapustin et al., 2020) and aerosol mid-
layer height from TROPOMI (Nanda et al., 2019). After cloud
screening using reflectance at 443, 551 and 780 nm, AOD is
retrieved from using EPIC atmospheric window channel 443 nm,
and the AOCH is derived subsequently based on the ratios of
oxygen A and B bands to their respective neighboring continuum
bands (764/780 and 688/680). Following Xu et al. (2019), the
surface reflectance for water surface comes from GOME-2
Lambert-equivalent reflectivity (LER) product (Tilstra et al.,
2017). A 10-year climatology of Lambertian surface reflectance
from MODIS BRDF/Albedo product (MCD43) (Schaaf et al.,
2002) is applied for the land surface. Cloud mask is conducted
through the spatial homogeneity tests at 443 and 551 nm, as well
as the brightness tests with the prescribed threshold of TOA
reflectance at 443 and 680 nm for land and 443, 680, and 780 over
water. The water pixels with a sun glint angle smaller than 30° are
removed (Levy et al., 2013). The retrieval algorithm is based on
the lookup table constructed by running the radiative transfer
model UNL-VRTM (Unified and Linearized Vector Radiative
Transfer Model) (Spurr, 2008; Spurr et al., 2012; Wang et al.,
2014). Those pixels with EPIC UVAI less than 1 are removed
since we only focus on the heavy smoke plume here.

Validation of EPIC AOD and AOCH
AOD retrieved from EPIC is compared against the AOD from the
MODIS/Aqua level 2 MYD04_3K product qualitatively. The
collocated aerosol extinction profiles at 532 nm from CALIOP

level 2 product are used to calculate an extinction weighted
aerosol height AOCHCALIOP for the validation of EPIC AOCH.

AOCHCALIOP � ∑n
i�1βext,iZi

∑n
i�1βext,i

(1)

where βext,i is 532 nm aerosol extinction coefficient at vertical
level iwith an altitude of Zi. The EPIC AOCH from EPIC retrieval
is also compared with TROPOMI level 2 aerosol layer height
product. The EPIC retrievals from the measurements closest to
the overpass time of Aqua, CALIPSO and TROPOMI for each
day are used in the validation. It is worth noting that CALIOP
may lack sufficient sensitivity to detect the aerosol amount at the
vertical resolution of 60 m and therefore the level 2 data product
would report those layers as no-aerosols (Winker et al., 2013).
However, since aerosols are omnipresent in the atmosphere, the
accumulation of these below-the-detection-limit 60-m layer of
aerosols can lead to a biased CALIOP AOCH. Here, to account
for this effect, we, as in our past study (Xu et al., 2019), assume a
exponentially decayed background aerosol profile with a
columnar AOD of 0.07 for those clear-air layers from
CALIOP level 2 data.

RESULTS

Further Assessment of EPIC L1B
Calibration
The EPIC TOA reflectance values at 443 and 680 nm are much
lower than the TROPOMI counterparts, while they are relatively
close to each other at 688, 764 and 780 nm. The ratios of mean
TOA reflectance of TROPOMI to EPIC are used as scaling factors
as vicarious calibration of EPIC measurements at 443, 680 and
688 nm, which are 0.894, 0.934 and 1.03, respectively. It is not
surprising that we need the corrections of −10.6% and −6.6% at

FIGURE 1 | Comparison of TOA reflectance from EPIC and TROPOMI. Four boxes (thick black polylines) with each box containing 10 × 10 pixels over a
convective cloud in Eastern America on September 15, 2020, are selected for the comparison (left). Mean TOA reflectance of 400 pixels from EPIC and TROPOMI at
443, 680, 764 and 780 nm are compared (right). TROPOMI TOA reflectance values are convolved to EPIC narrow bands using the spectral response function of EPIC.
Evaluation of the AOD and AOCH retrievals.
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443 and 680 nm to align EPIC reflectance values to TROPOMI
ones, since the EPIC calibration uncertainty is 10% at 443 nm and
8.5% at other visible and NIR bands (See section DATA/EPIC
L1B), and an uncertainty of 1.2–1.3% exists in TROPOMI UVIS
channels (Kleipool et al., 2018). While we also had similar
findings for other cases (figure not shown), more studies are
needed in the future to reduce the EPIC calibration uncertainty.
The channels of 764 and 780 nm are not scaled since the
discrepancy of the 764/780 ratio between EPIC and
TROPOMI is small, and it is the ratio of oxygen absorption
band to continuum band (688/680 and 764/780) matters in the
AOCH retrieval. Besides, the AOCH over land is primarily
retrieved from the ratio of O2 B band and its continuum,

because the O2 B band has a much lower land surface
reflectance than O2 A band.

Figure 2 shows the comparison of EPIC AOD with and
without the vicarious calibration (VC) to the MODIS MAIAC
AOD. The EPIC AOD retrieved after the VC is lower than that
before the VC (i.e., using the calibration coefficient published in
Geogdzhayev and Marshak, 2018), which is expected because
EPIC TOA reflectance at 443 nm used for AOD retrieval
decreases after VC. Generally, EPIC AOD retrieval captures
the smoke plumes shown in the EPIC true color image and
shares a similar spatial pattern with MODIS MAIAC AOD.
However, the EPIC AOD values after the VC are lower than
MAIAC AOD values. Note that the AOD retrievals from EPIC

FIGURE 2 | Comparison of EPIC AOD and MODIS MAIAC AOD for September 9 and 14–16. The first column is EPIC true color image composed of 443, 551 and
680 nmmeasurements. The second and third columns are EPIC 680 nm AOD retrievals without and with vicarious calibration. The red lines in the third columns are the
CALIOP sub-orbital tracks on each day. The last column is MODIS MAIAC AOD at 550 nm.
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and MODIS MAIAC algorithm are at different wavelengths. It is
not surprising the EPIC AOD at longer wavelength (680 nm) is
lower than MAIAC AOD at shorter wavelength (550 nm).
Previous studies reported the Angstrom exponent (AE) at
550–680 nm for aging smoke particles is at the range of
1.4–2.2 (Reid et al., 1999; Sicard et al., 2019). The ratio of
AOD at 680 nm to that at 550 nm is around 0.63–0.74 for this
range of AE, which is consistent with the comparison between
EPIC 680 nm AOD and MODIS MAIAC 550 nm AOD. Besides,
EPIC AOD retrieval has a larger spatial coverage than MAIAC
AOD over the areas with extremely heavy smoke plumes. On

September 9 and 14, MAIAC algorithm has little valid retrievals
over the downwind region of the west coast of United States and
South of the Great Lakes, respectively, which can be identified as
heavy smoke layers from the EPIC true color images (Figure 1)
and EPIC UVAI data (Figure 2). This is understandable because
the operational algorithm can often mis-classify heavy aerosol
layers as cloud layers and so, no retrievals of AOD are made in
these cases (Shi et al., 2019). In addition, we also compared our
EPIC AOD retrieval to the AERONET level 1.5 AOD product.
We find the root mean square error (RMSE) decreases from 0.68
to 0.37 and the correlation coefficient (R) value increase by 0.25

FIGURE 3 | Comparison of EPIC AOCH and TROPOMI operational ALH product for September 9 and 14–16. The first and second columns are EPIC AOCH
retrievals without and with vicarious calibration. The red lines in the second columns are the CALIOP sub-orbital tracks on each day. The third column is the TROPOMI
operational ALH product from KNMI. The last column is the EPIC UVAI.
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after the VC. This suggests a better EPIC AOD retrieval with the
VC (figure not shown). We will continue to assess the VC once
the best quality level 2.0 AOD data is available.

The EPIC AOCH retrievals before and after the VC are
compared with TROPOMI operational ALH product from
KNMI (Royal Netherlands Meteorological Institute)
(Figure 3). The EPIC AOCH values increase by 3–4 km after
the VC, mainly due to the VC-induced increase of 688/680 ratio.
TROPOMI operational ALH values is lower than EPIC AOCH
values with the VC by 2–3 km. However, TROPOMI operational
ALH product has large uncertainty especially over land. Nanda
et al. (2020) reported that TROPOMIALH product has a negative
bias and can be lower than CALIOP ALH by 2.41 km over land
and 1.03 km over ocean on average.

To further evaluate the EPIC AOCH retrieval with the VC, the
extinction-weighted heights calculated from the CALIOP aerosol
extinction profile are used (Figures 4, 5). The CALIOP tracks are
marked by the red lines in Figure 3. As shown by Figure 4, the
EPIC AOCH after the VC matches the CALIOP AOCH well,
while the EPIC AOCH retrieval without the VC is lower than the
CALIOP AOCH by 1–3 km. Figure 5 indicates that not only the
RMSE reduces from 2.76 to 0.91 km after the VC, but the
correlation coefficient (R) also improves from 0.736 to 0.885.
The discrepancy between CALIOP AOCH and EPIC

counterparts with the VC is generally less than 1 km, which is
lower than the uncertainty of more than 2 km over land for
TROPOMI operational ALH product (Nanda et al., 2020; Chen
et al., 2021).

Hourly Change of AOCH and Its Potential
Application to Surface PM2.5 Estimate
The diurnal variation of smoke layer height over land from local
morning to local noon time (17:06–20:42 UTC) on September 7 is
investigated to reveal the implications of aerosol layer height on
the surface PM2.5 pollution (Figure 6). We did not extend the
analysis to the afternoon because the fire activity and probably the
smoke optical depth reach the peak in the late afternoon (Giglio
et al., 2006). It would be more helpful to investigate the time
period when the smoke optical depth changes little, but show a
large hourly variation, since our focus here is to illustrate the
implications of hourly variation of smoke height on the surface
PM2.5. The heavy smoke layer extended from California to the
Colorado, which can be clearly seen from the EPIC true color
image and UVAI maps. The surface PM2.5 concentrations
measured at EPA sites in California, southern Nevada and
Utah exceed the National Ambient Air Quality Standard
(NAAQS) for 24-h PM2.5 pollution (35 μg m−3). The mean

FIGURE 4 | Comparison of EPIC AOCH and CALIOP aerosol extinction profile as well as CALIOP AOCH for September 9 and 14–16. The CALIOP tracks are
marked by red lines in Figure 3. The CALIOP AOCH values are represented by black lines, and EPIC AOCH retrievals with the vicarious calibration (EPIC*) and without
the vicarious calibration (EPIC) are marked by pink and yellow lines respectively.

Frontiers in Remote Sensing | www.frontiersin.org October 2021 | Volume 2 | Article 7666288

Lu et al. Sensing Thick Smoke Plume Height

155

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


AOCH values of the smoke plume decreased from 6.0 to 4.3 km
within 216 min. The hourly variations have significant impacts on
the surface PM2.5 pollution. In the areas indicated by the black
ellipse in Figure 6, the PM2.5 concentrations increase during this
time period as the smoke layer was descending. Meanwhile, the
AOD does not show much temporal variation.

For comparison, we also studied the hourly change of smoke
height and surface PM2.5 over Eastern United States from 15:00 to 16:
48 UTC on September 15 (Figure 7). Since the long-range transport
diffuses the smoke plumes, the smoke layer in Eastern United States
exhibits a smaller AOD than that over western United States on
September 7. The majority of PM2.5 measurements in Eastern
United States on September 15 are lower than 20 μgm−3. The
PM2.5 concentrations are higher in the southwest of the research
domain indicated by the pink circle in Figure 7 than that in the
northeast indicated by the black circle, with the AOD values even
lower in the southwest than northeast. Again, this is due to the lower
smoke height in the southwestern region, which also indicates the
smoke plumes already affected the surface PM2.5 concentrations at
least in the southwestern region. However, since both the AOD and
AOCH do not show much hourly variation in the whole Eastern
United States domain, the surface PM2.5 concentrations remain at
similar level during these 2 hours.

SUMMARY

This study applied vicarious calibration to EPIC measurements based
on the TROPOMI level 1B data to retrieve the smoke aerosol optical
centroid heights for the 2020 California fire events on September 7, 9

and 14–16, because the EPIC instrument does not have on-board
calibration and its after-launch calibration is out of date. The cases of
September 9 and 14–16 are used for validation of the EPIC retrievals
after the new calibration. Subsequently, the implication of hourly
variation of the smoke heights on the surface PM2.5 pollution on
September 7 and 15 is investigated.

The vicarious calibration leads to important improvement of the
EPIC AOCH retrieval. Without the new calibration, the EPIC AOCH
is lower than the CALIOPAOCHby 1–3 km,while after the vicarious
calibration, the EPIC AOCH retrieval matches with the CALIOP
AOCH very well. The RMSE of the AOCH retrievals reduces from
2.76 to 0.91 km, and the correlation coefficient increases from 0.736 to
0.885 after the vicarious calibration. The TROPOMI operational ALH
product is lower than the new EPIC AOCH retrieval by 2–3 km,
which is consistent with Nanda et al. (2020).

The case studies on September 7 and 15 indicate that the spatial
and diurnal variations of smoke plume height have significant
implications on the surface PM2.5 pollution. The hourly change
of smoke height and the response of surface PM2.5 thereafter are of
particular interest as it can be uniquely investigated via EPIC
observations. The descending of the smoke height in ∼3.5 h on
September 7 leads to the increase of surface PM2.5 concentrations. By
contrast, the smoke height did not change much during 15:00–16:48
UTC on September 15 over Eastern United States, and there is little
hourly variation in PM2.5 concentrations during this time period.

This study is the among the first to demonstrate the
feasibility to retrieve simultaneous hourly AOD and AOCH
for thick smoke plumes in the United States from a passive-
sensing instrument without on-board calibration, such as
EPIC; hourly AODs from geostationary satellites have been

FIGURE 5 | Scatter plot of EPIC AOCH retrieval and CALIOP AOCH for September 9 and 14–16. The left panel shows the EPIC retrieval without the vicarious
calibration, and the right panel shows that with the vicarious calibration.
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available but without AOCH information. As the big fires
occurred in many parts of the world in the last several years
and are likely to continue as a result of global warming, the
impacts of these fires on air quality have to be mitigated with
the better monitoring and predictions of smoke transport,
specially the placement of smoke layer in the vertical with
respect to the planetary boundary layer where human live.
While more studies are needed, the work here shows the
critical value of passive sensors such as EPIC to derive hourly
AOCH and mapping the vertical movement of smoke layer
with large spatial coverage, all of which can potentially
needed to the improvement of surface air quality
monitoring and prediction.

The major limitation of our current algorithm includes
two perspectives: 1) the surface reflectance is assumed to be
Lambertian, and we will consider BRDF in the future; 2)
sometimes the retrieval results have some shattered cloud
contamination, and we plan to apply the spectral slope test as
in Chen et al. (2021) and post processing to further remove
the cloud noise. In addition, we are going to improve the
algorithm in the following perspectives: 1) calculate the
UVAI online and set some threshold to determine whether
to do the retrieval for each pixel; 2) develop some techniques
to separate the smoke and dust aerosol and apply proper
aerosol model in the retrieval; 3) retrieve hourly AOCH and
AOD from EPIC operationally.

FIGURE 6 | Diurnal variation of EPIC AOCH and its implication on surface PM2.5 concentration from 17:06 to 20:42 UTC on September 7, 2020. The first row is
EPIC true color image, and the second row is the EPIC AOD. The third row is the EPIC AOCH retrievals, and the fourth row is the EPA surface PM2.5 mass concentrations
at 17:00, 19:00 and 21:00 UTC respectively. The last row is EPIC UVAI.
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In vegetation canopies cross-shading between finite dimensional leaves leads to a peak in
reflectance in the retro-illumination direction. This effect is called the hot spot in optical
remote sensing. The hotspot region in reflectance of vegetated surfaces represents the
most information-rich directions in the angular distribution of canopy reflected radiation.
This paper presents a new approach for generating hot spot signatures of equatorial
forests from synergistic analyses of multiangle observations from the Multiangle Imaging
SpectroRadiometer (MISR) on Terra platform and near backscattering reflectance data
from the Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space
Climate Observatory (DSCOVR). A canopy radiation model parameterized in terms of
canopy spectral invariants underlies the theoretical basis for joining Terra MISR and
DSCOVR EPIC data. The proposed model can accurately reproduce both MISR
angular signatures acquired at 10:30 local solar time and diurnal courses of EPIC
reflectance (NRMSE < 9%, R2 > 0.8). Analyses of time series of the hot spot signature
suggest its ability to unambiguously detect seasonal changes of equatorial forests.

Keywords: DSCOVR EPIC, terra MISR, vegetation hotspot signature, directional area scattering factor (DASF),
seasonality, tropical forests

INTRODUCTION

The global forest ecosystem absorbs about 25% of the total anthropogenic CO2 emission from
atmosphere via carbon accumulation to forest biomass (Reichstein et al., 2013). Forests store 75% of
terrestrial carbon, and account for 40% of the carbon exchange with atmosphere each year
(Schlesinger and Bernhardt, 2012). Within the forest ecosystem, tropical forests contain about
40–50% of the terrestrial carbon stock (Lewis et al., 2009) and are potentially responsible for about
70% of terrestrial carbon sink (Pan et al., 2011). Monitoring and quantifying changes in tropical
forests therefore play a critical role in understanding the global carbon cycle and future climate
change.

Monitoring of dense vegetation such as equatorial rainforests represents the most complicated
case in optical remote sensing because reflection of solar radiation saturates and becomes weakly
sensitive to vegetation changes. At the same time, the satellite data are strongly influenced by
changing sun-sensor geometry. This makes it difficult to discriminate between vegetation changes
and sun-sensor geometry effects. For instance, studies on Amazon forest seasonality based on
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analyses of data from single-viewing sensors disagree on whether
there is more greenness in the dry season than in the wet season:
the observed increase in vegetation indices were explained by an
increase in leaf area, an artifact of sun-sensor-geometry and
changes in leaf age through the leaf flush (Huete et al., 2006;
Brando et al., 2010; Samanta et al., 2012; Morton et al., 2014;
Saleska et al., 2016). The impact of droughts on Amazon forests
has also been debated (Saleska et al., 2007; Samanta et al., 2010;
Samanta et al., 2011; Xu et al., 2011). Conflicting conclusions
among these studies arose from different interpretations of
surface reflectance data acquired under saturation conditions
(Bi et al., 2015). Developing methodologies that allow us to
unambiguously interpret reflectance of dense forests is worthy
of special attention.

Broadly used approaches for interpretation of satellite data
from single-viewing sensors consider the viewing and solar zenith
angle dependence of reflected radiation to be a problematic
source of noise or error, requiring a correction or
normalization to a “standard” sun-sensor geometry (Lyapustin
et al., 2018). Transformation of such data to a fixed standard sun-
sensor geometry therefore invokes statistical assumptions that
may not apply to specific scenes. The lack of information about
angular variation of forest reflected radiation introduces model
uncertainties that in turn may have significant impact on
interpretation of satellite data (Gorkavyi et al., 2021).

Unlike single-angle methodologies, multiangle approaches
exploit angular variation of surface reflected radiation as
unique and rich sources of diagnostic information and enable
the rigorous use of the radiative transfer theory. In vegetation
canopies cross-shading between finite dimensional leaves leads to
a peak in reflectance in the retro-illumination direction. This
effect is called the hot spot in optical remote sensing (Gerstl and
Simmer, 1986; Ross and Marshak, 1988; Kuusk, 1991; Myneni,
1991). The hotspot region in reflectance of vegetated surfaces
represents the most information-rich directions in the angular
distribution of canopy reflected radiation. The hot spot
phenomenon correlates with canopy architectural parameters
such as foliage size and shape, crown geometry and within-
crown foliage arrangement, foliage grouping, leaf area index
and its sunlit fraction (Ross and Marshak, 1991; Qin et al.,
1996; Goel et al., 1997; Qin et al., 2002; Yang et al., 2017;
Pisek et al., 2021). Angular signatures that include the hot
spot region are critical for monitoring phenological changes in
equatorial forests (Bi et al., 2015). Availability of hot spot
signatures of equatorial forests would make monitoring their
changes more reliable.

The Multiangle Imaging SpectroRadiometer (MISR) on Terra
platform provides simultaneous multiangle observations of
surface reflectance since December 1999. Its observing strategy
allows for a good angular variation of surface reflectance in
equatorial zone. However spatially and temporally varying
phase angle1 could be far from zero, making frequent
observations of canopy reflectance in the hot spot region
impossible. The NASA’s Earth Polychromatic Imaging Camera

(EPIC) onboard NOAA’s Deep Space Climate Observatory
(DSCOVR) was launched on February 11, 2015 to the Sun-
Earth Lagrangian L1 point where it began to collect radiance
data of the entire sunlit Earth every 65–110 min in June 2015. It
provides imageries in near backscattering directions (Marshak
et al., 2018).

The DSCOVR EPIC observations therefore provide unique
information required to extend angular sampling of the MISR
sensor to the hot spot region. The objectives of this paper are to 1)
develop a new methodology that synergistically incorporates
features of Terra MISR and DSCOVR EPIC observation
geometries and results in hot spot signatures of equatorial
forests; 2) generate angular signatures of equatorial rainforests
for the period of concurrent TerraMISR and DSCOVR EPIC data
and asses their quality; 3) demonstrate their value for monitoring
seasonal changes of the equatorial forests.

THEORETICAL BASIS

Reflectance of Dense Vegetation
The Bidirectional Reflectance Factor (BRF) is defined as the ratio
of the surface-reflected radiance to radiance reflected from an
ideal Lambertian surface into the same beam geometry and
illuminated by the same mono-directional beam (Martonchik
et al., 2000; Schaepman-Strub et al., 2006). It describes the
magnitude and angular distribution of surface reflected
radiation in the absence of atmosphere and varies with the
directions to the Sun, Ω0 ∼ (θ0,φ0), and to the sensor,
Ω ∼ (θ,φ). In this paper, the directions are expressed in terms
of zenith, θ0 and θ, and azimuthal, φ0 and φ, angles. We will use
symbols μ0 and μ for cos θ0 and cos θ, respectively.

For sufficiently dense vegetation such as equatorial forests, the
BRF can be accurately approximated as (Knyazikhin et al., 2013)

BRFλ(Ω0,Ω) � ρ(Ω0,Ω)i0
1 − p

× ωλ(1 − p)

1 − pωλ
� DASF(Ω0,Ω) ×Wλ .

(1)

The first factors on the right-hand side of Eq. 1 is the
Directional Area Scattering Factor (DASF), which describes
the canopy BRF if the foliage does not absorb radiation. The
spectrally invariant DASF is a function of canopy geometrical
properties, such as the tree crown shape and size, spatial
distribution of trees on the ground, and within-crown foliage
arrangement (Knyazikhin et al., 2013). The second factor, Wλ, is
the Canopy Scattering Coefficient (CSC), i.e., the fraction of
intercepted radiation that has been reflected from, or
diffusively transmitted through, the vegetation (Smolander and
Stenberg 2005; Lewis and Disney 2007). The spectrally varying
CSC is weakly sensitive to variation in the sun-sensor geometry. It
conveys information about leaf optical properties (Knyazikhin
et al., 2013; Latorre-Carmona et al., 2014; Adams et al., 2018).

Our forest BRF is parameterized in terms of spectrally
invariant parameters (Knyazikhin et al., 2011; Stenberg et al.,
2016). Here i0 is the canopy interceptance defined as the portion
of photons from the incident solar beam that collide with foliage1The phase angle is the angle between the directions to the Sun and sensor
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elements for the first time. The symbol ρ designates the
directional escape probability, i.e., the probability by which a
photon scattered by a foliage element will exit the vegetation in
the directionΩ through gaps. Spherical integration of π−1ρ| cos θ|
results in 1 − p, where p is the recollision probability, defined as
the probability that a photon scattered by a foliage element in the
canopy will interact within the canopy again. The spherical
integration significantly weakens the sensitivity of p to sun-
sensor geometry. Finally, ωλ is the wavelength dependent leaf
albedo, i.e., the fraction of radiation incident on a leaf surface that
is reflected or transmitted.

The directional escape probability controls the shape of the
BRF. Indeed, photons scattered by sunlit leaves will escape the
vegetation in the retro-illumination direction with unit
probability since their paths are free of foliage elements.
Photon paths in off-backscattering directions are more likely
obstructed by leaves and the likelihood of photons escaping the
canopy is consequently reduced. We follow methodology
developed in (Yang et al., 2017) to simulate the hot spot
effect. Kuusk’s model of the hot spot incorporated into the
extinction coefficient of the radiative transfer equation is used
to estimate the escape probability (Supplementary
Appendix SA).

Our primary objective is to derive DASF from TerraMISR and
DSCOVR EPIC observations. For vegetation canopies with a dark
background, or sufficiently dense vegetation where the impact of
canopy background is negligible, the DASF can be directly
retrieved from the BRF spectrum in the weakly absorbing
spectral interval, without involving canopy reflectance models,
prior knowledge, or ancillary information regarding leaf
scattering properties. We follow methodology developed in
(Marshak and Knyazikhin 2017; Song et al., 2018) to
approximate this variable using BRFs at NIR and green
spectral bands: DASF is the ratio R/(1 − s) where R and s are
intercept and slope of the line passing two points
(BRFλ

ωλ
, BRFλ), λ � green, NIR. Thus,

DASF(Ω0,Ω) � BRFgreenBRFNIR

BRFgreen − β(BRFNIR − BRFgreen)
. (2)

Here β � (1 − ωNIR)ωgreen/(ωNIR − ωgreen) where ωNIR and
ωgreen represent leaf albedo of the brightest leaf at NIR and
green spectral bands integrated over bandwidths. Its values are
ω555 � 0.461, ω865 � 0.978 (β � 0.0196) for MISR and ω551 �
0.490 ω779 � 0.966 (β � 0.035) for EPIC. These values were
obtained from Lewis and Disney’s approximation (Lewis and
Disney, 2007) of the PROSPECT model (Féret et al., 2008) with
the following parameters: chlorophyll content of 16 μg cm−2;
equivalent water thickness of 0.005 cm−1, and dry matter content
of 0.002 g cm−1.

Approximation of DASF
The probability of photons escaping the vegetation canopy
depends on scattering order. The directional escape probability
in Eq. 1 is an average over scattering orders (Supplementary
Appendix SB). We approximate ρ(Ω0,Ω) by probabilities
calculated for single scattered photons (Supplementary

Appendix SC). We use the inclination index of foliage area to
parameterize the leaf normal distribution (Ross 1981). This index
characterizes the deviation of leaf orientation from the spherical
distribution. It allows us to approximate the geometry factor, G,
that appears in (Supplementary Appendix SA7 as G � 0.5α,
where the weight α varies between 0 and 2. The leaf normals, ΩL,
are simulated by spherical distribution corrected for the
deviation, i.e., g(ΩL) � α. The corresponding scattering
anisotropy (Supplementary Appendix SA2) becomes:

j(Ω) �
1
3π (sin ϑ − c cos ϑ) + τL

3 cos ϑ

0.5π
, (3)

where ϑ � π − acosΩΩ0 is the scattering angle (the angle between
incident and scattered radiation) and τL represents the leaf
transmittance, which was set to 0.5 in our calculations. Under
these assumptions DASF in the upward directions rearranges to
the form (Supplementary Appendix SC)

DASF ≈
ρ1i0

1 − p(1) �
1

1 − p(1)
j(Ω)
μ0μ

1 − tψL

ψ
. (4)

Here p(1) is the single scattering approximation of the recollision
probability (Supplementary Appendix SC); t � exp(−0.5) � 0.61;
ψ � μ−10 + μ−1(1 − 8HS); the factor 8HS is defined by
Supplementary Appendix SA4, and L is an effective extinction
coefficient. Thus, our model depends on two parameters. They are
the hot spot parameter h that appears in 8HS and the effective
extinction coefficient L. The former determines the shape of DASF,
while the latter controls its magnitude.

MATERIALS AND METHODS

Study Area
Our study is focused on equatorial evergreen broadleaf forests
that include Amazonian central rainforests (0°–10°S and
70°–60°W), Congo rainforests in Central Africa (5°S–5°N and
20°–30°E) and Southeast Asian rainforests (19.80°–26.57°N and
92.5°–105°E). Figure 1 shows locations of our study area. The
seasonal transition between wet and dry seasons is a distinct
feature of tropical rainforests, which leads to intra-annual
patterns of leaf flushing and abscission.

About 95% of our Amazonian central rainforest is covered
with terra firme rainforests (Nepstad et al., 1994). The average
annual rainfall during the 2000–2019 period is about 2,600 mm.
The seasonal cycle consists of a short dry season, June to October,
and a long wet season thereafter.

The equatorial rainforests of Central Africa are the second
largest and least disturbed of the biodiversly-rich and highly
productive rainforests on Earth (Cook et al., 2020). Our study
area includes central and part of western and northeast Congolian
lowland forests. The Congo basin exhibits bimodal precipitation
pattern and has two wet and two dry seasons per year (Yang et al.,
2015). The wet seasons occur in March-April-May and
September-October-November, while dry season months are
December-January-February and June-July-August. The
average annual rainfall over the past 2 decades is about 1761 mm.
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FIGURE 1 |DSCOVR EPIC 10 km land cover map (WWW-VESDR 2021) on Robinson projection with Center meridian at 20°E. Our study area includes Amazonian
central rainforest (Region 1: 0°–10°S and 70°–60°W), Congo rainforests (Region 2: 5°S–5°N and 20°–30°E) and Southeast Asian rainforest (Region 3.1: 23.50°–26.57°N
and 92.5°–98.62°E; Region 3.2: 19.80°–21.54°N and 97.93°–105°E). Our study areas are depicted as squares, which are part of evergreen broadleaf forests.

FIGURE 2 |MISR observing geometry. Here the X and Y axes point toward the North and East, respectively. (A)Directions from ground pixel to MISR cameras form
view lines on the polar plane, each characterizing by slope, k, and intercept, b. (B) Sun-sensor geometry is parametrized in terms the solar zenith angle (SZA), intercept b
and phase angle (PA), the latter is the angle between the directions to the Sun and sensor. We assign the sign “plus” to the phase angle if the MISR view direction
approaches the direction to the sun from North (i.e., above the dotted red line perpendicular to the MISR view line), and “minus” otherwise.
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Our third region consists of two sub-regions depicted as
Region 3.1 (23.50–26.57°N and 92.5–98.62°E) and 3.2
(19.80–21.54°N and 97.93–105°E). The first one is a
subtropical moist broadleaf forest ecoregion in
Mizoram–Manipur–Kachin rain forests. It occupies the lower
hillsides of the mountainous border region joining India,
Bangladesh, and Burma (Myanmar). The average annual
rainfall over the past 20 years is about 1,545 mm. The dry
season is from October to April, and wet season is May to
September. Region 3.2 represents a subtropical moist broadleaf
forest ecoregion in Northern Indochina. The wet seasons occur in
May to September while dry season months are October to April.

Data Used
Various variables from several independent satellite sensors over
our study area were used in this research. These include land
cover maps and leaf area index (LAI) from the MODerate
resolution Imaging Spectroradiometer (MODIS), precipitation
from Tropical Rainfall Measuring Mission (TRMM), surface
bidirectional reflectance factor (BRF) from Multi-angle
Imaging SpectroRadiometer (MISR) on the Terra platform and
BRF from Earth Polychromatic Imaging Camera (EPIC) on Deep
Space Climate Observatory (DSCOVR).

MODIS land cover dataset. Collection 6 Terra and Aqua
MODIS land cover product from 2001 to 2019 at yearly temporal
frequency and 0.05° spatial resolution (Friedl and Sulla-Menashe
2015) was used to identify our study area. This product provides
several classification schemes. The map of LAI classification
scheme was adopted in this research. Figure 2 illustrates LAI
classification scheme used by DSCOVR EPIC operational
algorithm for the generation of Vegetation Earth System Data
Record (WWW-VESDR 2021).

MODIS LAI datasets. Collection 6 Terra and Aqua MODIS
LAI products (Myneni et al., 2015a; Myneni et al., 2015b) for the
period February 2000 to December 2019 were used in this study.
The LAI dataset provides 8-days composite LAI at 500-m spatial
resolution. The C6 MODIS LAI product was evaluated against
ground-based measurements of LAI and through inter-
comparisons with other satellite LAI products (Yan et al.,
2016; Yan et al., 2016).

TRMM precipitation dataset. Monthly precipitation data
from the TRMM (3B43 version 7) at 0.25° spatial resolution
for the period January 2000 to December 2019 (WWW-TRMM
2011) was used in this study. This dataset provides the best-
estimate precipitation rate and root-mean-square precipitation-
error estimates by combining four independent precipitation
fields (Huffman et al., 2007).

DSCOVR EPIC MAIAC dataset. Level 2 DSCOVR EPIC
Multi-Angle Implementation of Atmospheric Correction
(MAIAC, version 1) surface BRF and aerosol optical depth
(AOD) at 551 nm from 2016 to 2019 were also used. The
EPIC instrument has provided imageries in near
backscattering directions with the phase angle between 4° and
12° at ten ultra-violet to near infrared (NIR) narrow spectral
bands until June 27, 2019, when the spacecraft was placed in an
extended safe hold due to degradation of the inertial navigation
unit (gyros). DSCOVR returned to full operations on March 2,

2020 after the navigation problem had been resolved. AfterMarch
2020 the range of phase has substantially increased towards
backscattering reaching 2° (Lyapustin et al., 2021; Marshak
et al., 2021).

The MAIAC BRF are available at four spectral bands; they are
433 (band width 3.0) nm, 551 (3.0) nm, 680 (2.0) nm and 780
(2.0) nm. Data are projected on a 10-km SIN grid and available at
65–110 min temporal frequency (WWW-MAIAC 2018). EPIC
sees Amazonian rainforests between 11 UTC and 18 UTC, Congo
forests between 5 UTC and 14 UTC and Southeast Asian
rainforests between 1 and 7 UTC.

MISR datasets. The MISR sensor views each 1.1 km ground
pixel symmetrically about the nadir in the forward and aftward
directions along the spacecraft’s flight track. Image data are
acquired with nominal view zenith angles relative to the
surface reference ellipsoid of 0.00 (camera An), 26.10 (Af and
Aa), 46.50 (Bf and Ba), 60.00 (Cf and Ca) and 70.50 (Df and Da) in
four spectral bands centered at 446 (band width 41.9 nm), 558
(28.6) nm, 672 (21.9) nm, and 866 (39.7) nm. MISR obtains
global coverage between ±82° latitudes in 9 days (Diner et al.,
1998; Diner et al., 1999). Level 2 version 3 MISR land surface
(WWW-MISR_SURFACE 1999) and aerosol (WWW-
MISR_AEROSOL 1999) products for the period of January
2016 to December 2019 over our study area were used. The
surface reflectance parameter BRF in 9 view angles and fourMISR
spectral bands is at 1.1 km spatial resolution. The aerosol optical
depth is available at 4.4 km spatial resolution. Both parameters
are projected on Space Oblique Mercator (SOM) projection, in
which the reference meridian nominally follows the spacecraft
ground track.

Directions from ground pixel to MISR cameras form view
lines on the polar plane, which are characterized by slope,
k � tan υK, and intercept, b (Figure 2A). The slope is aligned
with ground track and is roughly constant with υK ≈ 15.5°. The
intercept is associated with location of pixel within the MISR
360 km swath. We parameterize MISR BRF in terms of the solar
zenith angle, phase angle and intercept. The phase angle, c, is
calculated as

c � acosΩΩ0 � acos(cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0)) ,

(5)

where Ω0 ∼ (θ0, φ0) and Ω ∼ (θ,φ) are directions from ground
pixel to the Sun and sensor, respectively. We assign the sign
“plus” to the phase angle if theMISR view direction approaches to
the direction to the Sun from North,
i.e., sin θ cos(υK − φ)> sin θ0 cos(υK − φ0), and “minus”
otherwise (Figure 2B).

Data Processing
The MODIS LAI and TRMM precipitation data over forested
pixels were selected using flags indicating highest retrieval quality.
The 8-days 500 m LAI products over our study area (Figure 1)
were spatially aggregated to 0.01° and 0.1° resolutions which were
then used in our analyses.

The MISR and DSCOVR EPIC surface BRF over our study
area were first refined by removing pixels with aerosol optical
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depth over 0.3. MISR and EPIC datasets were further re-projected
to 0.01° and 0.1° Climate Modeling Grids (CMG), respectively.
For each pixel, MISR and EPIC DASFs were calculated using Eq.
2, which then were used to generate monthly DASFs. If there were
several observations of a pixel within a given month, a median
DASF value was assigned to such pixel.

Area-averaged DASF as a function of mean SZA and phase
angle, c, is defined as

DASF(SZA, c) � ∑xy∈ADASFxy(SZAxy, VZAxy) cos SZAxy

∑xy∈A cos SZAxy
,

(6)

where the summation is over pixels (x, y) in the selected area A at
which the phase angle takes a given value c.

Hot Spot Parameter and Effective Extinction
Coefficient
Equation 4 is used to simulate DASF. It depends on the hot spot
parameter, h, and effective extinction coefficient, L. The former is
a function of SZA and determines the angular shape of DASF,
while the latter controls its magnitude and depends on LAI. The
following two-step fitting technique was implemented to derive
equations for h and L using monthly MISR DASF.

Step 1: Matching angular shapes of observed and modeled
DASF. For a given month, we used SZAxy and monthly average
MODIS LAI as a first approximation to the effective extinction
coefficient (i.e., Lxy ≈ LAIxy) to simulate DASFxy at each pixel
(x, y) in MISR view angles as a function of h. Next, we used Eq. 6
to calculate area-averaged simulated-DASF as a function of hot
spot parameter, h. Finally, we selected h that minimized
(R2 − 1)2 + (s − 1)2, where R2 and s are the coefficient of
determination and slope of the relationship between area
averaged values of observed and simulated DASFs. The
selected hot spot parameter provides the best agreement
between angular shapes of modeled and observed DASF.

Step 2: Matching magnitudes of observed and modeled DASF.
For a givenmonth, we used SZA and h (SZA) to simulateDASFxy

at MISR view angles as a function of L. Eq. 6 was used to calculate
area averaged simulated-DASF as a function of effective
extinction coefficient, L, i.e., DASF�mod(c, L). We selected L
that minimizes Normalized Root Mean Square Error
(NRMSE) between simulated, DASF�mod, and observed,
DASF�MISR, area-averaged DASFs, i.e.,

NRMSE(L) �
																																
1
N∑c[DASF�mod(c, L) −DASF�MISR(c)]

2
√

1
N∑cDASF�MISR(c, L)

→min.

(7)

This value of L matches magnitudes of observed and modelled
DASFs.

Monthly MISR DASF data for the 2017 to 2019 period over
our study area (Figure 1) were used to execute our two-step
fitting procedure. The SZA exhibits small variation within our
regions during a month and therefore can be accurately

represented by its monthly mean. A time series of the
solutions to the Step-1 procedure therefore gives a set of the
hot spot parameters corresponding to different SZA. Seasonal
variations of LAI in equatorial forests allowed us to accumulate
solutions to the Step-2 procedure corresponding to different
values of MODIS LAI. We used those sets to derive
dependences of the hot spot parameter and effective extinction
coefficient on SZA and LAI, respectively.

Figure 3 shows an example of our two-step fitting technique
for Congo forests (region 2) in September-2018. As illustrated
in Figure 4, Eq. 4 approximates observed DASF to within
NRMSE � 8% and R2 � 0.85. The largest difference between
observed and simulated DASFs occurred at phase angles above
900. Such points are separated by an ellipse in Figure 4. For PA
> 900, MISR BRFs were mainly acquired by off-nadir F and D
cameras, which have higher uncertainties compared to near
nadir observations.

The sets of solutions to the Steps 1 and 2 procedures allowed us to
regress the hot spot parameter, h, and effective extinction coefficient,
L, versus SZA and MODIS LAI, respectively, as (Figure 5)

h(SZA) � 5.96 − 5.90 cos SZA ≈ 11.92 sin2SZA

2
, (8)

L � 2.93 · LAIMODIS − 8.53 (9)

There was no correlation between L and SZA, as expected.
Thus, our model for DASF of equatorial forests is generated by

Eq. 4 with the hot spot parameter h and effective extinction
coefficient L given by Eqs 8, 9. It has two input parameters; they
are Sun position in the sky, Ω0 ∼ (θ0,φ0), and MODIS LAI.

RESULTS

Assessment of DASF
Observed versus modeled DASF.We used monthly MISR DASF
for the period between 2017 and 2019 to derive equations for
the hot spot parameter and effective extinction coefficient.
The proximity between observed and modeled DASFs were
characterized by NRMSE � 8%, R2 � 0.85 (Figure 4). We
analyzed modelled and observed monthly DASF for Year
2016 to see if the performance metrics is similar to that of
the training data set. Figure 6 illustrates monthly MISR
DASF and its simulated counterpart for Amazonian forests
in April 2016. The largest differences between them are at
high phase angles. Figure 7 shows MISR DASF plotted
versus modeled DASF accumulated over our study area
during Year 2016. The comparison suggests a good
performance of Eq. 4 to simulate MISR DASF over
equatorial forests.

Diurnal variations of observed and modeled DASFs. The
next step in the assessment of our approach is to see if the model
can reproduce diurnal variation of monthly EPIC DASF. Figure 8
shows examples of diurnal variations in observed and modeled
DASFs for 3 regions in our study area. As one can see the largest
deviation between model and observation occurs when SZA
exceeds 600. The uncertainty of the MAIAC BRF product is
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low for the EPIC observations near the local noon. It however
may significantly increase at high zenith angles resulting in an
underestimation of surface BRF (Lyapustin et al., 2021). And this
is what we see in Figure 8.

Scatter plot of diurnal courses of modeled and EPIC DASFs
accumulated over Amazonian, Congo forests and region 3.2 in
southeast Asia during the 2017 to 2019 period is shown in
Figure 9. Note that data from December to November over
Congo forests are not present in this plot. For these regions, our
model approximates diurnal courses of the observed DASFs to
within NRMSE � 7% with R2 � 0.82.

On average, modeled DASF over Congo during December
through February overestimates observed DASF by about 20%.
About 70% of data on the scatter plane are located within a 15%
circle centered at mean values of EPIC and modeled DASFs and
therefore differ from respective mean values by less than 15%.

For the region 3.1 in Southeast Asian rainforest, modeled
DASF overestimates observations by about 5%. The data are also
concentrated on the scatter plane: about 75% of data on the
model-vs.-observation scatter plane are concentrated within a
15% circle centered at mean values of observed and modeled
DASFs. The R2 is consequently low (Y � 0.8X+0.08, R2 � 0.32).

In summary, Eq. 4 can accurately reproduce DASF in terms of
proximity to both angular variations observed by MISR and
diurnal courses measured by DSCOVR EPIC sensor. It
therefore provides a strong basis for synergy of DSCOVR
EPIC and Terra MISR sensors to monitor changes in
equatorial forests. Our next step is to see if the model can
detect changes.

Monitoring Equatorial Forests
The forest structural organization determines the magnitude and
angular variation of DASF (Schull et al., 2011; Knyazikhin et al.,
2013). Its angular signatures therefore provide unique and rich
sources of diagnostic information about forests. Here we analyze
DASF over our study area to see if it can detect seasonal changes
of the equatorial forests.

The seasonal transition between wet and dry seasons is a
distinct feature of equatorial rainforests, which leads to intra-
annual patterns of leaf flushing and abscission (Samanta et al.,
2012; Bi et al., 2015). Since our study is focused on structurally
intact and undisturbed regions of the equatorial forests (i.e., no
changes in forest geometry), variation in leaf area is a key factor
causing variation in DASF.

We start with analyses of variation in the DASF acquired over
Amazonian central rainforest. In situ studies and satellite data
indicated higher leaf area during the dry season relative to the wet
season (Huete et al., 2006; Hutyra et al., 2007; Myneni et al., 2007;

FIGURE 3 | (A)MISR DASF of region 2 (Congo forests) in September-2018 (hollow circles). Its step-1 and step-2 approximations are shown as crosses and dots,
respectively. The dashed line is a polynomial fit to the Step-2 approximation. (B) MISR DASF versus step-1 (crosses) and step-2 (circles) approximations. NRMSEs
between MISR DASF and its Step 1 and Step 2 approximations are 12 and 4%, respectively. Mean SZA (std) � 21.20 (1.50), h � 0.8, LAI � 5.6, L � 7.15.

FIGURE 4 |MISR DASF vs. its Step-2 approximation accumulated over
our study area during the 2017 to 2019 period. NRMSE � 8%; R2 � 0.85. The
ellipse separates values of DASF at Phase Angles (PA) above 900.
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Hilker et al., 2014; Jones et al., 2014). The growth-limiting impact
of water deficit on rainforest during the dry season is alleviated
through deep roots and hydraulic redistribution (Oliveira et al.,

FIGURE 5 | (A). Hot spot parameter h vs. cos (SZA). (B) The effective extinction coefficient vs MODIS LAI derived frommonthly MISR DASF for the period between
2017 and 2019.

FIGURE 6 | (A) MISR DASF of Amazonian forests in April-2016 (hollow circles) and its approximation by Eq. 4 (dots). The dashed line is a polynomial fit to the
modeled DASF. (B) MISR DASF vs. modeled DASF. NRMSE � 4%.

FIGURE 7 | MISR DASF vs. its approximation by Eq. 4 accumulated
over our study area during Year 2016. NRMSE � 9.2%; R2 � 0.83.

FIGURE 8 | Diurnal courses of monthly EPIC DASF (solid line), modeled
DASF (dashed line) and SZA (dotted line) for region 3.2 in Southeast Asian
(diamonds), Congo (triangles) and Amazonian (circles) forests on 2017-02-24,
2018-06-14 and 2018-07-24, respectively. A SZA level of 600 is shown
as a horizontal dashed line. NRMSE values for Southeast Asian, Congo and
Amazonian forests are 3.9, 3.6 and 16.3%, respectively. RMSE for Amazonian
forests is 3.1% if SZA < 600.
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2005; Pierret et al., 2016), resulting in a sunlight mediated
seasonality in leaf area (Bi et al., 2015). Figure 10 illustrates
these findings, that is, green leaf area increases during the dry
season (June to October), has high values during the early part of
the wet season (November to October) and decreases thereafter
(March to May).

Let us compare observed DASFs from the late dry season
(October) and middle part of the wet season (March). Eq. 4
predicts that an increase in the effective extinction coefficient,
with SZA unchanged, increases themagnitude of DASF at all phase
angles, i.e., results in an upward shift in the angular signature of the
DASF, as illustrated in Figure 3. The SZAs in the select region of
Amazonian forests in March (SZA � 25.5, std � 1.2) and October
(SZA � 20.5, std � 1.1) are very close. At low SZA such a small
difference minimally impacts the shape of angular signatures. As
one can see in Figure 11, both MISR and EPIC show a distinct
decrease in DASF in all phase angles between October and March
with no discernible change in the overall shape of the angular
signatures. Such a simple change inmagnitude can only result from
a change in LAI since other structural variables, such as tree crown
shape and size do not vary seasonally in this forest.

Let us now consider DASF in the early (June) and late
(October) dry seasons. LAI has changed from about 5.5 to 6.4.
MISR and EPIC measurements are made at significantly higher
SZA in June (SZA � 37.6, std � 2.3) compared to October (SZA �
20.6, std � 1.1). The magnitude and shape of angular signatures
are impacted when both canopy properties and SZA vary as
middle panel in Figure 11 illustrates. This makes the comparison
of the signatures difficult. We can transform the June’s signature
to the sun-sensor geometry in October using Eq. 4. As right panel

of Figure 11 demonstrates the transformed DASF is a downward
shift of the October’s DASF, indicating a lower LAI in June.
DASFs of the remining regions in our study area exhibit similar
behavior (not shown here).

Our next example demonstrates time series of DSCOVR EPIC
DASF acquired over the Congolese forests. The Congo basin
exhibits bimodal precipitation pattern and has two wet and two
dry seasons per year (Yang et al., 2015). The wet seasons occur in
March -April-May and September-October-November, while dry
season months are December to February and June to August.
Unlike Amazonian forests, monthly average LAI follow the
patterns of precipitation (Figure 12). It exhibits notable
bimodal seasonal variations.

The above analyses have demonstrated that an increase in LAI,
with SZA unchanged, results in an upward shift in the angular
signature of the DASF (Figure 3). The EPIC DASF at fixed solar
zenith and phase angles therefore should covary with LAI. The
Earth-observing geometry of the EPIC sensor is characterized by
phase angle between 20 and 120. A question then arises whether or
not such small variation in phase angle can be ignored. Therefore,
we examine two algorithms to generate EPIC time series. The first
one selects EPIC observations at SZA � 250, 300 and 450

irrespective of values of the phase angle. If there are no
reflectance data under these illumination conditions during a
month, we transform DASF to a desired SZA. In the second case,
we select observation at fixed sun-sensor geometries. Figure 13
shows LAI and DASF at fixed SZA � 300 and varying phase angle.
At low SZA, the EPIC time series correlates well with the bimodal
seasonal variation of LAI, as expected. This also suggests that Eq.
4 is an effective tool to fill missing data at a given fixed SZA.

An increase in SZA however can eliminate the bimodal feature
of DASF. This is illustrated in Figure 14 showing annual courses
of EPIC DASF generated by the two algorithms introduced above.
As one can see in left panel of this figure, the EPIC time series at
SZA � 450 becomes flat between May and October. Two factors

FIGURE 9 | Correlation between diurnal courses of modeled and EPIC
DASFs accumulated over Amazonian, Congo forests and region 3.2 in
southeast Asia during the 2017 to 2019 period. Data from December to
February over Congo forests are excluded. NRMSE � 7%. The
relationship between these data is characterized by a regression line with a
slope of 1 and negligible intercept; R2 � 0.82.

FIGURE 10 | Annual courses of monthly-average precipitation and LAI
over the Amazonian central rainforest. Monthly data were accumulated over
the time period February 2000 to December 2019.
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are responsible for this effect. First, the decrease of phase angle to
its local minimum in July enhances DASF and therefore tends to
suppress decrease in DASF due to the dry season decrease in LAI.
At low SZA LAI has a stronger impact on DASF than phase angle.

The impact of phase angle however increases with SZA and can
become a dominant factor causing variation in DASF. In our
example, this occurs at a SZA of 450 and higher. As right panel of
Figure 14 illustrates, DASF at fixed SZA and phase angle retains
its bimodal property. Thus, both SZA and phase angle should be
taken into account when analyzing DSCOVR EPIC data. Eq. 4
therefore becomes of particular importance for analyses of EPIC
observations over vegetated land. A strong effect of phase angle
on EPIC reflectance was recently documented in (Marshak et al.,
2021). Our analyses reinforce this effect.

SUMMARY AND CONCLUSIONS

We used Directional Area Scattering Function (DASF) to
characterize angular signatures of equatorial forests. It
describes the canopy BRF if the foliage does not absorb
radiation and is a purely structural variable. For vegetation
canopies with a dark background, or sufficiently dense
vegetation where the impact of canopy background is
negligible, the DASF can be accurately approximated from
the BRF in the weakly absorbing spectral intervals without
involving canopy reflectance models, prior knowledge, or
ancillary information regarding leaf scattering properties
(Knyazikhin et al., 2013). Equation 2 is used to obtain
approximations of DASF from the Terra MISR and DSCOVR
EPIC data. The DASF becomes independent on spectral band
composition of a sensor acquiring surface reflectance data,
which is an important prerequisite for achieving consistency
and complementarity between DSCOVR EPIC and Terra MISR
observations.

We adapted a model for the canopy hot spot implemented
in the operational algorithm for generation of Earth System
Data Record (VESDR) from DSCOVR EPIC observations
(Yang et al., 2017; WWW-VESDR 2021). In this approach,
the sunlit leaves are treated as a stochastic reflecting boundary,
which depends on distribution of leaves in the canopy space
and the Sun position in the sky. Photons reflected by the
boundary can either enter the vegetation canopy or exit it. The
shaded leaves represent the interior points. Their interactions
with photons are described by a stochastic radiative transfer
equation. The directional escape probability that appears in

FIGURE 11 | Changes in MISR (circles) and EPIC (triangle) DASFs of Amazonian central rainforests from October to March (A), from June to October (B) and
transformation of EPIC DASF in June to sun-sensor geometry in March (C). Numbers in parentheses in legends show std of solar zenith angle. Relative difference
between MISR and EPIC DASFs is below 8%. Values of NRMSE between MISR DASF and its modeled counterpart do not exceed 9%.

FIGURE 12 | Annual courses of monthly-average precipitation and LAI
over the Congolese forests. Monthly data were accumulated over the period
February 2000 to December 2019.

FIGURE 13 | Time series of LAI (circles), observed (diamonds) and
transformed (dashed line) EPIC DASF at SZA � 300 for the period from 2015
to 2018.
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Eq. 1 is a weighted sum of photons reflected by the boundary
and canopy interior points. Kuusk’s model of the hot spot
incorporated into the extinction coefficient (Supplementary
Appendix SA) is used to evaluate the escape probability as a
function of scattering order, which is then used to calculate the
average escape probability (Supplementary Appendix SB).
Contributions of multiple scattered photons are accounted by
the recollision probability.

Here we simplified this model. First, a one-dimensional
radiative transfer equation is used to simulate canopy radiative
regime (Supplementary Appendix SA6). Second, the average
escape probability is approximated by a probability calculated
for first order scattered photons (Supplementary Appendix
SC). Under these assumptions, DASF is approximated by a
simple equation that depends on two parameters. They are the
hot spot parameter that appears in the canopy hot spot
coefficient and the effective extinction coefficient. The
former determines the shape of DASF, while the latter
controls its magnitude. These two parameters should be
specified to generate angular signatures of equatorial forests.

In spite of substantial theoretical advancement in
modeling the radiative transfer in vegetation canopies,
quantitative data on the hot spot are still few and far
between. Here we specified the hot spot parameter by
fitting shapes of observed and modeled DASF using
MODIS LAI as an initial approximation to the effective
extinction coefficient. The hot spot parameter was found
to be almost proportional to 1 − cos SZA (R2 � 0.96) with a
coefficient of proportionality around 6 (left panel in
Figure 5). The trigonometric term can be interpreted as a
correction of the canopy hot spot coefficient (Supplementary
Appendix SA4) for errors due to its approximation by a
constant value (Supplementary Appendix SA) whereas
the coefficient of proportionality as a mean linear
dimension of foliage elements (Knyazikhin and Marshak
1991; Nilson 1991) specific to equatorial forests. This
equation for the hotspot parameter was used in all our
calculations.

The effective extinction coefficient determines the magnitude
of the DASF. Theoretically this variable can be obtained by

replacing the 3D extinction coefficient with an effective
value that provides a best agreement between horizontally
averaged canopy reflectances and solutions of 1D radiative
transfer equations. Basically, it depends on LAI, leaf normal
distributions and clumping indices. In our approach, the
effective extinction coefficient was obtained by matching
magnitudes of MISR and shape-adjusted modeled DASFs.
This coefficient was found to be linearly related to the MODIS
LAI (R2 � 0.65, right panel in Figure 5). We used this
relationship in all our calculations.

Note the MODIS LAI was used as a first approximation to
the effective extinction coefficient, which then was iterated to
its optimal value. Alternatively, one can use relationships
between LAI and various vegetation induces (e.g., NDVI) to
make rough estimates of LAI first and then iterate them to the
extinction coefficient. This procedure may result in
relationships between the extinction coefficient and
vegetation indices, which can make the model dependent
on the hot spot parameter and vegetation indices.

Our model for angular signatures of equatorial forests can
accurately reproduce both MISR angular signatures acquired
at 10:30 local solar time and diurnal course of EPIC
reflectance (NRMSE<9%, R2 > 0.8) and therefore assures
consistency and complementarity between DSCOVR EPIC
and Terra MISR observations. This provides a powerful tool
to argue for changes in vegetation structure as it was
demonstrated in our analyses of seasonal variations of
angular signatures acquired over equatorial forests.
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Earth Polychromatic Imaging Camera
Geolocation; Strategies to Reduce
Uncertainty
Karin Blank1*, Liang-Kang Huang1,2, Jay Herman1,3 and Alexander Marshak1

1Goddard Space Flight Center, Greenbelt, MD, United States, 2Science Systems and Applications, Inc., Lanham, MD,
United States, 3University of Maryland Baltimore County, Baltimore, MD, United States

Earth Polychromatic Imaging Camera occupies a unique point of view for an Earth imager by
being located approximately 1.5 million km from the planet at Earth-Sun Lagrange point, L1.
This creates a number of unique challenges in geolocation, some of which are distance and
mission specific. To solve these problems, algorithmic adaptations need to be made for
calculations used for standard geolocation solutions, as well as artificial intelligence-based
corrections for star tracker attitude and optical issues. This paper discusses methods for
resolving these issues and bringing the geolocation solution to within requirements.

Keywords: geolocation, geolocation accuracy, geolocation algorithm, deep space climate observatory (DSCOVR),
earth polychromatic imaging camera (EPIC)

INTRODUCTION

Instrument
The Earth Polychromatic Imaging Camera (EPIC) is an instrument on the Deep Space Climate Observatory
(DSCOVR), which orbits the L1 Earth-Sun Lagrange point. As an Earth viewing instrument, it has a unique
view of the planet, taking 13–21 images daily at local noon. The instrument is a 30 cm Cassegrain telescope
with 2048x2048 charge-coupled device (CCD), using two filter wheels, and containing a set of 10 bands at
wavelengths between 317 and 780 nm (Figure 1) (DSCOVR:EPIC, 2016).

A typical imaging session consists of 10 images taken once of each band. In creating the science
products, the images are calibrated into units of counts/second and then geolocation is calculated
(Marshak et al., 2018).

Geolocation
Geolocation for EPIC images is unique because it not only has to operate across the entire illuminated
Earth’s surface, but also has to do so from a 1.5 million kilometers away. The algorithm creates ancillary
science products per pixel, of the latitude and longitude; Sun azimuth and zenith angles; viewing azimuth
and zenith angles; and viewing angle deltas due to Earth atmosphere refraction. For the level 1a (L1a)
product, these values are calculated per pixel andmapped into the original image’s orientation. In the level
1b (L1b), the images and the relative products are remapped, so that north is pointed up and the pixels
across the bands are aligned with each other. Bands within the visual range are combined to produce
natural color images (Figure 2) of the rotation Earth (https://epic.gsfc.nasa.gov).
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It takes about 7minutes for EPIC to take a set of ten exposures in
an imaging session. While the instrument is performing this action,
there are several articles of motion occurring. First, the spacecraft is
moving, traveling its 6-months Lissajous orbit, rotating on its axis, and
making externally driven linear motions to adjust its pointing so that
Earth is centered in the view (Figure 3). Second, the subject of the
imaging, typically Earth, is rotating on its axis 15° per hour, resulting in
approximately a 4-pixel rotational offset between the first and final
image in the set.

In order to geolocate these images, it is necessary to develop a
three-dimensional model of each pixel location. A useful model of
the Earth’s body is generated based on the SRTM30 dataset
(Shuttle Radar Topography Mission) and rotated into EPIC’s
view using spacecraft attitude and ephemeris information, as well
as astronomical calculations of the seasonal Earth’s position. This
is then lined up with the actual EPIC images and permits the
calculation of the latitude, longitude, and relevant Sun and
viewing angles. The results of this product are then written
into the L1a dataset. In order to generate the L1b, using the
3D coordinates, the pixels for all 10 bands are “spun” into the
same orientation, redrawn in 2D, and written into a shared
latitude and longitude grid.

More details, as well as a mathematical description of the
algorithm can be found in the “EPIC Geolocation and Color
Imagery” document (Blank, 2019) found in the references.

PROBLEMS

Although the geolocation seems straightforward, there are several
challenges that prevent an uncomplicated implementation of this
algorithm. The first is that the accuracy of the star tracker is below
what is needed to understand the orientation of the instrument
and Earths’ body; the second is linked to problems with the
optical distortion model of the EPIC telescope; the third is a
potential issue with time stamp accuracy.

Star Tracker and Guidance
The star tracker, a Ball Aerospace CT633, contains an imager that
looks at stars in the dark sky and matches the resulting star
images against its star catalog (Ball, 2021). Using this
information, it is able to obtain the attitude of the spacecraft

FIGURE 1 | Images of the Earth taken in different wavelength by EPIC.
The leftmost panel are infrared bands; middle are visible; right are ultraviolet.
The range permits EPIC to engage in land, cloud, and atmospheric studies as
well as produce color images.

FIGURE 2 | Examples of EPIC geolocation products.

Frontiers in Remote Sensing | www.frontiersin.org November 2021 | Volume 2 | Article 7152962

Blank et al. EPIC Geolocation

176

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


relative to the Earth’s ecliptic plane. From there, with the
ephemeris of the Earth and Sun, it is possible to determine
how the spacecraft is oriented regarding Earth. If this
information was within requirements, it would be possible to
calculate directly the per pixel values for the geolocation.

Unfortunately, it is not perfect, an issue that was known when
the spacecraft was initially developed as “Triana” in 1999. At that
time, engineers had developed a software solution to help mitigate
this issue, using images from EPIC to help reorient the spacecraft
regarding Earth. But in 2010, when the spacecraft was
recommissioned and renamed DSCOVR, its focus transitioned
from an Earth science to a space weather mission. EPIC went
from the primary instrument to secondary and the EPIC Earth-
orienting software was removed. As a result, without the
additional correction, the nominally 0.5° Earth images can be
anywhere within the field of view.

The accuracy of the star tracker attitude is not adequate for
geolocation of the EPIC images. It can be as much as ±0.05° on the
x, y offset and ±1° in rotation.

Time
Because the net error in the geolocation was across multiple
dimensions, it was difficult to identify exactly the source of all the
errors. One potential issue was that the time stamp in the images
was not sufficiently accurate. The EPIC images are sensitive to
time within a 30 s resolution, but it takes approximately 90 s to go
through the process of taking an image. This process includes
moving the filter wheel, taking the exposure, processing the image
and storing it into memory. The timestamp must also be copied
from multiple systems, from the spacecraft to the instrument
computer; it adds up to the potential for the appended timestamp
to not match the actual exposure time. This would translate to an
X axis rotation error in rotating the Earth into the EPIC view.
This source of error was investigated and resolved as part of
this work.

Optical Distortion
After an initial implementation of the EPIC Geolocation, it
became evident there were problems with the optical
distortion model of the telescope. This model accounts for
both radial and tangential distortion common to lenses. An
example of it is to photograph a rectangular grid and view the
results. A wide-angle lens with have barrel distortion; a
telephoto lens, such as EPIC, will have a pincushion
distortion (Figure 4).

The formula used for repairing optical distortion is as follows:
Calculate the delta between the physical CCD center and the

optical center:

Δx � x − xc

Δy � y − yc

Radial distance:

r �
���������
Δx2 + Δy2

√

The pixel offset, according to the optical model, is then:

x’ � Δx + (K1r
2 +K2r

4 + K3r
6) + P1(r

2 + 2Δx2)

+ 2P2(ΔxΔy)(1 + P3r
2 + P4r

4)

y’ � Δy + (K1r
2 +K2r

4 +K3r
6) + 2P1(ΔxΔy) + P2(r

2 + 2Δy2)

× (1 + P3r
2 + P4r

4)

The parts (K1r2 + K2r4 + K3r6) and (1 + P3r2 + P4r4) above
are infinite expansions in the original formula; here shown are
only the terms needed to correct for EPIC where the K’s and the
P’s are the parameters that are derived from the optical model.

When comparing results and performing offset analysis, it
appeared that there was an error bias that started from the middle
of the CCD to the bottom right corner.

FIGURE 3 | Different corrections made by the EPIC geolocation software and the inputs needed for the different parts of the program.
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Typical Solutions for Geolocation Error
A typical solution to solving geolocation errors is to find control
points and warp the images to fit. This was done with success in
corrections to early versions of the geolocated product such as
used for the algorithm. Here, the data was control point matched
and regridded into a new projection. Although this solution
worked well for the MAIAC algorithm, it would not make a
universal solution for all EPIC science algorithms. Because
DSCOVR is constantly in motion as each band is being taken,
each image has a unique geolocation solution and therefore a
unique set of errors. Some science products, such as ozone, are
very sensitive to the band’s colocation. Using warping risks
introducing artifacts into these datasets.

Another solution was to use control points and develop a
solution to the rotational and x, y linear offsets in the image.
Although this could resolve these errors to some degree, it cannot
fix problems at far viewing angles of the Earth images or the
optical distortion error. This is due to a loss of contrast at higher
viewing angles because of atmospheric scattering, as well as a
decrease of spatial resolution in the data cause by the Earth’s
curvature. Although at 2048 × 2048 the nadir image resolution
(point spread function) is 18km, by 70° viewing angle it has
degraded to approximately 18km/cost (70°) per pixel, which is
53 km resolution.

Summary of Functions to Be Solved
To resolve the problems with geolocation requires finding a
solution for the 16 inputs to the algorithm that are below
requirements. These include:

x offset–Earth’s x location from the center of the image.
y offset–Earth’s y location from the center of the image.
Z Earth/DSCOVR rotational offset.
X Earth time rotational offset
plus 13 coefficients in the optical distortion model, including

linear offset, radial distortion, and tangential distortion.
The x, y, and rotational offset corrections need will need to be

calculated for every image; the optical distortion model only

needs to be resolved once. The computational complexity of
resolving such a problem with brute force is O (n), where n is the
range of error from the computed result. Multi-Angle
Implementation of Atmospheric Correction (MAIAC)
algorithm (Huang, 2019).

METHODS

To reduce the massive problem required the implementation of
an EPIC simulator and an artificial intelligence (AI) program.
The EPIC simulator is used to generate images of the Earth in
different configurations. The AI is used to select potential
matches between the simulated images and the actual EPIC
picture and determine which solutions are worthwhile to
explore.

Earth Polychromatic Imaging Camera
Simulator
The EPIC simulator consists of an astronomical calculator, an
Earth model, an instrument model, and MODIS (Moderate
Resolution Imaging Spectroradiometer) data (Figure 5). It is
very similar, and shares much of the code used for EPIC
geolocation but is used instead to generate MODIS images
simulated to look like EPIC images. The simulator works with
any geolocated dataset and has been also tested with VIIRS,
GOES-16, and Himawari-8 (see Acronyms for definitions). It can
also take EPIC images from another band or time period and
convert it into another point of view.

The astronomical calculator takes the date and time, and
calculates the apparent sidereal time, obliquity, precession,
nutation, and annual aberration. This determines the “pose” of
the Earth at the time the image is taken.

To determine the pose in relation to the camera view angle, the
Sun and Spacecraft ephemeris, along with the spacecraft attitude
quaternions, are used to calculate the viewing angles.

FIGURE 4 | Left: Image taken with wide angle lens demonstrating barrel distortion. Credit ESO/José Francisco Salgado. Right: Grid demonstrating pincushion
distortion. Credit: Wikipedia/WolfWings.
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Using a terrain model of the Earth, the geoid, a 3D model of
the Earth is generated in Cartesian coordinates. Then, with the
astronomical pose and camera viewing angles, the 3D model is
“spun” into the pose it would be in as viewed from the spacecraft.
The set of Cartesian coordinates is then clipped so that only those
seen by the spacecraft are in the model, and the ones on the far
side (not imaged) of the Earth are removed.

Using the telescope optical model, the Cartesian coordinates
are mapped into the 2D coordinates of the detector array. MODIS
RGB data obtained from WorldView Web Mapping Service
(https://worldview.earthdata.nasa.gov/) is then redrawn with
the 2D coordinates. The result is a MODIS image that has
been reprojected into the EPIC point of view.

Using this simulator, it is possible to generate images to test
the instrument’s various configurations. Anything that is input
into the geolocation algorithm can be modified to determine how

it would affect the resulting image. This can be used to resolve the
errors in attitude and optical distortion.

Back Propagation
After the simulator, the next step is to automate the correction
process. This is done in a way similar to back propagation (BP) in
neural networks.

In this situation, each input to the geolocation is treated as a
node; the link between them is the calculation. Each coefficient is
initially fed the naïve solution for the input.

The program then generates a coarse spread of potential
values. The range of these values is based on the known error
range of the inputs. Using this coarse spread, possible
configurations of attitude and optical model are fed to the
simulator generating dozens of low-resolution Earths. These
Earth images are then scored against the actual EPIC image;

FIGURE 5 | MODIS full day image in equirectangular projection. From https://worldview.earthdata.nasa.gov/.

FIGURE 6 | Diagram demonstrating back propagation correction for the EPIC Geolocation.
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the coefficients that generated the best match are then propagated
back into the algorithm.

The algorithm repeats, but this time with the updated
coefficients in the nodes. Another spread is generated, this
time at a finer resolution than before. Dozens of Earths are
simulated in different configurations, this time at a medium
resolution. The simulated earths are then scored, using the
Pearson correlation calculation, against the actual EPIC image
and the winner is then used to update the coefficients.

The algorithm is run repeatedly, each time at a finer resolution,
until it has resolved all the coefficients to meet the geolocation
requirements of results within 0.5 pixels. Essentially, what
happens is the AI is teaching itself how to draw Earth images
so they look like EPIC images; as a result, we learn the necessary
coefficients for the geolocation.

When the AI is done, the naïve geolocation algorithm is then
run with the updated coefficients and generates the subsequent
level 1 products.

Use in Solving Star Tracker
The star tracker attitude solution is necessary for three inputs into
the model; the horizontal (y) and vertical (x) offsets of the
centroid in the image, and the rotation required to make
Earth’s north face the top of the image. The star tracker x and
y offsets have never been used in the naïve algorithm, as the error
was too great: instead, a centroiding algorithm was used to find
the edge of the Earth and center based on that. This algorithm,
however, could not always center the Earth within half-a-pixel
requirements. This was due partially because the atmosphere
makes the edges unsharp. The other reason is because DSCOVR’s
orbit is slightly off the Earth-Sun line, so the Sun terminator line
is contained in all the images. This means that on one side of the
Earth, the edge is always darker and less distinct, and that the
location of the terminator is orbit dependent and moves
accordingly.

Because of the lack of sharpness of the land in the images due
to the atmosphere, and because some images, such as the UV
bands, lack distinct surface features, it is necessary to use as much
intelligence from the images as possible. By using the EPIC-

simulating MODIS images, cloud features, as well as interior land
features, can be used to assist the correction.

As there are 10 bands in EPIC, the best band available is used
with the simulator; every other band uses EPIC data. The
preferred band to use is 780 nm as it has the maximum
contrast. If that is not available, then it will choose, in order
of preference, 680, 551, 443, 388, 340, 325, 317, 764, and 688 nm.
The order is based on the relative correlation scores of these
bands to the MODIS image.

The initial back propagation generates a three-value coarse
spread for each of the coefficients. For the x and y offsets, this
starts at eight pixels, the worst possible error, and for the
rotation it starts at 1°. Nine Earths are simulated, scored, and
the best result is then put back into the propagation algorithm.
This is repeated with each round doubling the precision in
resolution until the algorithm reaches the equivalent of 0.25-
pixel accuracy.

Use in Solving Time
The method for the time coefficient was the same as that for the
star tracker and was calculated alongside those coefficients in
earlier tests. It was found that there was no significant error in the
image time stamp, and adjustment for this coefficient was
subsequently removed.

Use in Solving Optical Distortion
In order to solve the coefficients for optical distortion, the back-
propagation (BP) algorithm needs to be used to solve the rotation
error to the best of its ability, followed by then applying the BP
algorithm to the optical distortion formula. Because we lack ideal
images for solving optical distortion, it is necessary to perform the
BP correction for optical distortion hundreds of times and collate
the results. An ideal image would be a gridded surface that covers
the entire field of view–unfortunately that doesn’t exist from the
point of view of L1. An alternative would be using a star field
image. However, EPIC is not suited for imaging stars, as the filters
limit the amount of light such that the exposure would be longer
than the spacecraft can stay still. We did attempt to image the
stars without the filters, however we found that without the

FIGURE 7 |Chart demonstrates the software converging on the solution
of the x and y centroid offsets as the resolution of each pass increases.

FIGURE 8 |Chart demonstrates the software converging on the solution
of the rotational correction as each pass increases in resolution.
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refractive index supplied by the filters, the star images were out
of focus.

Using images of the Earth has its own challenges. The optical
distortion benefits most from information near the edges of the
CCD. However, EPIC images have low data content at the edges,
due to the Earth tending to be centered. Furthermore, because of
atmospheric haze and distance distortion, the sharpness of the
land mass decreases as the viewing angle increases, which means
that there is less useful information as you get closer to the edge of
the sphere. This is less of a problem with the infrared 780 nm
band than the other bands; therefore, we limit the use to this
band alone.

Due to these issues, the back propagation does not perform
optimally; therefore, it is necessary to run it multiple times on
different images and aggregate the results. To reduce the
amount of computation required, a program was written to
scan through the available EPIC images and pick only best

suited for this application. In this situation, we take advantage of
the noisy pointing from the star tracker and select images where
the Earth is situated closer to the edges of the CCD. To avoid any
seasonal or orbital biases, the images were further down selected
to be dispersed somewhat evenly, timewise, over the course of
2 years.

The BP algorithm was then run with the attitude and optical
distortion correction across approximately 350 images. Outliers
selected based on the optical center coordinates were removed.
The datasets were then broken into a 2016 and 2017 set, the
results then collated by averaging the coefficient values. The
2016 and 2017 coefficient sets were found to be almost identical,
which was a good indication that the process could produce
consistent results. They were then collected together into a
final model. Since the run of this model in 2018, there has
been no evidence of drift in the geolocation solution, which
indicates the distortion is stable. Because of this, and the fact

FIGURE 9 | Left: MODIS data simulated as EPIC portraying the final solution of the algorithm. Right: Actual EPIC image the algorithm was performed against.

FIGURE 10 | Left: Optical distortion solution, radial component only. Right: Optical distortion solution, radial and tangential components. The color indicates
magnitude of offset due to distortion in pixels.
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that this calculation is resource intensive in both computation
and in user time, it has not been rerun since then.

EXAMPLE RUN

In the following example run to resolve the star tracker error, the
software was run for seven iterations with gradually finer resolutions.
The graphs in Figures 7, 8 show the delta between each run and the
final solution. In the star tracker this is for the x and y centroid offsets
and the rotation to north angle. As can be seen, after the initial coarse
calculation, the results rapidly converge and approach the solution
(Figures 7, 8).

Below (Figure 9) is an example of the final simulated image
usingMODIS data and the calculated solution, versus the original
EPIC image.

RESULTS

Optical Distortion Solution
The results of the optical distortion solution revealed a severe
tangential distortion. Tangential distortion is caused by a skewing
of the optical system. The likely result of this is a lift of several
millimeters of the CCD at the lower right corner. It is difficult to
ascertain when exactly this happened but based on reviews of work
orders performed on the reassembly of the instrument, as well as due
to some other issues witnessedwith the CCDnot seen during ground
testing, the probability is that it happened during launch.

The improved optical distortion model resolves this issue.
On the left (Figure 10) is the theoretical ideal optical

distortion model, which is likely what was intended by the
optical designers. This contains only the radial distortion part
of the model. On the right is the actual model with both the
tangential and radial distortion.

Star Tracker + Optical Distortion Solution
The back-propagation algorithm resolved the star tracker issue.
Prior to this solution, results could be off, in the worst case, by as
much as eight pixels. Results are now within 1-pixel accuracy
within 70° viewing angle. It may be better than that but results
higher than 70° are difficult to judge; the pixel resolution

decreases to 53 km per pixel and the reduction in contrast
because of atmospheric scattering makes land less visible.

Below (Figure 11) is an example of the final results including
both the star tracker and optical distortion solution. On the left is
the original solution with the naïve algorithm, on the right, the
improved solution.

CONCLUSION

The AI enhanced BPmethod resolved the accuracy with the EPIC
geolocation due to precision issues with the star tracker attitude
and optical distortion model. It can potentially be used on other
instruments and missions to resolve accuracy issues due to error
in the inputs, as well as resolve calibration issues. It provides an
alternative to traditional warping and transformation methods
and provides a solution free from distortion.

It can also potentially be used for identifying ambiguous or complex
errors, as well as certifying that an input meets requirements.
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Operational Detection of Sun Glints in
DSCOVR EPIC Images
Tamás Várnai1,2*, Alexander Marshak2 and Alexander Kostinski 3

1Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, United States, 2NASA
Goddard Space Flight Center, Greenbelt, MD, United States, 3Department of Physics, Michigan Technological University,
Houghton, MI, United States

Satellite images often feature sun glints caused by the specular reflection of sunlight
from water surfaces or from horizontally oriented ice crystals occurring in clouds. Such
glints can prevent accurate retrievals of atmospheric and surface properties using
existing algorithms, but the glints can also be used to infer more about the glint-
causing objects—for example about the microphysical properties and radiative effects
of ice clouds. This paper introduces the recently released operational glint product of
the Earth Polychromatic Camera (EPIC) onboard the Deep Space Climate Observatory
(DSCOVR) spacecraft. Most importantly, the paper describes the algorithm used for
generating the key component of the new product: a glint mask indicating the
presence of sun glint caused by the specular reflection of sunlight from ice clouds
and smooth water surfaces. After describing the glint detection algorithm and glint
product, the paper shows some examples of the detected glints and discusses some
basic statistics of the glint population in a yearlong dataset of EPIC images. These
statistics provide insights into the performance of glint detection and point toward
possibilities for using the glint product to gain scientific insights about ice clouds and
water surfaces.

Keywords: EPIC, sun glint, ice cloud, horizontally oriented particles, operational product, DSCOVR

INTRODUCTION

Sun glints often affect Earth observations taken from a wide range of spacecrafts, for example from
the polar-orbiting Terra and Aqua satellites, the Geostationary Operational Environmental Satellite
(GOES) series, or Deep Space Climate Observatory (DSCOVR). The glints are caused by the specular
reflection of sunlight through single scattering from highly reflective objects. Such objects include the
ocean or other water surfaces and ice crystals that float in clouds at a horizontal orientation and
reflect sunlight as a mirror consisting of a myriad of tiny pieces (e.g., Lynch et al., 1994; Lynch and
Livingston, 2001; Konnen, 2017). Ice crystals of certain shapes—especially hexagonal plates—float in
clouds at a systematic horizontal orientation due to stabilizing aerodynamic forces. This orientation
is stable, because, as Katz (1998) put it: “. . .if the plate tilts, the wake of the leading edge partly shields
the trailing edge from the flow, reducing the drag on it; the resulting torque restores the horizontal
orientation. . .”.

In many cases, Sun glints prevent the accurate retrievals of atmospheric and surface properties
using existing algorithms (e.g., Wang and Bailey, 2001; Remer et al., 2005), but the glints can also be
used to learn more about the glint-causing objects (e.g., Bréon and Henriot, 2006; Lin et al., 2016) or
even about atmospheric aerosols (Kaufman et al., 1997; Ottaviani et al., 2013; Knoebelspiesse et al.,
2021).
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Over the past 2 decades, several studies examined ice clouds
using glint observations taken from low-Earth orbit satellites.
Some studies characterized clouds using polarized measurements
of Sun glint taken by the POLDER (Polarization and
Directionality of the Earth’s Reflectances) instrument (Chepfer
et al., 1999; Bréon and Dubrulle, 2004; Noel and Chepfer, 2004),
while others used glint (that is, specular reflection) affecting
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
lidar returns (e.g., Noel and Chepfer, 2010; Kikuchi et al., 2021).
These studies provided numerous insights about the horizontally
oriented ice crystals causing the glints, but some critical questions
remain unresolved—for example, as Zhou et al., 2013 noted, it is
still unclear how common these crystals are.

This paper discusses the detection of glints in images taken by
the Earth Polychromatic Camera (EPIC) onboard DSCOVR
spacecraft (Marshak et al., 2018). DSCOVR orbits the Sun at
the L1 Lagrangian point located about 1.5 million km away from
Earth, which allows EPIC to constantly view almost the entire
sunlit side of Earth. EPIC captures about 22 multispectral images
per day between late April and early September, and about 13
images per day during the rest of the year.

EPIC offers excellent opportunities to study glint-causing ice
clouds. EPIC data is especially well-suited for identifying and
analyzing glint signals from clouds because, unlike most other
satellite instruments, EPIC uses a filter wheel to take images at
multiple wavelengths. This helps because using a filter wheel
means that EPIC takes the images at each wavelength at slightly
different times. For example, red (680 nm) images are taken about
4 min after blue (443 nm) images. During these few minutes, the
Earth’s rotation changes the normal direction of the observed
scenes by about a degree (moving the scenes by more than
100 km), which can affect whether EPIC observations at a
specific wavelength will capture or miss any narrowly focused
specular reflection from ice clouds or smooth water surfaces.
Therefore, sharp brightness differences between EPIC images
taken a few minutes apart can identify Sun glints.

In recent years, several studies used EPIC images to study glints
from ice clouds (Marshak et al., 2017; Li et al., 2019; Várnai et al.,
2020a; Várnai et al., 2020b; Kostinski et al., 2021). These studies
showed that Sun glint from ice clouds appears quite frequently in
EPIC images (e.g., Marshak et al. (2017) and found that one in
three images with land in the center contains a glint from an ice
cloud), explored issues such as spectral and seasonal variations in
glint reflectances, and even used glints for testing the accuracy of
geolocation of EPIC images (Kostinski et al., 2021).

This paper describes an algorithm developed for the automatic
detection of Sun glint from clouds and smooth water surfaces that
occur in EPIC images. This algorithm is used in generating the
recently released EPIC operational glint data product (https://
epic.gsfc.nasa.gov/science/products/glint) that provides glint
identification for the entire EPIC data series. After describing
the glint detection algorithm and the operational glint product in
Section Glint Detection Algorithm and in the Appendix,
respectively, Section Initial Examination of Glint Product
provides initial analysis of the new glint product using both
individual examples and through a brief statistical analysis of the
detected glints. Finally, Section Summary offers a brief summary.

GLINT DETECTION ALGORITHM

Basic Approach
The operational glint detection algorithm is based on the
approach first introduced in Marshak et al. (2017). The
algorithm works by comparing two EPIC observations of the
same scene taken at slightly different geometry: one image that
captures any tightly focused specular reflection from horizontal
objects in the scene, and another image that narrowly misses any
such reflection, as the scene has a slightly different sun-view
geometry in this second image. In glint studies, the sun-view
geometry is often characterized through the glint angle (δ), which
is defined as the angle between the actual satellite view direction
and the direction that would look straight into the specular
reflection from a perfectly horizontal surface. The algorithm
reports a glint if the reflectance (R) is much higher for the
observation that can capture the glint because of its smaller
glint angle.

Earlier studies showed that the specular reflection from ice
clouds extends to glint angles of about 2° (e.g., Várnai et al., 2020a;
Kostinski et al., 2021) due factors such as: 1) the roughly 0.5°

angular diameter of the solar disc, 2) wobbling that can tilt
horizontally oriented crystals by up to 1° in ice clouds due to
local turbulence effects (e.g., Katz, 1998; Bréon and Dubrulle,
2004), 3) diffraction that occurs when sunlight encounters very
small ice crystals (e.g., Crawford, 1968), 4) small ripples or
capillary waves in mostly smooth water surfaces. We note that
if wind and currents make water rough, the wide range of wave
slopes will spread specular reflection into a wide range of view
directions, which makes glints appear larger but fainter in satellite
images (Várnai et al., 2020a). The current operational product,
however, aims at detecting glints from clouds and smooth water
surfaces (for example from calm small lakes (a few km in
diameter), as in Kostinski et al., 2021); extending the product
to also detect diffuse glints from rough water surfaces (for
example using the model developed in Cox and Munk (1954))
is left to the future.

As mentioned in the introduction, EPIC can provide
observations of a scene at several glint angles because it takes
multispectral observations using a filter wheel—whichmeans that
it captures images at different wavelengths at slightly different
times. For example, the 388 nm ultraviolet (UV) images are taken
about 5 min after blue images. During these 5 min, the Earth’s
rotation changes the normal direction of the observed scenes by
1.25°. Considering the law of reflection, a 1.25° change in the
orientation of the reflector will change the direction of specularly
reflected light by 2.5°. Thus, if δ was 0° for a pixel in the blue
image, δ will be 2.5° in the UV image. This means that if the pixel
contains a large number of horizontally oriented ice crystals that
cause a strong glint through specular reflection, EPIC data can
reveal this by showing that

Rblue ≫RUV (1)

We note, however, that EPIC can detect even faint glints for
which Eq. 1 is not satisfied. Faint glints don’t satisfy Eq. 1
because, in the absence of glint, Rblue < RUV due to the
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stronger Rayleigh scattering at shorter wavelengths—and so faint
glints may lift Rblue only to be comparable or slightly larger than
RUV. As described below, the EPIC glint detection can identify
such faint glints by using thresholds that specify what Rblue values
imply glint for a given RUV.

As a preparation for the in-depth description of the glint
detection algorithm, let us mention three considerations:

• Wewill describe the detection process only for blue glints, as
the operational processing uses the exact same method for
green (551 nm) and red glints (except that we use in Eq. 1
Rgreen or Rred instead of Rblue as the “glint wavelength”, and
we can use Rblue instead of RUV as the “non-glint
wavelength”).

• Since the basis for glint detection lies in specular reflection
causing higher reflectances for smaller glint angles, the
process for detecting blue glints does not consider any
pixels where the glint angle is larger in the blue image
than in the UV image.

• The algorithm needs to avoid false glint detections when
clouds that are just outside a pixel in the UV image appear
inside the pixel in the blue image because of wind drift,
cloud growth, or differences in the exact location of pixel
boundaries in the blue and UV images. Thus, the algorithm
follows Marshak et al. (2017) and uses not the RUV of the
pixel itself, but the maximum reflectance within a 3 × 3 pixel
area centered on the pixel.

Ultimately, the algorithm flags a pixel as blue glint if Rblue > T
(RUV), where T (RUV) is a threshold function value determined by
taking into account spectral variations in scene reflectivity. Since
spectral variations can be markedly different over different surfaces,
the operational algorithm uses separate T threshold functions for
three basic surface types: water, desert, and non-desert land. The
surface type at the location of each EPIC pixel is determined from the
0.05° latitude-longitude resolution global map of surface cover
provided in the MCD12C1 product of the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument (DOI: 10.5067/
MODIS/MCD12C1.006). The exact method for determining the T
(RUV) threshold function values for the entire range of possible RUV
values is described in the next section.

Threshold Selection
Admittedly, the selection of glint detection thresholds is
somewhat arbitrary and involves a trade-off between accuracy
and sensitivity. As usual, if we prioritize accuracy and use very
strict thresholds, we will miss detecting some not-so-clear-cut
cases affected by relatively faint glints. On the other hand, if we
prioritize sensitivity, we will capture not only actual glints but will
likely have many false detections as well. The EPIC glint product
uses T glint detection thresholds that result in a False Alarm Rate
(FAR) of 10%. This means that in 10% of pixels flagged as glint,
Rblue exceeds T (RUV) not because of glint, but because of other
factors such as strong spectral variations in surface albedo—for
example if a red dust plume drifts over the blue ocean.

We determine the glint detection thresholds using a pragmatic
statistical approach. This approach avoids the need for physical

modeling, which would be greatly complicated by variations in
surface spectral properties and in the areal extent, altitude, phase,
and optical thickness of clouds (which may also vary within the
roughly 8 by 8 km-size EPIC pixels). We note, however, that the
absence of physical modeling does notmean the lack of physical basis
or constraints: The physics of specular reflection is essential to the
method as it is based on glints being limited to locations with suitable
sun-view geometries and relies on the constraint that glint from
clouds have a narrow angular spread (typically less than 2°).

In determining what T thresholds will result in a FAR of 10%,
we will rely on the statistical probabilities (P) that, for a random
pixel, Rblue exceeds T (RUV) due to any (glint or non-glint) reason
(Pany) or due to non-glint factors (Png), respectively. Specifically,
we state that non-glint factors do not vary much at small glint
angles ( Png(δ < 2°) ≈ Png(2°< δ < 5°)), and that cloud glints
rarely extend to glint angle δ > 2°

(Pany(2°< δ < 5°) ≈ Png(2°< δ < 5°)). Based on these
considerations, we can express the total FAR of the glint
detection algorithm (applied to pixels with δ < 2°) as

FAR(δ < 2°) � Png(δ < 2°)
Pany(δ < 2°) ≈

Png(2° < δ < 5°)
Pany(δ < 2°) ≈

Pany(2° < δ < 5°)
Pany(δ < 2°)

(2)

We use Eq. 2 in determining the T (RUV) thresholds for each
possible RUV value through a three-step statistical analysis of all
EPIC images taken during 2018. First, for each possible RUV

FIGURE 1 | Illustration of threshold selection for the detection of blue
glints over non-desert land at pixels where the 388 nm UV reflectance is 0.25.
The green solid and red dashed curves show the PDFs based on all EPIC
images taken in 2018 for two different ranges of the glint angle (δ). Cloud
glints often enhance reflectances < 2°, thus creating the long tail of the red
curve. The black vertical bar indicates the T threshold value that was selected
because it leads to a 10% false alarm ratio: The area to the right of this line
[representing an integral inEq. (2)] is 10 times smaller under the green (no glint)
curve than under the red (glint-affected) curve.
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value, we calculate the probability distribution functions
PDF(Rblue | RUV, δ < 2°) and PDF(Rblue | RUV, 2° < δ < 5°).
Second, for each possible RUV, we calculate Pany for a wide range
of candidate T values as

Pany(T|RUV, δ < 2°) � ∫

∞

Rp

PDF(Rblue| RUV, δ < 2°)dRblue (3a)

and

Pany(T|RUV, 2° < δ < 5°) � ∫

∞

Rp

PDF(Rblue|RUV, 2° < δ < 5°)dRblue

(3b)

Third, for each RUV, we select the T value that, in Eqs 3a, 3b,
yields such Pany values that, in Eq. 2, will give a FAR close to 0.1
(Figure 1).

Finally, for robust glint detections, we need to consider that
the T (RUV) threshold functions determined through the
procedure described above can feature random jumps or
drops due to sampling noise caused by the finite size of our
dataset (containing all EPIC images taken in 2018). To avoid
such unphysical jumps and drops, the raw T
values are adjusted through a series of three smoothing
operations:

• Resetting to zero the PDF values for RUV bins containing
three or fewer pixels,

• Fitting a fourth or eighth order polynomial to the raw T
(RUV) functions (eighth order is used when this reduces the
root mean square error of the fit by at least 10%),

• Using linear extrapolation of T (RUV) to obtain thresholds
outside the range of RUV values observed in 2018.

The final T thresholds obtained at the end of this smoothing
process are illustrated in Figure 2. The figure shows that the T
threshold values are capped at the saturation level of the EPIC
blue detector (Rblue ≈ 1.3), as it would be pointless to set a
threshold higher than any reflectance reported by EPIC. At lower
reflectances, T increases with RUV; the discernible changes in the
slope of this increase are likely caused by transitions from clear
sky to partly and then fully cloudy situations as RUV increases.

Glint Detection Algorithm
Using the basic approach described in Section Basic Approach
and the thresholds discussed in Section Threshold Selection, the
operational algorithm detects blue glints through the following
process:

• Eliminate EPIC images if data for any of the bands used by
the algorithm is missing.

• Cycle through each pixel in the image and eliminate pixels if
δ > 2° or if δblue > δUV. This occurs if the distance from the
specular point (where δ � 0°) exceeds about 100 km.

• Identify the surface type of the pixel based on its coordinates
and a global map of surface types (obtained from the
MODIS MCD12C1 surface cover product).

• Based on the surface type and RUV (the maximum 388 nm
reflectance in the 3 × 3 pixel area around the pixel), select
the T glint detection threshold value to be used.

• Flag the pixel as glint if Rblue > T, or as non-glint if Rblue ≤ T.

INITIAL EXAMINATION OF GLINT
PRODUCT

This section discusses an initial examination of the glint product.
In the absence of independent datasets that could make the
traditional validation of the new EPIC glint product possible,
this section provides insights about the performance and
characteristics of the new product first by showing a few
examples of the operational glint mask, and then by
presenting an initial statistical analysis of glint detection results.

Glint Examples
Figure 3 shows glint detection results for four EPIC images, three
containing glints from ice clouds and one from the smooth ocean
surface. Additional examples can be found at the EPIC website at
https://epic.gsfc.nasa.gov/science/products/glint.

Figure 3A shows the glint displayed in Figure 1 of Várnai et al.
(2020b). The figure illustrates that in case of extensive ice clouds,
EPIC images can feature a colorful pattern in which the eastern
and western edges of the glint appear blue and red, respectively,
while the middle appears green. Green and especially red glints
appear to the west of blue glints because EPIC takes the red

FIGURE 2 | Threshold values used in the detection of blue glints. Pixels
are flagged as glint if their blue reflectance exceeds the T threshold value for
the pixel’s 388 nm reflectance RUV. The inset shows the PDFs of RUV for the
three surface types, indicating that the most frequently used threshold
values occur at moderate RUV values.
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(green) images 4 (3) minutes after taking the blue image—and
during this time, the rotation of Earth brings a more westward
location into the position where EPIC can observe specular
reflection from horizontal objects. The typical distance
between blue and red glints is about 100 km.

Figure 3B illustrates that glints affecting different EPIC bands
can overlap, for example the overlap of red and green glints
creates a yellow glint.

Figure 3C shows that in rare occasions, cloud glints can
extend all the way up to 2° glint angle. This may indicate
intense turbulence that increases the wobbling of horizontally
oriented ice crystals.

Figure 3D shows a bright glint from the smooth ocean surface.
For two reasons, we believe that while clouds may contribute to
the glint at a few pixels, the vast majority of this glint originates
from the water surface and not from clouds. First, the glint
extends to a much larger area (and larger glint angles) than
any cloud glints EPIC observed over land. The presence of glint at
even large glint angles indicates that while the reflecting object
may be smooth for a water surface, it is not nearly as uniformly
flat as the horizontal ice crystals are in clouds. Second, for almost
all glint pixels, the oxygen A-band ratios (R764 nm/R780 nm) are
below the 0.45 threshold that has been proposed to distinguish

surface and cloud glints (Várnai et al., 2020b). We point out that
the glint mask readily detects this bright glint, but it does not
detect the relatively faint diffuse glints from rough ocean surfaces,
which appear relatively dark grey in the image. We note that such
diffuse glints from rough ocean surfaces have been detected in
images of several satellite instruments such as MODIS or the
Multi-angle Imaging SpectroRadiometer (MISR) (e.g., Feng et al.,
2017; Knobelspiesse et al., 2021).

Finally, a comparison of glint latitudes in Figure 3 illustrates
that, as discussed in Marshak et al. (2017), the latitude of glint
observations shifts with the seasons, with glints being detected in
the Northern Hemisphere in July (Panel A), in the Southern
Hemisphere in January (Panel B), and around the equator in
September and April (Panels C and D).

Glint Statistics
Following the individual examples discussed above, this section
presents some basic statistics about the glints detected by the
operational algorithm in all EPIC images taken during 2017. The
goal of this initial statistical analysis lies not in providing physical
insights on atmospheric or surface properties, but in getting an
initial glimpse of glint product behaviors. (We note that statistics
for 2018 were very similar to those for 2017, but the examination

FIGURE 3 | Sample sun glints caused by specular reflection from ice crystals in clouds (A–C) and from smooth ocean surface (D). The insets show the glint-
affected areas in detail (left inset), as well as the EPIC glint mask (right inset). Different colors in this rendering of the glint mask indicate which wavelength(s) in the EPIC
observations are affected by glint, with yellow and turquoise indicating the overlap of red and green, or blue and green glints, respectively. Light grey means “no glint”,
while dark gray indicates that no glint detection is attempted as the glint angle exceeds 2°.
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of interannual variability is left to a future study of the entire EPIC
data series.)

Figure 4 shows what fraction of pixels were flagged as glint for
various surface types and glint colors, as a function of glint angle.
The figure reveals several notable features discussed below.

The dominant feature of all panels in Figure 4 is a sharp
increase in the fraction of pixels with glint at small glint angles.
This is consistent with glint reflectances being largest at small
glint angles (e.g., Várnai et al., 2020a; Várnai et al., 2020b;
Kostinski et al., 2021) and can be attributed to specular
reflection from horizontally oriented ice crystals in clouds and
from very smooth water surfaces (such as small, calm lakes, as in
Kostinski et al., 2021).

Figure 4A reveals that glints are detected more frequently in
the blue EPIC band than in the green and red bands. (The figure
considers all glints regardless of whether they come from the
surface or clouds.) Green and red glints may be detected less
frequently because, similarly to green (or red) glints, glintless
white clouds also increase the ratios of green to blue reflectances
or red to blue reflectances—which makes it harder to identify
glints with a high confidence. The panel also shows that glint
detections do not drop to zero at larger glint angles, probably due
to somewhat wavy water surfaces that spread specular reflection
into a wider range of glint angles.

A comparison of the peak values in Panels a, b, and c
reveals that, even for blue glints, glint detection is much less
frequent over ocean than land. Considering that about a third
of land pixels is classified desert in our dataset, the land-ocean
difference is roughly 7-fold, which is roughly twice as large as
the factor of 3.5 between glint-caused reflectance
enhancements over land and ocean in Figure 2A of Várnai
et al. (2020b). This may show that it is harder to identify
individual glints over ocean than over land and calls for
future improvements in the detection of ice cloud glints
over ocean.

The combination of Panels b and c shows that for very
small glint angles, glints are detected at about 22% of all

observations taken over land. Considering that at the latitudes
of EPIC glint observations, the average ice cloud cover above
land varies between 20 and 50% during the course of a year
(Várnai et al., 2020b, based on King et al., 2013), finding glints
in 22% of pixels suggests that glint detection over land is
highly effective and that horizontally oriented crystals are
quite prevalent in ice clouds. It is important to keep in mind,
though, that glint may be observed even if horizontal ice
crystals occur only in a portion of a typically 8 by 8 km size
EPIC pixel. This implies that horizontal ice crystals likely
occur over less than 22% of the actual land area. Moreover, we
note that while the sharp drop-off in glint probability with
glint angle suggests a dominance of such almost perfectly
horizontal surfaces that seem more likely in clouds than in
lakes or rivers, future studies will be needed to estimate the
relative frequencies of cloud and surface glints.

The comparison of Panels b and c reveals that glints are
detected less frequently over desert than non-desert land, due
to the lower frequency of ice clouds (and lakes). Finally, we
point out that over desert, red glints are detected less
frequently than green or blue glints. This seems to indicate
that changes in mineral composition of the typically brownish
desert can create red patches even without glint, which
makes it more difficult to identify red glints with high
confidence.

By displaying the number and typical size of glints, Table 1
shows that over all surface types, glints are more frequently
detected for the EPIC blue band than for the green or red
bands—but also that blue glints are systematically smaller
than green or red ones. Overall, the total glint area is similar
for all bands over non-desert land, whereas over water and
desert, blue glints cover the largest areas despite their
smaller sizes.

Over water, blue glints may cover the largest areas due to the
higher effectiveness of blue glint detection mentioned above.
Similarly, the higher detection effectiveness discussed at
Figure 3C may explain why, over desert, blue glints cover

FIGURE 4 | Fraction of all pixels for which the glint mask indicates the presence of glint, plotted separately for each surface type and EPIC band as a function of glint
angle (the angle between the actual EPIC view direction and the direction of looking straight into the specular reflection from a perfectly horizontal surface). As discussed
in the text, the differences in glint detection frequency over various surface types come from a combination of differences in ice cloud populations and in glint detection
sensitivity.
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larger areas than red glints. The difference between the total
area of blue and green glints over desert comes from small
blue glints detected at relatively large (>1°) glint angles
(Figure 3C), but future studies will be needed to explain
these glints.

Finally, we note that for all surface types and EPIC bands,
the median of the glint size is much smaller than the mean.
This implies that glint size distributions have long tails toward
large sizes, indicating a significant occurrence of very large
glints. Such large glints may occur in cases of extensive ice
cloud cover or large calm water surfaces (as in Figures 3C,D)
but, detector saturation artifacts may also play a role (as in the
lower right panel of Figure 1 in Marshak et al., 2017). As
discussed in the next section, the origin of large—and
small—glints can be best explored using additional
information not present in the current, initial version of
the EPIC operational glint product.

SUMMARY

This paper described the recently released operational glint
product of the Earth Polychromatic Camera (EPIC) onboard
the Deep Space Climate Observatory (DSCOVR) spacecraft.
First, the paper outlined the basic approach used for obtaining
the key parameter provided in the product: a glint mask that
identifies glints caused by the specular reflection of sunlight
from ice clouds and smooth water surfaces. This mask can
help in identifying cases when various EPIC products may be
less accurate due to the effects of glints and can also help
in learning more about the glint-causing clouds or water
bodies.

Building on earlier studies (Marshak et al., 2017; Várnai
et al., 2020a), glints are detected by comparing two EPIC
images having slightly different sun-view geometries: One
capturing the glint and the other missing the glint’s
narrowly focused intense specular reflection. Pixels are
flagged as glint if their reflectances in the two images differ
substantially. After outlining the general approach, the paper
described the glint detection algorithm in detail—including,
the method used for obtaining glint detection thresholds that
keep the likelihood of erroneous (“false”) detections
below 10%.

After describing the glint detection process, the paper
illustrated various features of the detected glints and provided

basic statistics of the glint population observed in a yearlong
dataset of EPIC images. These examples and statistics
characterized glint populations and yielded insights into the
performance of glint detection, and help guiding both future
product development and scientific usage. For example, the
results indicated a substantial underdetection of cloud glints
over ocean, as glints from the water surface (that are often too
wide to be detected by our method) made it harder to identify
cloud glints with a high confidence. We expect to study this
underdetection and improve the detection of glint pixels in the
future.

While the current paper considered only the glint product
by itself, the main scientific benefits will likely come from
combining the glint product with other information. For
example, the glint product could be combined with EPIC
data on oxygen absorption, with visible EPIC reflectances, or
with cloud products from other satellites. EPIC observations
in the oxygen A and B absorption bands could help in
determining whether glints are caused by water surfaces or
ice clouds (Marshak et al., 2017; Várnai et al., 2020a). The
initial analysis of oxygen absorption band data for the
detected glints indicate behaviors that are very similar to
those in earlier studies. For example, oxygen A-band
histograms over ocean suggest that just under two-thirds
(≈64%) of blue glints come from the ocean surface, very
close to the 60% indicated by Figure 2A of Várnai et al.
(2020a). Over land, the histogram of blue glint oxygen A-band
ratios (R764 nm/R780 nm) peaked at 0.36—close to 0.37 peak in
Figure 3A of Marshak et al. (2017) that suggested typical
cloud altitudes around 5–8 km. Further analysis [considering
the EPIC cloud product (Yang et al., 2019) as well] is expected
to yield more details about the altitude and temperature of
clouds producing glints. (We note that studying blue glints
appears most promising, as the location of these glints are
least likely to be affected by cloud glints at the wavelengths
used by the EPIC cloud product.) In addition, EPIC visible
reflectances could help estimate reflectance enhancements
caused by glints (Várnai et al., 2020a; Várnai et al., 2020b)
and from this, the fraction of horizontally oriented ice crystals
in ice clouds. Other collocated datasets—for example global
reanalyses or cloud products from satellites that view the glint
area from directions not affected by glint—could help identify
conditions favoring the formation of horizontally oriented ice
crystals and provide new information on the microphysical
and radiative properties of ice clouds.

TABLE 1 | Number and size of glints detected by the EPIC glint product. The numbers in parentheses indicate, what the fraction of all glints detected over a certain surface
type are detected at each color.

Water Non-desert land Desert

Blue Green Red Blue Green Red Blue Green Red

Number of glints 955 (59%) 341 (21%) 330 (20%) 651 (39%) 540 (32%) 491 (29%) 112 (51%) 59 (27%) 47 (22%)
Mean size (pixel) 23 35 38 27 35 35 15 21 20
Median size (pixel) 5 12 13 12 22 20 7 12 10
Total glint area (pixel) 21,595 11,875 12,555 17,405 18,778 17,218 1,735 1,219 917
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APPENDIX
DESCRIPTION OF GLINT PRODUCT FILES

The operational EPIC glint product generated by the method
described above is publicly available at the NASA
Atmospheric Science Data Center (ASDC) at https://
eosweb.larc.nasa.gov. There is a separate glint product file
for each individual EPIC image, with each file containing
three parameters for each pixel: Surface type, glint angle, and
glint mask.

• The surface type flag shows whether the area of a pixel is
covered mainly by water (value � 0), desert (value � 2), or
non-desert land (value � 1)

• The glint angle tells how favorable the EPIC view direction
is for glint detection and can help in using glints for
inferring scene properties.

• The glint mask indicates whether or not glint has been
detected (1 � glint, 0 � no glint).

We mention that while the surface type flag is provided in a 2-D
array that (matching the EPIC image size) contains 2048 rows and
2048 columns, the glint angle and glintmask values are provided in 3-
D arrays containing 2048 rows, 2048 columns, and three layers (one
layer for each of the blue, green, and red spectral bands). In order to
reduce the data volume by enabling amore effective file compression,
the values of all parameters are set to −1 for pixels where glint
detection is not attempted as the glint angle exceeds 2°.
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Radiometric Stability Assessment of
the DSCOVR EPIC Visible Bands Using
MODIS, VIIRS, and Invariant Targets
as Independent References
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The DSCOVRmission was designed to take advantage of the first Lagrangian position (L1)
to continuously observe the Earth sunlit disk. To facilitate EPIC V03 data product validation
and fusion, the EPIC V03 navigation and calibration stability is assessed. The Aqua-
MODIS, NPP-VIIRS, and N20-VIIRS based radiometric scaling factors are also provided.
The V03 navigation error was 15.5 km, a 50% improvement over V02 and within what can
be achieved by an objective image alignment algorithm. Both the navigation accuracy and
precision were improved in V03 and were found to be comparable across all EPIC visible
channels. The all-sky tropical ocean and deep convective cloud ray-matched MODIS- and
VIIRS-referenced EPIC inter-calibration gains are within 0.4% of one-another, and are also
within 0.4% of a previous study’s NPP-VIIRS-referenced gains. The inter-calibration study
reveals that EPIC bands 5 and 6 degraded mostly within the first year of operation and
becoming stable thereafter, whereas bands 7 and 10 were stable during the 6-years
record. The capability of the V03 navigation allowed EPIC stability to be monitored using
DCC and Libya-4 invariant targets. The EPIC V03 calibration wasmostly stable within 0.3%
over the 6-years record, as determined from inter-calibration and invariant target
monitoring methods. Remarkably, both the DCC- and Libya-4-based methods were
able to confirm the stability of the E-8 and E-9 oxygen absorptions—a stability comparable
to that of the E-7 and E-10 reference bands. No significant change in the navigation
accuracy or calibration stability was observed after the DSCOVR 2019 safe mode incident.
The impressive stability of the DSCOVR EPIC L1B V03 channel radiances can greatly
benefit the Earth remote sensing community by providing diurnally complete daytime
radiative flux and environmental retrievals for future sensors located at L1.

Keywords: DSCOVR/EPIC, MODIS, VIIRS, calibration, DCC, Libya-4

INTRODUCTION

The Deep Space Climate Observatory (DSCOVR), launched on February 11, 2015, orbits the first
Lagrange point (L1)—about 1.5 million km from the Earth in roughly the direction of the Sun. This
orbit location allows the DSCOVR satellite instruments to have unique views of both the Sun and the
Earth. The Earth Polychromatic Imaging Camera (EPIC) is an Earth-facing instrument on DSCOVR
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that has a constant view of the sunlit side of the Earth, almost
entirely in the backscattering direction (Marshak et al., 2018). The
EPIC sensor images the Earth between 10 and 22 times during a
24-h interval using a CCD array. A filter wheel allows the EPIC
sensor to observe the Earth at 10 different narrow spectral
channels ranging from the UV to the NIR. These channels
lead to formulation of various Level-2 products that enable
investigation of aerosols, ozone, clouds, vegetation, volcanic
SO2, and glint (Marshak et al., 2018). The diurnal sampling
capability of EPIC allows for more robust daily averaged
retrievals compared to the capabilities of single daytime sun-
synchronous, low Earth orbit (LEO) instruments such as the
MODerate Resolution Imaging Spectroradiometer (MODIS) and
Visible Infrared Imaging Radiometer Suite (VIIRS). This
advantage is especially important for maritime stratus regions
where morning clouds often dissipate by the afternoon, or for
afternoon convective monitoring over land where morning clear
skies transition to thunderstorms in the late afternoon.
Furthermore, the EPIC diurnally derived broadband shortwave
fluxes are consistent with the geostationary imager based
broadband SW fluxes derived for the CERES SYN1deg
product (Su et al., 2018).

The EPIC retrievals are validated against coincident MODIS
and VIIRS (M/V) retrievals. To compare the EPIC with M/V
retrievals, the EPIC channel radiances must be radiometrically
scaled against the M/V L1B calibration reference. The M/V L1B
calibrated radiances are referenced to their onboard solar
diffusers and are not radiometrically scaled with one another.
For some visible bands, the NPP-VIIRS and N20-VIIRS
calibrated radiances can differ by 3% (Uprety and Cao, 2020;
Moyer et al., 2021; Mu et al., 2021; Wu et al., 2020). The future
CLARREO Pathfinder instrument will provide an absolute
calibration reference in space with which the EPIC sensor
calibration can be anchored to (Wielicki et al., 2013; Shea
et al., 2020). Until an absolute calibration reference in space is
realized, EPIC visible channel calibration coefficients for Aqua-
MODIS, NPP-VIIRS, and N20-VIIRS are needed for data fusion
and are provided for in this study.

In this study, we aim to complete the EPIC V03 navigation
assessment initiated by Doelling et al., 2019, which aligned the
EPIC coincident images with the well-navigatedM/V images. The
assessment utilized 2 days of EPIC R06 data, the precursor to
EPIC V03, and found that the navigation was an improvement
over V02. This refinement in navigation resulted from the
improved geolocation and CCD array flatfielding accuracy in
V03 (Kostinski et al., 2021). This furthered study also provides a
calibration stability assessment of the EPIC sensor, which does
not contain any onboard calibration systems. Two independent
inter-calibration approaches are utilized that rely on coincident
ray-matched radiance pairs. The first method remaps the
coincident EPIC and M/V pixel-level radiances over all-sky
tropical ocean (ATO-RM) and inter-calibrates the angular
matched radiance pairs. The second method utilizes only ray-
matched deep convective cloud (DCC-RM) targets to inter-
calibrate M/V with EPIC. Agreement between the two
independent inter-calibration methodologies and the recently
published Geogdzhayev et al. (2021) EPIC calibration

coefficients should not only ensure robust EPIC calibration
coefficients, but also lend confidence to the capability of the
calibration methods. Particular attention is given to determine if
there were any EPIC calibration discontinuities experienced
during the DSCOVR spacecraft safe mode incident between
June 2019 and February 2020.

With the anticipated EPIC V03 navigation improvement,
we attempt to apply a Pseudo Invariant Calibration Site
(PICS) or Earth invariant target approach to monitor the
stability of EPIC visible bands. PICS are widely used amongst
satellite calibration teams for monitoring the onboard
calibration systems, because the method simply relies on a
stable Earth target rather than on concurrent sensors, thereby
avoiding sensor-embedded calibration drifts. The DCC and
Libya-4 invariant target (IT) methodologies were chosen to
assess the stability of the EPIC visible channels. Sun-
synchronous sensor based invariant target methodologies
were modified for consideration of the random local time
sampling of the EPIC images over the invariant target. The
DCC-IT and Libya-4 stability results are verified with the
ATO-RM and DCC-RM stability assessment.

Methodology section describes the EPIC, MODIS, and VIIRS
datasets, the navigation accuracy assessment strategy, the ATO-
RM and DCC-RM methodologies, and the DCC-IT and Libya-4
invariant target approaches. The EPIC calibration coefficient
formulas that describe the EPIC sensor degradation are also
discussed in Methodology section. Results section provides the
EPIC V03 navigation assessment. The Aqua-MODIS, NPP-
VIIRS, and N20-VIIRS referenced EPIC calibration coefficients
and comparison with the Geogdzhayev et al. (2021) coefficients
are likewise found in Results section. The Libya-4 and DCC
invariant target results and overall EPIC stability assessment
finishes Results section. Conclusions section contains the
summary.

METHODOLOGY

Data
The EPIC L1B data were obtained from the NASA Langley
Atmospheric Science Data Center Distributed Active Archive
Center (ASDC DAAC). Both EPIC V03 (July 2015–February
2020) and V02 (July 2015–July 2019) are used in this study. EPIC
V02 data is only available up until the safe mode incident,
whereas the V03 data was processed from the beginning of the
record and continues after the safe mode event. The EPIC imager
employs a filter wheel to observe the Earth in 10 reflective solar
band channels using the same CCD array. The first four bands are
UV channels and are not evaluated in this study. The remaining
visible bands are utilized and are listed in Table 1. The EPIC
imager requires ∼7 min to step through all 10 channels. The CCD
array nominal pixel resolution is ∼8-km. To facilitate data
transmission, the pixel resolution is degraded by a factor of 2,
except for band 5. The EPIC image is geo-rectified onto a
common latitude and longitude 2048 by 2048 (8-km nominal
resolution) grid for all 10 bands. The view and solar angles are
based on the measurement time. For convenience, the EPIC
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observed photon (12-bit) counts sec−1 are simply referred to as
counts in this manuscript.

The L1B MODIS data used in this study are from Aqua-
MODIS Collection 6.1 (C6.1), which have a nominal
resolution of 1 km. For VIIRS L1B, the Suomi-NPP and
N20 NASA Land Science Investigator-led Processing
System (LandSIPS) data are used. The NPP-VIIRS data are
from Collection 1, and the N20-VIIRS data are from
Collection 2. The M bands are observed at a 750-m
nominal resolution, whereas the I band resolution is 375 m.
The I band pixel reflectances are first aggregated into the M
band resolution. The M/V pixels are subsampled at 2 and
1.5 km, respectively, for this study. The M/V bands utilized in
this study are listed in Table 1 along with their respective
EPIC band pairings. Note that the EPIC band 10 (0.780 µm) is
paired with both the M/V 0.65-µm and 0.86-µm channels
because most M/V based retrievals rely on the 0.86-µm band
rather than their equivalent VIIRS M6 (0.746 µm) or MODIS
B15 (0.748 µm) counterparts. MODIS band 2 (0.865 µm) is
not utilized in this study, because both the ATO-RM and
DCC-RM methods are adversely impacted by the MODIS
band 2 saturated measurements over very bright targets.

Table 1 defines the sensor band nomenclature used in this
study. EPIC bands are defined by a prefix of E, for example, E-
5 for EPIC band 5. The Aqua MODIS bands are designated by
a prefix of MAq followed by the MODIS band number, for
example, MAq-1 is Aqua MODIS band 1. The NPP-VIIRS and
N20-VIIRS bands are denoted by VNPP and VN20, respectively,
and followed by their respective I or M band numbers, such as
VNPP-I1 or VN20-I1. Table 1 shows the band center
wavelengths and their respective band widths. Note the
very narrow EPIC bands compared with their respective
M/V bands. The VIIRS M5 band is also narrower than the
corresponding I1 band.

EPIC Navigation
Unlike near-Earth sensors, aligning the EPIC CCD array onto
the Earth and computing the pixel coordinates from the sensor
pointing vector is very challenging given the DSCOVR distance
from Earth. Even after focused study to rectify, residual
navigation errors still remain in V03 and need to be

evaluated. An automated EPIC image geolocation correction
algorithm was developed to mitigate spatial discrepancies when
inter-calibrating coincident EPIC andM/V images (Haney et al.,
2016 and Doelling et al., 2019). The image geolocation
correction algorithm also evaluates the EPIC navigation
accuracy. The navigation accuracy is limited by the 0.25°

latitude by longitude spatial resolution used to shift the
underlying EPIC image. Because the EPIC and M/V inter-
calibration events occur mostly at the center, i.e., near the
sub-satellite point, of the EPIC image, the navigation
accuracy results are only valid near the EPIC sub-satellite
domain.

A detailed description of the geolocation correction
algorithm is found in Haney et al. (2016) and is briefly
summarized here. For a given EPIC image, coincident
(within 15-min) M/V granules within ±30° in latitude from
the equator are identified. The 5-min MODIS or 6-min VIIRS
granule pixel-level reflectances are gridded into a 0.25° latitude
by longitude grid. The associated EPIC image pixel counts are
similarly gridded. For each M/V granule, the EPIC grid is shifted
by ±5 grid cells in both the East-West and North-South
direction. For each of the 121 EPIC grid shifts, the M/V
reflectance and EPIC grid cell count pairs are linearly
regressed and the square of the Pearson correlation
coefficient (R2) is noted. The grid shift with the largest R2

value is considered the optimal navigation correction. The
process is repeated with the remaining coincident M/V
granules in the EPIC domain. The navigation correction
algorithm is best suited for images with contrasting features
such as coastlines and cloud boundaries.

ATO-RM
The all-sky tropical ocean ray-matching inter-calibration
methodology follows closely that described in Doelling et al.
(2019). The advantage of ATO-RM methodology is that it
compares the full Earth-viewed visible radiance dynamic
range between sensors. The 15-min coincident aligned EPIC
counts with M/V gridded reflectances (from EPIC Navigation)
are first aggregated into a 0.5° grid (note that gridding in this
manner may reduce the visible dynamic range). A relative to the
mean grid cell standard deviation threshold of 70% is applied

TABLE 1 | EPIC, MODIS, and VIIRS band nomenclature used for this study (ID), and wavelength center and width (FWHM) in nm obtained from https://avdc.gsfc.nasa.gov/
pub/DSCOVR/EPIC_NISTAR_Documents/DSCOVR-EPIC-Description.pdf, https://modis.gsfc.nasa.gov/sci_team/meetings/199310/presentations/x153_refl_bands.
pdf, and https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/. The bands are listed by increasing wavelength.

EPIC Aqua-MODIS NPP/N20-VIIRS

Band
ID

Center
(nm)

Width
(nm)

Band
ID

Center
(nm)

Width
(nm)

Band
ID

Center
(nm)

Width
(nm)

E-5 443 3 MAq-3 469 20 M3 490 20
E-6 551 3 MAq-4 555 20 M4 555 20
E-7 680 2 MAq-1 645 50 I1 640 75

— — — — — M5 673 21
E-8 687.75 0.8 — — — — — —

E-9 764 1 — — — — — —

E-10 779.5 2 — — — — — —

— — MAQ-2 858.5 35 M7 865 39
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based on the imager pixel reflectances to mitigate the impact of
1) heterogeneous scenes, 2) cloud spatial shifts due to the time
matching differences, and 3) any residual EPIC navigation
errors. Grid cells located over ocean glint and land are
avoided. The EPIC and M/V view zenith angle (VZA),
relative azimuthal angles (RAZ), and scattering angles are
matched within 15°. A graduated angle matching (GAM)
approach is applied, which further restricts the angle
matching over dark scenes that exhibit anisotropic behavior,
while maintaining the initial angle matching for the more
Lambertian bright scenes (Doelling et al., 2016). The first
quartile of the visible dynamic range requires the VZA and
RAZ to be matched within 5°, while the second quartile requires
them to be within 10°. The 15° angle matching is retained for the
3rd and 4th quartiles. The M/V reflectances are adjusted to the
EPIC SZA by the ratio of the EPIC and M/V cosine SZA (µ0) as
shown in Eq. 1 for MODIS.

RefMODIS × (
μ0EPIC
μ0MODIS

) × d−2 × SBAFEPIC/MODIS � gain × CountEPIC

(1)

An ATO, reflectance-based 2nd order spectral band
adjustment factor (SBAF) based on the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) hyper-spectral radiances is applied to the
M/V channel reflectances to mitigate the impact of the
spectral band differences (Bovesmann et al., 1999; Scarino
et al., 2016). The ATO-RM EPIC channel counts and LEO
imager reflectance pairs are then linearly regressed monthly.
Any EPIC count and imager reflectance pairs that are outside of
4 × the linear regression standard error are removed as a way of
avoiding any residual mis-navigated pairs. Figure 1A shows the
ATO-RM E-7 and VNPP-I1 reflectance pair scatter plot for May
2020. The linear regression through the space offset or EPIC
count of zero (referred to as the force fit) is used to compute the
monthly gain. The corresponding linear regression offset is -352,

which is very close to the assumed space count of zero in relation
to the large dynamic range of EPIC counts (Figure 1A). The
tightly aligned dark reflectance pairs and the increased scatter
about the bright pairs in Figure 1A are a result of the GAM
methodology.

Imager Calibration Drift Mitigation
Because ATO ray-matching utilizes contemporaneous
observations between the EPIC and LEO imagers, it is
essential that all LEO imager drifts are removed prior to
performing the stability assessment of the EPIC channels.
We performed independent assessments of the MODIS and
VIIRS L1B calibration stability using the DCC and Saharan
Desert invariant targets (Doelling et al., 2013; Bhatt et al.,
2014). During 2015–2021, both MODIS instruments’ visible
bands calibration in C6.1 L1B radiances were found stable,
except for some embedded residual scan-angle dependencies
remaining near the end of the MODIS cross-track scans (Bhatt
et al., 2019). Similarly, noticeable temporal calibration drifts
were observed in some of the reflective solar bands L1B
radiances for the two VIIRS instruments. The NPP-VIIRS
C1 data shows a positive trend of ∼0.6% in the I1 band
from 2012 through 2018. During April 2018, a LUT update
was implemented to make the record post-April 2018 more
stable and consistent with that of 2012. As such, there is a
∼0.6% discontinuity between the pre- and post-April
2018 NPP-VIIRS data in C1. The newly released C2 of NPP-
VIIRS data from NASA LandSIPS has a consistent calibration
LUT implemented across the full record and is believed to have
these drifts corrected in the L1B radiances. Figure 2A shows the
VNPP-I1-based E-7 monthly gains plotted over the EPIC record.
As expected, the gain (open circles) appears to decrease over
time due to the VIIRS LUT update during April 2018. The I1
band radiances from N20-VIIRS C2 data were also found to
have a minor downward temporal trend of ∼0.6% over the 3-
year period. As such, the VN20-I1-based E-7 monthly gains also
show a downward trend (Figure 2B). The presence of these

FIGURE 1 | The (A) ATO-RM and (B) DCC-RM E-7 count and VNPP-I1 reflectance pair scatter plots for May 2020 with associated linear regression (solid red line).
The number of pairs (NUM), standard error (STDerr%), and linear regression slope through an offset of 0 (FOR) in count−1 or gain (Eq. 1) is given in the lower right.
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drifts in the VIIRS L1B products was confirmed with the VIIRS
Characterization and Support Team at Goddard Space Flight
Center. The time-dependent magnitudes of these temporal
drifts were characterized based the DCC invariant target
analysis. Correction factors were derived from the DCC-
based drift analysis and were applied to stabilize the ATO-
RM VIIRS radiances prior to computing the EPIC monthly
gains from the ATO-RM data. The filled circles in Figure 2
shows both the VNPP-I1 and VN20-I1 based E-7 monthly gains
after applying the drift correction—revealing a near stable
record.

DCC-RM
The deep convective cloud ray-matching (DCC-RM)
methodology relies on very bright TOA tropical targets that
are nearly spectrally flat (for wavelengths <1 µm) and nearly
isotropic for SZA and VZA conditions less than 40°. The DCC-
RM inter-calibration has increased signal to noise, reduced SBAF
uncertainty, and allows for greater angle matching tolerance
compared with those of the ATO-RM approach. The EPIC
DCC-RM is outlined in Doelling et al. (2019) and is
summarized here. The EPIC Navigation section coincident
angle matched EPIC and M/V-aligned 0.25° gridded radiances
are identified as DCC targets if their corresponding MAq-31 or
VNPP/N20-M15 11 µm BT measurements are less than 220 K. A
visible and IR spatial homogeneity threshold of 5% and 2.5 K
based on the relative standard deviation of the M/V pixel values
within the 0.25° grid cell is applied. Unlike the ATO-RM, the
DCC-RM includes ocean and land grid cells. The approximate
DCC linear regression SBAF (Scarino et al., 2016) is applied to the
M/V drift-corrected (Imager Calibration Drift Mitigation) and
EPIC SZA-adjusted channel reflectances (Eq. 1). The EPIC count
and LEO channel reflectance pairs are linearly regressed monthly
through the space count of zero and a 4 × standard error outlier
filter is applied. Figure 1B shows the DCC-RM E-7 count and
VNPP-I1 reflectance pair scatter plot for May 2020, which can be
compared with the corresponding ATO-RM plot in Figure 1A.
Both methods provide a nearly identical force fit result (within

0.1%). As expected, there are fewer DCC-RM reflectance pairs
compared with ATO-RM given that only 0.3% of the tropics
contain DCC (Hong et al., 2005).

DCC Invariant Target Methodology
The DCC-IT methodology was formulated in the ground-
breaking work of Hu et al. (2004). The EPIC DCC-IT
calibration method is based on the Doelling et al. (2011) and
Doelling et al. (2013) DCC-IT methodology, which relies on the
fact that when the large ensemble of DCC-identified pixel TOA
reflectances are analyzed collectively, they behave as an
invariant target. The DCC-IT methodology has been well
established in the calibration community and is used to
monitor the onboard calibration of M/V (Doelling et al.,
2013; Bhatt et al., 2014; Mu et al., 2017; Angal et al., 2018;
Wang and Cao 2015; Wang and Cao 2020). The methodology
has been further developed and utilized for this study for daily
monitoring, which requires increased DCC sampling than
needed by monthly monitoring methods (Doelling et al.,
2021). The EPIC DCC-IT methodology relies on the DCC-
RM spatially matched, but not necessarily angle matched, EPIC
with M/V coincident images, including necessary 11 µm BT
information (see DCC-RM section). Typically, for high pixel
resolution (∼1 km) imagers, a BT threshold of 205 K is used to
identify DCC pixels. Furthermore, a homogeneity filter of 1 K
(IR) and 3% (visible) based on the 8 surrounding M/V pixels is
effective in filterering out the less bright anvil pixels (Doelling
et al., 2013). Due to the low pixel resolution, any 0.25° grid cell
with a M/V BT less than 220 K is utilized. Applying
homogeneity filters would severely limit the sample size
required by the large ensemble methodology. As such, no
homogeneity thresholds are applied. The SZA and VZA
thresholds are expanded to 60°. Because the matched EPIC
images are tied to the 13:30 local sampling time of Aqua,
NPP, and N20 sun-synchronous satellites, the diurnal-
dependent DCC lifecycle over land is not aliased into the
DCC reflectance. The individual DCC-identified grid cell
counts are corrected for both overhead Sun conditions by

FIGURE 2 | (A) The ATO-RM E-7/VNPP-I1 monthly gains and associated linear trend line before (open circles and dotted line) and after (filled circles and solid line)
VNPP-I1 drift-corrected reflectances. The EPIC gain is in count−1. The before and after standard error (STDerr%), mean, and linear trend [SLP (%/yr)] are located in the
lower left corner. (B) Same as (A) but for N20-VIIRS based monthly gains for E-7.
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dividing by the cosine of the SZA and by the Earth-Sun distance
as follows.

DCCcount � CountEPIC × d2

μ0EPIC
(2)

The monthly frequency probability density function (PDF) of
E-7 DCCcounts are shown in Figure 3A. Each month contains
between 20 k and 100 k DCCcount. The monthly PDF shapes are
fairly consistent over the record. Typically for high pixel
resolution sensors, the monthly PDF mode DCCcount is
tracked over time. However, for EPIC, the PDF peak is not
well defined and the monthly PDF mode DCCcount is very
noisy. The application of the Hu et al. (2004) DCC
bidirectional reflectance distribution function (BRDF) model
did not enhance the PDF peak. A future empirical EPIC DCC
BRDF model based on the first 3-years of EPIC DCCcount may
reduce the PDF mode noise and enhance the peak. Since the PDF
mean is more stable than the mode, the PDF mean DCCcount is
used to monitor the sensor stability. Figure 3B shows the
monthly DCCcount over the EPIC record. The DCCcount

response shows a distinct seasonal cycle. The DCCcount is
deseasonalized using the ratio-to-moving average method as
described in Bhatt and Wu (2017). The deseasonalization
process is a multi-step procedure where a monthly seasonal
index (SI) is first computed from the average relative ratio
between an individual month DCC response and a 12-months
centered running mean. The monthly DCC responses are then
divided by the month-specific SI value to yield a deseasonalized
DCC timeseries. The ratio-to-moving average method requires at
least two complete years of data to compute monthly SI, and
leaves intact any drift in the time series. The deseasonalized
DCCcount values are also shown in Figure 3B. The deseasonalized

E-7 record linear trend standard error was reduced by 20% from
1.54 to 1.23%. Deseasonalization also reduced the linear trend
from -0.04%/yr to -0.01%/yr because the monthly gain variation
at the beginning and end of the record may have impacted
the trend.

Libya-4 Invariant Target Methodology
The Libya-4 desert site, center location at 28.55°N and 23.4°E, is a
CEOS recommended Cal/Val site and is one of the most used
PICS for calibration and stability monitoring (Cosnefroy et al.,
1996; Teillet and Chander, 2010; Chander et al., 2013). Staylor
and Suttles (1990) computed AVHRR calibration degradation
using the Libyan desert based on a BRDF model developed by the
Nimbus-7 ERB measurements. In other desert-based PICS
studies, Teillet et al. (1990) used White Sands, NM to inter-
calibrate the AVHRR and Landsat-TM sensors using a historical
BRDF. Kaufman and Holben (1993) used an Egyptian desert
PICS and Kogan et al. (1996) used several Saharan desert PICS to
determine the AVHRR degradation. Cosnefroy et al. (1996)
characterized multiple Saharan and Arabian deserts as
potential PICS by their clear-sky frequency, temporal stability,
and surface brightness, while Moulin et al. (1996) utilized four
Saharan invariant desert targets to monitor and calibrate the
geostationary Meteosat-2 sensor visible channel. Often the Libya-
4 desert site was used to produce official AVHRR calibration
coefficients (Rao et al., 1994; Rao and Chen, 1996; Rao et al.,
1999). Furthermore, the sun-synchronous M/V sensor onboard
calibration have been validated using Libya-4 (Doelling et al.,
2015, Bhatt et al., 2014b. Uprety and Cao, 2015, Wu et al., 2016,
Xiong et al., 2010b). Lastly, the Libya-4 site is one of multiple
PICS used to determine the MODIS response versus scan-angle
(RVS) real-time corrections (Sun et al., 2014; Mu et al., 2018).

FIGURE 3 | (A) The July, November, and March over the EPIC record monthly probability density functions (PDF) of the E-7 DCCcount (Eq. 2). The number of
monthly DCC identified grid cells (Pixels), mean DCCcount (MEAN), and PDF mode DCCcount (MODE) statistics are located in the upper left corner. The monthly PDF lines
are color coordinated with the month and year column of the statistics. (B) The DCC E-7 monthly mean DCCcount and associated linear trend line before (black open
circles and line) and after (red open triangles and line) deseasonalization. The linear regression slope (DCCcount/day), offset, mean DCCcount, standard error (STDerr
%), and linear trend are located at the bottom of the plot.
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The Libya-4 region of interest (ROI) is 0.6° in latitude and
longitude region centered at 28.55°N and 23.4°E. For a given EPIC
image, the Libya-4 ROI center and 8 surrounding pixels counts
are averaged and the relative standard deviation is computed. The
EPIC sensor views the Libya-4 desert on daily basis. Unlike the set
geostationary sensor imaging schedules, the EPIC images are not
scanned at fixed GMT times. The EPIC PICS methodology
cannot rely on an annually repeating daily angular
observations to remove BRDF effects (Bhatt et al., 2014).
Although the Libya-4 desert is sampled by EPIC several times
a day, only the EPIC images observed between 10 and 12 GMT,
which are closest to local noon (10:45 GMT) are utilized. Local
noon images avoid the large SZA and VZA conditions observed
near the terminator. Because occasional clouds can impact the
Libya-4 TOA reflectance, only clear-sky conditions are utilized. A
relative standard deviation homogeneity (sigma) threshold is
used to delineate clear-sky and cloudy conditions. Figure 4A
shows that most daily sigma values are less than 250 counts,
which is the chosen threshold for identifying clear-sky conditions.

Figure 4B shows a large seasonal cycle of the clear-sky daily E-
7 Libya-4 counts over the EPIC record owed to the SZA seasonal
variation. Because the DSCOVR orbit about L1 is not
synchronized with the Earth’s declination angle, the Libya-4
daily RAZ does not repeat annually (Marshak et al., 2018),
and therefore a BRDF model is required to mitigate angular
reflectance effects. The EPIC Libya-4 counts are first converted to
scaled reflectance by adjusting for the Earth-Sun distance
corrections and normalizing by the cosine of the SZA, as
described in Eq. 2 for DCC pixels. A semi-empirical BRDF
model is then constructed using the first 3-years of the EPIC
scaled reflectance data over Libya-4, based on a linear
combination of two kernel functions (Roujean et al., 1992).
Due to the large range of angular conditions observed over the
year, multiple BRDF models across the observed angular domain
are constructed as follows: 6° VZA and SZA bins between 0° and
60°, and a single RAZ bin is defined between 165° and 180°. The
multiple BRDF models are an improvement over a single BRDF
model covering the angular domain. The multiple BRDF models
also account for seasonal variation of the atmosphere above the
desert surface because the SZA is a function of time of year, where
overhead Sun conditions are realized in summer and the oblique
Sun in winter. Although the Sahara Desert has low humidity, the
hot air temperature allows for greater atmospheric precipitable
water (PW), which is exponentially dependent with temperature.
Additionally, the multiple BRDF approach was successful in
modeling anvil cloud top BRDF reflectance across the full
range of SZA angles (Scarino et al., 2020).

The daily clear-sky Libya-4 observed scaled reflectances are
divided by the predicted reflectances from the multiple BRDF
models to derive normalized Libya-4 counts (Libya-4count), which
are shown in Figure 4C. The seasonal cycle is successfully
removed after applying the multiple BRDF models. The daily
linear trend standard error of daily E-7 normalized Libya-4count is
1.3%. By averaging the daily Libya-4count into monthly values, the
linear trend drift and standard error are measured as 0.1 and 0.4%
over the 6-years EPIC record. The remarkable Libya-4count
stability suggests that EPIC navigation accuracy is sufficient,
the Libya-4 invariant target methodology is robust, and that
Libya-4 reflectance is invariant over time.

EPIC Calibration Coefficients
Previous studies have used linear trends to describe the EPIC
visible channel on-orbit degradation (Doelling et al., 2019;
Geogdzhayev et al., 2021). The EPIC visible gain is tracked
from the day since launch (dsl) of February 11, 2015 as follows:

gain � offset + slope × dsl (3)

where the offset and slope are the linear regression coefficients.
Figure 5A shows the E-5 (0.46 µm) gain linear trends, where the
solid lines represent ATO-RM and the dashed lines represent
DCC-RM, and the black, green, and red monthly gains are
calibrated against Aqua, NPP, and N20, respectively. Note the
consistency of the ATO-RM andDCC-RM linear trends given the
independent ATO-RM and DCC-RM monthly gain variability.
The N20 ATO-RM and DCC-RM E-5 linear gain trends seem

FIGURE 4 | (A) The EPIC E-7 (0.68 µm) daily standard deviation of the
count of the Libya-4 ROI (0.6° in latitude and longitude region centered at 30°N
and 30°E). The red dashed line represents a count value of 250. Counts below
the red dashed line indicate clear-sky conditions. (B) The E-7 Libya-4
clear-sky daily counts. The linear regression standard error and trend (%/year)
statistics are located in the lower left corner (trend line not shown). (C) The E-7
Libya-4count daily (red x and red solid line) and monthly mean (blue open
triangles and blue solid line) associated trend lines. The trend line standard
error (Stderr) in % and drift in %/yr are given at the bottom of the plot.

Frontiers in Remote Sensing | www.frontiersin.org January 2022 | Volume 2 | Article 7659137

Haney et al. Radiometric Stability of DSCOVR EPIC

199

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


more stable when compared with their Aqua and NPP
counterparts. Herman et al. (2018) (their Figure 2) indicated
that most of the EPIC degradation occurred during the first year
of operation for all UV channels. The shorter wavelength EPIC
UV channels showed more degradation than the longer

wavelength UV channels. To determine if the E-5 early record
degradation was greater than the later record, the 2015–2017 and
the 2018–2021 linear trends were computed and are shown in
Figure 5B. The 2018 breakpoint (Figure 5B vertical blue line)
coincides with the beginning of the N20 record. The 2015–2017

FIGURE 5 | (A) The time series of E-5 with MAq-3 (black), VNPP-M3 (green) and VN20-M3 (red) ATO-RM (solid circles and solid line) and DCC-RM (open circles and
dotted line) monthly reflectance gains (ref/count) and linear trends. Also shown are the standard error (STDerr%), mean gain (ref/count), and slope SLP(%/YR). (B) Same
as (A) except for E-5 time series before 2018 and after 2018 as delineated by the vertical blue line. Both ATO-RM and DCC-RM monthly gains and linear trends are
plotted but only the ATO-RM statistics are listed. (C) Same as (A) except for E-7, (D) same as (B) except for E-7. (E) same as (A) except an asymptotic trend is
used. (F) same as (E) except for E-6.
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Aqua and NPP based ATO-RM linear trend E-5 gains were
0.48%/yr and 0.45%/yr, respectively, whereas the 2018–2021
linear trend gains were 0.04%/yr and 0.10%/yr, respectively,
which represents a reduction of ∼75%, becoming more in line
with the N20 linear trend gain of -0.02%/yr. In this study, the
early record temporal trends are evaluated for statistical
significance at 95% confidence level using the approach
described by Weatherhead et al., 1998. According to Eq. 3
from Weatherhead et al. (1998), the minimum detectable
trend for a given timeseries is governed by the length of the
record, noise about the trend, and the autocorrelation of the
monthly gains. Detection of smaller-magnitude trends requires a
lower standard error and longer record length. For E-5, the Aqua
and NPP ATO-RM linear trend standard error is less than the
DCC-RM standard error (Figure 5A), indicating that the ATO-
RM trends are able to confidently detect smaller-magnitude
trends over the same record length. The Aqua and NPP ATO-
RM linear trends are 0.14%/yr and 0.18%/yr, respectively, and
have exceeded the corresponding minimum detectable trend
values of 0.11%/yr and 0.10%/yr, respectively, based on the
Weatherhead statistics. The observed trends exceed the
minimum detectable trend thresholds, thereby, proving their
statistical significance. Similarly, prior to 2018 (Figure 5B), the
Aqua and NPP ATO-RM linear trends were found to be
significant, whereas the post-2018 trends were found to be
insignificant. This indicates that the E-5 degradation found in
the overall trend was realized prior to 2018. For E-6, the Aqua and
NPP 2015–2017 ATO-RM linear trends were 0.61 and 0.48% (not
shown), however, the post-2018 Aqua, NPP, and N20 ATO-RM
linear trends were 0.03%/yr, 0.17%/yr, and 0.09%/yr, respectively,
proving E-6 also degraded mostly in the early record. To sum up,
the overall and pre-2018 record for E-5 and E-6 had statistically
significant linear trends, whereas the significance test failed for
post-2018 record, suggesting that the degradation occurred
during the early record.

Relying on two independent pre- and post-breakpoint linear
regression trends to define the E-5 temporal gain in Figure 5B is
problematic, since there will be a discontinuity between the two
trends at the breakpoint. A continuous piecewise linear regression
solves the problem of the discontinuity at the breakpoint.
However, the Figure 5B 2018 breakpoint position is arbitrary.
The breakpoint was shifted between 2016 and 2019 to evaluate
the pre- and post-breakpoint trend significance. Shifting the
breakpoint backwards from 2019 leads to the pre-breakpoint
trend becoming insignificant once the breakpoint reaches mid-
2017, as shortening the length of the record reduces the
confidence in the trend. The E-5 gain record is too noisy to
set an accurate single or multiple breakpoints to describe an E-5
gain that becomes more stable over time. An asymptotic or an
exponential dampening function may better describe the E-5
(Figure 5E) and E-6 (Figure 5F) gains as they become
increasingly more stable over time. The asymptotic fit is more
sensitive to the first few monthly gains in the record than a linear
trend. Given that the E-5 gains are noisy, the asymptotic fit may
exaggerate the gain during the first few months.

The same analysis is carried out for the E-7 band. The E-7 gain
based on VNPP-I1 ATO-RM (Figure 2), DCCcount (Figure 3B),

and Libya-4count (Figure 4C) has been shown to be stable.
Figure 5C confirms that the NPP ATO-RM and DCC-RM
linear trend gains are stable and that Aqua and N20 show
similar stable linear trend gains, where all trends are within
±0.07%/yr. Figure 5D shows that the Aqua ATO-RM before
and after 2018 linear trend gains were within ±0.06%/yr.
However, the NPP ATO-RM monthly gain is trending slightly
upward before 2018 trends and trending downward after 2018.
Perhaps the NPP calibration drift correction (Imager Calibration
Drift Mitigation) did not completely mitigate the LUT update
impact. Unlike E-5 and E-6, the E-7 (Figures 5C,D) gain is nearly
stable over the record and shows no signs of greater degradation
during the earlier record. The overall, pre- and post-2018 E-7
ATO-RM linear trends were found to be insignificant, suggesting
that the E-7 gain is stable over the record. Similarly, The E-10
Aqua and NPP 2015–2017 ATO-RM linear trends were 0.02%/yr
and 0.16%/yr (not shown), and were comparable to the post-2018
Aqua, NPP, and N20 ATO-RM linear trends of 0.01%/yr, -0.09%/
yr, and 0.08% %/yr, respectively, demonstrating good stability
throughout the EPIC record and their associated trends were
found to be insignificant.

In order to account for the greater E-5 and E-6 degradation in
the early record, an asymptotic trend is applied to the monthly
gains

gain � g0 + g1 × exp(
g2

dsl
) (4)

where g0, g1, and g2 are the asymptotic trend coefficients and exp
is the natural exponent. The asymptotic trends are applied to the
E-5 and E-6 gains in Figures 5E,F, respectively. As expected, the
asymptotic fit also shows most of the EPIC degradation at the
beginning of the record and a near stable trend after 2018.
Although the asymptotic trends did not significantly reduce
the trend standard error (Figure 5E) compared with linear
trends (Figure 5A), the asymptotic trends seem to capture the
degradation more accurately. The E-6/MAq-4 (Figure 5F)
asymptotic trend shows a greater degradation during the first
year of EPIC than the E-5 channel and is probably due to the
greater monthly E-6 gain noise and not associated with the E-6
degradation. Although the asymptotic fit does not perfectly
describe the E-5 and E-6 degradation over the record, it is
more accurate in characterizing the sensor radiometric trend
compared to applying a linear fit. This study utilizes the
asymptotic fit from Eq. 4 to derive the E-5 and E-6 gain and
employs the linear fit from Eq. 3 to obtain the E-7, E-8, E-9, and
E-10 gain. Similar exponential optical degradation for shorter
visible wavelengths was also observed in other visible imagers
(Fougnie et al., 2007; Eplee et al., 2012; Xiong et al., 2010a; Xiong
et al., 2019).

RESULTS

V03 Navigation Assessment
Figure 6 shows the navigation error frequency for E-7/VNPP-I1 for
V02 and V03. The navigation error is the number of EPIC 0.25°

grid cell shifts required to optimally align with the underlying
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VIIRS granule (see EPIC Navigation section). Figure 6A shows
that the navigation error for V02was centeredwithin two 0.25° grid
cells to the northeast, whereas Figure 6B shows that the V03
navigation error were mostly positioned at the center indicating
that no navigation correction was required. The V02 navigation
correction encompassed a much broader part of the northeast
quadrant than that for V03, which covers a narrow section slightly
northwest. Comparing the V02 and V03 navigation error

frequency plots suggests that V03 has improved both navigation
accuracy and precision over V02. Table 2 reveals that the EPIC
V03 NPP E-7/VNPP-I1 navigation accuracy was -11.1 ± 16.2 km
and 11.0 ± 15.1 km in the longitude and latitude directions,
respectively, which is smaller than the 0.25° grid resolution or
the 25-km navigation accuracy that can be achieving by shifting
the EPIC gridded image. The EPIC channel images taken during a
7-min period are geo-rectified so that the individual EPIC channel

FIGURE 6 | The E-7/VNPP-I1 (0.65 µm) (A) V02 and (B) V03 navigation error frequency plots in 0.25° latitude and longitude grid increments. The center white or
black box represents no spatial shift or perfect navigation. Note the improved V03 navigation accuracy and precision based on 26,351 E-7/VNPP-I1 total image shifts.

TABLE 2 | The V02 and V03 mean and standard deviation (σ) navigation error in the East-West and North-South direction in km with respect to Aqua-MODIS, NPP-VIIRS,
and N20-VIIRS analogous band pairs with EPIC. See Table 1 for band pair nomenclature. Statistics in the table are calculated under the assumption that a 0.25°

navigation shift translates to a distance of 25 km.

LEO Band Pairing EPIC V02 EPIC V03

East-West
Error (km)

North-South
Error (km)

East-West Error (km) North-South
Error (km)

Mean σ Mean σ Mean σ Mean σ

Aqua E-5/MAq-3 33.4 30.1 19.6 18.7 −11.4 15.2 11.4 14.0
E-6/MAq-4 31.0 30.7 18.6 18.8 −10.9 15.0 11.5 13.7
E-7/MAq-1 30.8 30.9 18.6 19.0 −10.5 14.7 11.4 13.6
E-10/MAq-1 30.6 31.2 18.5 19.3 −10.6 14.8 11.2 13.8

NPP E-5/VNPP-M3 31.6 34.1 17.0 20.1 −11.9 16.6 11.2 15.6
E-6/VNPP-M4 31.2 33.8 16.6 20.0 −11.5 16.4 11.0 15.3
E-7/VNPP-I1 31.1 33.8 16.7 20.0 −11.1 16.2 11.0 15.1
E-7/VNPP-M5 30.9 34.0 16.5 20.0 −11.2 16.2 10.9 15.0
E-10/VNPP-I1 30.7 33.9 16.7 20.2 −11.1 16.3 10.8 15.5
E-10/VNPP-M5 30.7 33.9 16.6 20.2 −11.2 16.3 10.8 15.4
E-10/VNPP-M7 30.7 33.7 16.6 19.8 −11.2 15.8 10.8 14.8

N20 E-5/VN20-M3 35.2 29.6 17.4 19.2 −11.0 14.9 11.1 15.1
E-6/VN20-M4 33.7 29.2 16.9 19.0 −10.7 14.8 10.9 14.8
E-7/VN20-I1 33.6 29.5 17.1 19.0 −10.2 14.8 10.9 14.6
E-7/VN20-M5 33.6 29.5 17.1 19.0 −10.3 14.8 10.9 14.6
E-10/VN20-I1 33.3 29.4 17.1 19.2 −10.4 14.6 10.7 14.7
E-10/VN20-M5 33.3 29.4 17.1 19.2 −10.4 −14.6 10.7 14.6
E-10/VN20-M7 33.4 29.4 16.9 19.1 −10.5 −14.5 10.7 14.4
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images are aligned. We should expect the EPIC navigation error to
be similar for all EPIC andM/V band pairings. Table 2 verifies that
the EPIC band navigation accuracy is in good agreement whether
aligned with Aqua, NPP, or N20 as well as with the various EPIC
band pairs. To assess the EPIC V02 and V03 navigation accuracy,
all of the band pair Table 2 column data are simply averaged. The
EPIC V02 navigation errors were 32.2 ± 31.5 km and 17.3 ±
19.4 km in longitude and latitude, respectively, whereas the
EPIC V03 were -10.9 ± 12.1 km and 11.0 ± 14.7 km. The
Doelling et al., 2019 V02 error assessments were 27.4 ± 35.9 km
and 15.9 ± 19.9 km, respectively, within close agreement with this
study. After applying the Pythagorean theorem, the V02 and V03
navigation errors were 36.5 and 15.5 km, respectively, more than a
50% reduction. After the DSCOVR safe mode anomaly ended in
early 2020, EPIC no longer employs gyroscope or reaction wheel
inputs, which were replaced by a star tracking technique for
pointing knowledge (Geogdzhayev et al., 2021). The EPIC V03
E-7/VNPP-I1 2018–2019 navigation errors were -10.2 ± 15.3 km
and 11.2 ± 14.7 km in longitude and latitude, respectively, whereas
the 2020–2021 errors were -10.3 ± 14.0 km and 10.6 ± 14.4 km.
The pre- and post-EPIC safe mode anomaly navigation error
difference is insignificant, indicating that the EPIC navigation
performance is similar whether based on the star-tracking or
the gyroscope.

Both V02 and V03 navigation error frequency plots show cases
where the EPIC image shifting is well outside of the typical
navigation errors observed, which are indicated by the light gray
shading in Figure 6. These M/V granules were mostly positioned
outside of the EPIC 0.25° gridded domain (±30° in latitude)
allowing only a small snippet of the granule available for
shifting. Due to the small snippet domain, the May 2020 EPIC
count and NPP reflectance pair scatter plot (Figure 1A) only
contained one pair that was located outside of the ±1 latitude/

longitude shift in Figure 5B. We are confident that these large
spurious image shifts are not impacting the overall ATO-RM and
DCC-RM monthly gains. Perhaps a snippet size threshold could
be used for future EPIC navigation assessments.

EPIC DCC-RM and ATO-RM Calibration
Gains
Figure 5 qualitatively shows that the DCC-RM and ATO-RM
trend lines are mostly consistent, except for E-7/MAq-1 (compare
the Figure 5C and Figure 5D solid and dashed black lines).
Table 3 quantitatively lists the DCC-RM and ATO-RM mean
gain difference over the 6-years EPIC record. The mean gain
difference is mostly less than 0.4% for all band pairs, except for E-
7/MAq-1 and E-10/MAq-1, and are similar to the Doelling et al.
(2019) (see their Table 2) mean gain differences, which were also
less than 0.4%. Note that the consistent ATO-RM and DCC-RM
gain differences validate the robustness of the unique band pair
and scene type SBAFs required in Eq. 1, given the very narrow
3 nm EPIC spectral bands (Table 1).

The E-7/MAq-1 and E-10/MAq-1 show a mean gain difference
of −0.9% and −1.1%, respectively. As reported in Bhatt et al.
(2019), the MODIS L1B C6.1 MAq-1 reflectances have residual
RVS angle dependence of 1.5% for the left-side or backscatter-
side of the scan. The residual RVS increases with greater VZA,
which would explain the ATO-RM and DCC-RM gain difference,
since the DCC-RM limits the VZA to 40°, whereas the ATO-RM
does not limit the VZA (Doelling et al., 2019). Note the residual
RVS is not mitigated in the Imager Calibration Drift Mitigation
section, since the DCC-IT calibration drift correction only
corrects the nadir response.

Although, the two independent inter-calibration methods
provide consistent EPIC band pair calibration coefficients, they

TABLE 3 | EPIC V03 channel ATO-RM and DCC-RM mean gain and trend standard error over the EPIC (2015–2021) record with respect to the Aqua, NPP, and N20 band
pairings. Note that the Aqua-MODIS, NPP-VIIRS, and N20-VIIRS channels are independently calibrated against their respective solar diffusers and the resulting gains are
not expected to match between imagers. The ATO-RM and DCC-RM gain difference is also given. Note that the two independent ray-matching methods provide very similar
gain differences.

LEO Band Pair ATO-RM Mean
Gain

ATO-RM STDerr % DCC-RM Mean
Gain

DCC-RM STDerr% Mean Diff
% (DCC-ATO)

Aqua E-5/MAq-3 8.1817e-6 0.45 8.1754e-6 0.86 −0.08
E-6/MAq-4 6.6363e-6 0.61 6.6183e-6 0.94 −0.27
E-7/MAq-1 9.4704e-6 0.69 9.3871e-6 0.88 −0.88
E-10/MAq-1 1.4374e-5 0.99 1.4210e-5 1.08 −1.14

NPP E-5/VNPP-M3 8.4735e-6 0.52 8.4694e-6 0.67 −0.05
E-6/VNPP-M4 6.8081e-6 0.60 6.8148e-6 0.77 +0.10
E-7/VNPP-I1 9.5408e-6 0.72 9.5477e-6 0.80 +0.07
E-7/VNPP-M5 9.6727e-6 0.71 9.6593e-6 0.79 −0.14
E-10/VNPP-I1 1.4471e-5 1.02 1.4524e-5 0.98 +0.37
E-10/VNPP-M5 1.4673e-5 0.95 1.4707e-5 0.96 +0.23
E-10/VNPP-M7 1.4991e-5 0.86 1.4950e-5 0.99 −0.27

N20 E-5/VN20-M3 8.1282e-6 0.43 8.1347e-6 0.56 +0.08
E-6/VN20-M4 6.5202e-6 0.53 6.5291e-6 0.71 +0.14
E-7/VN20-I1 9.1414e-6 0.65 9.1396e-6 0.65 −0.02
E-7/VN20-M5 9.2411e-6 0.65 9.2346e-6 0.66 -0.07
E-10/VN20-I1 1.3864e-5 1.05 1.3898e-5 1.04 +0.25
E-10/VN20-M5 1.4013e-5 1.03 1.4043e-5 1.04 +0.21
E-10/VN20-M7 1.4423e-5 1.04 1.4382e-5 1.05 −0.28
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do not provide similar Aqua-MODIS, NPP-VIIRS, or N20-VIIRS
referenced EPIC calibration coefficients, given that their L1B
reflectances are calibrated against their respective onboard solar
diffusers. Table 3 provides the EPIC 6-years record mean gains
referenced to the M/V imager L1B reflectance. For example, the
E-7/VNPP-I1 mean gain is 4.4% greater than the corresponding E-
7/VN20-I1 gain, similar to the NPP and N20 VIIRS imager
calibration differences found by other studies (Uprety et al.,
2020; Moyer et al., 2021; Mu et al., 2021; Wu et al., 2020).

EPIC DCC-RM Gain Comparison with
Previous Study
The DCC-RM V03 gains are compared against the EPIC
coefficients provided by Geogdzhayev et al. (2021). The
Geogdzhayev et al. (2021) approach (referred to DCC-G in
this study) identifies all EPIC pixels with a corresponding
M/V imager reflectance greater than 0.6 and a relative
standard deviation less than 10%. The EPIC pixel count and
imager reflectance ratios are binned according to their relative
standard deviation values and a linear regression is used to infer
the ratio with a relative standard deviation of zero. The
independent DCC-RM and DCC-G gains are compared in
Table 4 for the EPIC record ending before the June 2019 safe
mode incident. The EPIC and NPP band pair DCC-RM and
DCC-G gains agreed within 0.4%, similar to the ATO-RM and
DCC-RM gain differences.

The Aqua based DCC-RM and DCC-G EPIC band pair gains
differed from +1.4% to −2.4%. Geogdzhayev et al. (2021)
combined Terra and Aqua-MODIS reflectances and report
that Terra-MODIS is brighter by 0.6%, −0.1%, -0.2%, and
2.0% for MAq-3, MAq-4, MAq-1, and MAq-2 bands,
respectively. Doelling et al. (2015) (their Table 3) reports that
Terra-MODIS L1B C6 (2002–2015) is +0.9%. -0.1%, -1.3%, and
+0.6% brighter than the above Aqua-MODIS bands, respectively.
The Geogdzhayev et al. (2021) and Doelling et al. (2015) Terra
and Aqua-MODIS band gain differences explains much of the
Table 4 EPIC/Aqua band pair differences. The EPIC E-5, E-6, and
E-7 L1B V03 absolute calibration is more consistent with the
Terra-MODIS L1B C6 calibration than the Aqua-MODIS L1B C6
calibration. Some of the DCC-G E-10/MAq-2 and DCC-RME-10/
MAq-1 difference may be due to the MAq-1 and MAq-2 absolute

calibration difference and that the MAq-2 band reflectance
saturates over bright clouds.

Invariant Target Validation
The EPIC DCC and Libya-4 invariant target reflectance are
validated by comparing with the corresponding Aqua and NPP
ATO-RM and DCC-RM monthly gains. The normalized EPIC
invariant target monthly DCCcount and Libya-4count as well as the
ATO-RM and DCC-RM gains (after normalizing over the 6-years
record) are plotted in Figure 7 with their respective temporal
trends. By normalizing the Aqua and NPP ATO-RM and DCC-
RM gains, the M/V absolute calibration difference is removed. The
inverse of the DCCcount and Libya-4count, which is proportional to
the gain, is plotted to facilitate comparison amongst thesemethods.
Qualitatively, The DCCcount and Libya-4count trends are mostly
consistent with their corresponding Aqua and NPP ATO-RM and
DCC-RM trends. In spite of the sparce DCCcount sampling, the
DCCcount has shown to be remarkably stable. The Libya-4count
stability confirms that the EPIC V03 navigation accuracy is
sufficient to monitor the EPIC degradation utilizing PICS.

Notably, both DCCcount and Libya-4count are able to monitor
the stability of the E-8 and E-9 bands, which is not possible with
the M/V ATO-RM or DCC-RM methods because they do not
have oxygen A and B band channels. The E-8 and E-9 stability is
on par with their E-7 and E-10 reference channels. Given that the
E-8 and E-9 gains are stable, perhaps the oxygen absorption
bands can be used to locate DCC cells located at the tropopause
without the aid of a concurrent IR sensor in future studies
(Fougnie and Bach, 2009). Note, currently the EPIC
calibration team utilizes the moon as an invariant target to
monitor the degradation of the EPIC visible channels
(Geogdzhayev and Marshak, 2018). The E-7 gain is transferred
to the E-8 channel, by assuming the lunar reflectance is the same
for both E-7 and E-8 bands, since the moon has no atmosphere.

EPIC Stability Assessment
The Figure 7 EPIC channel stability using Aqua and NPP ATO-
RM and DCC-RM gains as well as the DCCcounts and Libya-
4counts are quantified in Table 5. The trend uncertainty for ATO-
RM and DCC-RM methods are mostly within 1% over the EPIC
record. The Libya-4count has a slightly lower uncertainty than the
ray-matching methods, while the DCCcount has a greater

TABLE 4 | The EPIC V03 channel DCC-RM and the Geogdzhayev et al., 2021 mean gain for the record ending in June 2019 before the safe mode incident. The DCC-RM
method drift-corrected the Aqua and NPP channel reflectances, while Geogdzhayev et al., 2021 combined the Terra and Aqua MODIS reflectances to compute the
MODIS based gains. Note that Geogdzhayev et al., 2021 used E-10/MAq-2 while this study uses E-10/MAq-1.

LEO Band Pair Geogdzhayev et al., 2021
Gain

DCC-RM Mean Gain Diff %

Aqua E-5/MAq-3 8.330e-6 8.2368e-06 −1.12
E-6/MAq-4 6.617e-6 6.6361e-06 +0.29
E-7/MAq-1 9.238e-6 9.3713e-06 +1.44
E-10/MAq-1 1.4538e-5 1.4191e-05 −2.39

NPP E-5/VNPP-M3 8.528e-6 8.4989e-06 −0.34
E-6/VNPP-M4 6.842e-6 6.8405e-06 −0.02
E-7/VNPP-M5 9.658e-6 9.6855e-06 +0.28
E-10/VNPP-M7 1.4887e-5 1.4942e-05 +0.37
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uncertainty than the ray-matching methods. All methods have
mostly smaller trend uncertainties for the EPIC shorter
wavelengths than for the longer wavelengths.

All stability methods show EPIC channel degradation is mostly
less than 0.3% over the EPIC record, excluding the early record of
E-5 and E-6. The asymptotic fit has probably over-estimated the
early E-5 and E-6 early record degradation due to the magnitude of
the monthly gain noise. The greatest single EPIC band method
degradation discrepancy was for the E-5 and E-6 bands for both the
pre-2018 and post-2018 records. Generally greater degradation
was observed for smaller wavelengths than for larger wavelengths.
The E-7 band was the most stable of the visible EPIC bands, where
allmethods showedwithin a 0.2% degradation over the record. The

near stable E-7 record has the potential of monitoring concurrent
satellite sensor stability, similar to lunar and Earth invariant
targets. The E-10 stability is within 0.4% for most methods over
the record, except for Libya-4. Note that the invariant target-based
stability may be aliased with the natural variability of the
reflectance over target. The same holds true for methods relying
on well-calibrated sensors such as M/V, where unaccounted
calibration drifts may be embedded in the record.

To determine if the 8-month EPIC safe mode anomaly
caused a discontinuity in the monthly gains, a t-test of the
2018–2019 and 2020–2021 mean gains was performed to
determine if the two gains differed significantly. All ATO-
RM, DCC-RM and DCCcount gains had t-test statistics less

FIGURE 7 | Time series of the EPIC band normalized response showing the inverse of the DCCcounts (black) and Libya-4counts (red), as well as the Aqua-MODIS
(blue), and NPP-VIIRS (green) monthly gains. Filled circles and solid lines for Aqua-MODIS and NPP-VIIRS represent ATO-RM, and open circles with dashed lines
represent the DCC-RM counterparts. (A) through (E) show the corresponding E-5, E-6, E-7, E-8, and E-9 time series, respectively. (F) shows DCCcounts, Libya-4counts,
ATO-RM, and DCC-RM with MAq-1 and VNPP-I1, (G) same as (F) except VNPP-M7 instead of MAq-1 and VNPP-I1.
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than 1. The Libya-4counts t-test statistics had a value less than
2.0, which denotes the 95% confidence level and suggests that
no calibration discontinuity was observed after the safe-mode
incident.

CONCLUSION

The DSCOVR mission was designed to take advantage of the L1
position to continuously observe the Earth sunlit disk. The
frequent daily EPIC observations are optimized for diurnal and
backscatter condition studies. The EPIC sensor retrievals are
processed into various aerosol, ozone, cloud, vegetation,
volcanic SO2, and glint Level-2 products. These products are
now being validated and integrated for their diurnal utility with
corresponding MODIS and VIIRS (M/V) products. The EPIC
sensor does not have any onboard calibration systems, resulting in
an uncalibrated EPIC L1B V03 dataset. To facilitate the EPIC data
validation and fusion, an assessment of the navigation accuracy
and calibration stability is performed along with providing the
M/V sensor and band specific radiometric scaling factors.

The EPIC navigation accuracy was assessed by aligning the
individual EPIC channel images onto their corresponding M/V
granule images. The navigation error was similar across the EPIC
visible channels, validating the EPIC geo-rectification algorithm.
Both the EPIC V03 navigation accuracy and precision was
improved over V02. The V02 and V03 navigation errors were
36.5 and 15.5 km, respectively, a 50% reduction and within what
can be achieved by the image alignment algorithm. After the
EPIC 2019 safe mode incident, EPIC navigation relied on star-
tracking rather than gyroscope and no significant difference in
navigation accuracy was observed.

The EPIC visible channel calibration gains, which have
been radiometrically scaled to their analogous Aqua-MODIS,
NPP-VIIRS, and N20-VIIRS channels is provided in Table 3.
Both ATO-RM and DCC-RM independent inter-calibration
method channel pair gains were mostly within 0.4%. The EPIC
channel DCC-RM gains were within 0.4% compared with the
Geogdzhayev et al., 2021 NPP-VIIRS referenced gains. The
EPIC based NPP and N20-VIIRS calibration gain differences
were similar to other inter-calibration studies.

The EPIC sensor calibration stability was assessed by the
ATO-RM and DCC-RM inter-calibration method gains that
relied on the stable Aqua-MODIS and NPP-VIIRS channel
reflectances, which were corrected for any residual calibration
drifts using DCC targets. By comparing the individual EPIC
channel with analogous referenced Aqua-MODIS and NPP-
VIIRS gains with their corresponding later record N20-VIIRS
gains, the E-5 and E-6 calibration degraded mostly during the
first year of operation and became stable thereafter. This was
also observed for the EPIC UV channels (Herman et al., 2018).
The E-7 and E-10 bands were found to be stable across the full
EPIC record. Asymptotic temporal trends were used to
describe the E-5 and E-6 degradation, while linear trends
defined the remaining EPIC visible bands.

The improved EPIC V03 navigation allowed the EPIC
stability to be monitored using DCC and Libya-4 invariant
targets. The invariant target stability results were found
consistent to those from the ray-matching methods. Most
methods indicated that the EPIC V03 L1B radiances were
within 0.3% over the 6-years EPIC record, excluding the
early record of E-5 and E-6 with an associated uncertainty of
∼1%. Remarkably, both the DCC and Libya-4 were able to
determine the stability of the E-8 and E-9 oxygen absorption
bands, which were similar to their E-7 and E-10 reference bands.
Lastly, no significant EPIC calibration discontinuity was
observed across the 2019 safe mode incident.

The impressive stability of the DSCOVR EPIC L1B V03
channel radiances achieved without onboard calibration systems
can greatly benefit the Earth remote sensing community. EPIC’s
distance from the Earth minimizes the effects of harmful reflected
solar radiation on the optics compared to low Earth orbit sensors.
Having a future constellation of overlapping L1 satellite sensors
can provide a stable record of environmental retrievals and has the
potential of monitoring the stability of near-Earth orbit sensors. As
sensor detector, optics, pointing, and data transmission technology
improves over time, the L1 position will have the ability to monitor
regional diurnal variations through the lens of a single sensor and

TABLE 5 | The monthly gain linear regression standard error (STDerr%) and slope
(% over the 6-years record) for all invariant targets and band pairs. The E-5 and
E-6 band linear regression statistics are performed twice (2015–2017 and
2018–2021, separated by a “/”).

Dataset Band or Band Pair STDerr% SLP%

DCC-IT E-5 1.40/0.95 3.0/0.5
E-6 1.50/1.08 3.5/0.3
E-7 1.23 0.1
E-8 1.30 0.6
E-9 1.50 0.5
E-10 1.30 -0.2

Libya-4 E-5 0.76/0.53 2.0/0.9
E-6 0.64/0.68 2.0/1.1
E-7 0.37 0.0
E-8 0.59 0.1
E-9 1.04 0.3
E-10 0.61 0.7

Aqua—ATO-RM E-5/MAq-3 0.78/0.43 2.7/0.2
E-6/MAq-4 1.04/0.61 3.4/0.2
E-7/MAq-1 0.69 0.1
E-10/MAq-1 0.99 0.1

Aqua—DCC-RM E-5/MAq-3 1.24/0.69 2.8/0.0
E-6/MAq-4 1.37/0.69 3.1/0.0
E-7/MAq-1 0.88 −0.2
E-10/MAq-1 1.07 −0.3

NPP—ATO-RM E-5/VNPP-M3 0.78/0.54 2.6/0.6
E-6/VNPP-M4 0.86/0.70 2.7/0.9
E-7/VNPP-I1 0.73 0.0
E-7/VNPP-M5 0.71 0.1
E-10/VNPP-I1 1.02 0.1
E-10/VNPP-M5 0.94 0.2
E-10/VNPP-M7 0.86 0.1

NPP—DCC-RM E-5/VNPP-M3 0.91/0.63 2.3/0.3
E-6/VNPP-M4 1.07/0.80 2.8/0.9
E-7/VNPP-I1 0.80 0.0
E-7/VNPP-M5 0.79 0.2
E-10/VNPP-I1 0.98 0.1
E-10/VNPP-M5 0.96 0.2
E-10/VNPP-M7 0.98 0.0
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will be an important addition to sun-synchronous satellite
retrieved observations to monitor the Earth’s climate.
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Cloud Height Daytime Variability From
DSCOVR/EPIC and GOES-R/ABI
Observations
A. Delgado-Bonal 1,2*, A. Marshak1, Y. Yang1 and L. Oreopoulos1

1Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Universities Space Research
Association, Columbia, MD, United States

One of the largest uncertainties in climate sensitivity predictions is the influence of clouds.
While some aspects of cloud formation and evolution are well understood, others such as
the diurnal variability of their heights remains largely unexplored at global scales. Aiming to
fill that fundamental gap in cloud knowledge, this paper studies the daytime evolution of
cloud top height using the EPIC instrument aboard the DSCOVR satellite, complemented
by coincident cloud height retrievals by GOES-R’s ABI instrument. Both datasets indicate
that cloud height exhibits a minimum around midday for low clouds with amplitudes
between 250 and 600m depending on the season. The two datasets also agree that high
clouds exhibit a contrasting behavior with steady increase of cloud height from morning to
evening. We investigate dependences on the type of underlying surface, finding that the
amplitude of the diurnal cycles is weaker over ocean than over land for both EPIC and ABI
retrievals. We also find a positive correlation between cloud fraction and height over ocean
which turns negative over land for low clouds, while for high clouds the correlation is largely
positive.

Keywords: cloud height, global variability, DSCOVR, Earth Polychromatic Imaging Camera (EPIC), diurnal cloud
cycles

INTRODUCTION

The diurnal variability of cloud fraction and its associated radiative influence is linked to the
evolution of the boundary layer depth, determined by the balance between entrainment,
subsidence, advection, and turbulent fluxes (Antonia et al., 1977; Wood and Bretherton
2004; Guo et al., 2011; Painemal et al., 2013; Mazzitelli et al., 2014). Solar heating drives air to
rise, which then cools adiabatically until it reaches saturation with respect to liquid or ice,
and forms droplets or ice particles. Over land, as the sun heats the surface, cloud cover starts
increasing early in the morning as the boundary layer deepens, reaching a maximum around
noon and early afternoon and continuing with a decrease of cloud cover later in the
afternoon. Over ocean, cloud cover evolution follows a diametrically opposite cycle: peak
cloud fraction during nighttime, followed by decrease during the morning, a minimum
around noon, and a steady increase during the afternoon (Delgado-Bonal et al., 2020a;
Delgado-Bonal et al., 2021).

Besides cloud fraction, cloud height is the other main cloud property greatly affecting the Earth’s
greenhouse effect, and its response to increasing surface temperature represents a strong but not
well-understood feedback process in the climate system (Zelinka and Hartmann (2010); Davies and
Molloy 2012). Knowledge of cloud top and cloud base help to reduce the estimation of uncertainties
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of cloud forcing (Xu et al., 2021). Long-term trends in global
cloud heights have not been quantified yet, partially due to large
interannual fluctuations associated with major regional events
such as ENSO that mask low frequency variability.

Although the signal of cloud height changes on a global scale
may not be clear, changes in the regional level are detectable
because the amplitude of at those scales can be much larger than
the changes in the globally-averaged value. Analyses with the
Multiangle Imaging SpectroRadiometer (MISR) instrument on
the Terra satellite found unexplained differences between the
Northern and Southern Hemisphere from March 2000 to
February 2015, the former decreasing the cloud top height
averaged value at −16 ± 5 m/decade and the latter increasing
it at 14 ± 4 m/decade (Davies and Molloy 2012; Evan and Norris
2012; Davies et al., 2017).

At smaller temporal and spatial scales, fluctuations of cloud
height are even more dramatic. Interannual global variations of
cloud top heights reveal significant signals, with anomalies up to
80 m due to La Niña [2007–2008 and 2011] and El Niño [2009,
2013] events. Metrics of ENSO and Hadley-Walker circulations
strength also correlate significantly with the interannual regional
changes in cloud height (Davies et al., 2017).

Cloud height variability has been observed with a variety of
sensors applying different principles to retrieve cloud top height
(Marchand 2013; Lelli et al., 2014). Zhao et al. (2020) used
MODIS data from 2000 to 2018 to conclude that cloud top
height in East Asia has increased at an average rate of 0.020 km
per year, exhibiting different seasonal rates and a positive
correlation with sea surface temperature, indicating that cloud
top height may be modulated by changes close to the surface
(Zhao et al., 2020). Using reflected solar ultraviolet-visible (UV-
VIS) measurements taken from 1996 to 2003 by the global ozone
monitoring experiment (GOME) instrument, Loyola et al. (2010)
obtained a decreasing cloud top height trend of −4.8 m per year
within the ±60° of latitude belt.

The drastic changes of cloud height inter-annual variations at
different scales give an idea of the importance of analyzing
regional features. Small land areas such as in the Zhao et al.
(2020) study over East Asia find different sign and order of
magnitude for cloud height changes compared to the entire
Northern Hemisphere (Davies et al., 2017). Additionally, the
magnitudes of the changes differ between land and ocean and are
ultimately driven by the climatology of each region.

Higher frequency cloud height changes such as diurnal
variations are difficult to analyze globally given the orbital
characteristics of sun-synchronous satellites. For example,
while the MISR instrument aboard the Terra satellite could be
used to study interannual variations (Davies andMolloy 2012), its
fixed equator crossing time at approximately 10:30 am local time
does not allow it to quantify diurnal variations in cloud height.
The importance of monitoring cloud diurnal variabilities cannot
be overstated since they are intimately related to the planet’s
energy balance and climate change. Even with other cloud
properties remaining unchanged, changes in the diurnal
variability of cloud fraction of various cloud types could have
an important impact on the net radiation at surface (Cairns
1995). As an example, early deforestation in the Amazon basin

led to a change of low and high cloud fractions, resulting in a
change of local cloud diurnal contribution to the time-mean
shortwave surface flux of 20Wm-2, equivalent to a change of 0.05
in surface albedo (Cutrim et al., 1995).

As the boundary layer depth changes every day, a repeating
cycle of cloud cover and cloud height manifests itself. Variability
in the height of low clouds has been reported for different regions,
mainly stratocumulus regions in the southeastern Pacific (Minnis
and Harrison 1984; Minnis et al., 1992; Zuidema et al., 2009)
where modulations of the boundary layer are attributed to the
blocking effects of the Andes which increases subsidence and
induces convergence and upward motions in the lower
troposphere (Painemal et al., 2013; Zuidema et al., 2009). In
situ observations in this region have also documented the diurnal
pattern of cloud height (de Szoeke et al., 2012) and although
limited in their sampling frequency, suggest that cloud top
heights exhibit diurnal variations in this region that are larger
than in the northeast Pacific (Minnis et al., 1992; Garreaud et al.,
2001; Bretherton et al., 2010), highlighting once again the
importance of regional features and topography on the diurnal
cycles of cloud top height.

Diurnal changes in cloud height have also been studied with
numerical models (Garreaud et al., 2001). Unfortunately, it is
well-known that these models have poor skill in simulating
realistically the diurnal evolution of cloud properties, which
materializes as underestimation of amplitudes and
misplacement of the local times of maximum and minimum
cloud top height occurrence (Abel et al., 2010; Yin and Porporato
2017).

Quantifying global diurnal variations in cloud height requires
resolving simultaneously and with high accuracy both temporal
and spatial gradients. On the spatial side, techniques with high
vertical resolution such as radio occultation fail to provide spatial
information (von Engeln et al., 2005), while active instruments
despite offering excellent vertical resolution suffer from limited
horizontal coverage, as in the case of Cloud–Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO). On the
temporal side, sampling limitations that come with sun-
synchronous orbits (Zuidema et al., 2009; Xie et al., 2012)
affect instruments such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) and MISR.

Extensive spatial coverage is crucial for understanding the
regional nuances in cloud diurnal cycles. Geostationary satellite
systems such as GOES-R (currently including GOES-16 and
GOES-17) combine extensive spatial coverage with a high-
frequency sampling of 10 min. These satellites rely on visible
and infrared measurements to track cloud coverage and vertical
motions. The infrared bands of the Advanced Baseline Imager
(ABI) are used to simultaneously retrieve Cloud Top Height,
Cloud Top Temperature, and Cloud Top Pressure for each cloudy
pixel (Schmit et al., 2017). Earlier satellites of the GOES family
have been used to quantify the diurnal cycles of marine clouds in
the southeastern Pacific (Minnis et al., 1992; Painemal et al.,
2013).

However, to obtain a truly global and detailed view of
planetary cloudiness beyond what is provided by a single
geostationary satellite, it is necessary to either aggregate data
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from multiple geostationary and sun-synchronous satellites as is
done by the International Satellite Cloud Climatology Project
(ISCCP) (Rossow and Schiffer, 1991) or to use the recently
available measurements of the Earth Polychromatic Imaging
Camera (EPIC) aboard the Deep Space Climate Observatory
(DSCOVR) spacecraft (Marshak et al., 2018). EPIC observes
the planet from approximately 1.5 million km, always facing
the sunlit side of the planet. Unlike the GOES-R satellites
which relies on thermal infrared bands, EPIC derives the
cloud height from observations of the O2 A-band (779.5 and
764 nm), and B-band (680 and 688 nm) pairs (Yang et al., 2019).

In this study, we use retrievals from both EPIC and ABI aboard
GOES-R to quantify the diurnal evolution of cloud top height for
their overlapping coverage area. Previous analyses of cloud
fraction from EPIC and ISCCP showed that the diurnal
evolution of high and low cloud fractions is different (Cairns
1995; Delgado-Bonal et al., 2021), However, the accompanying
cycles of cloud top heights have hitherto not been examined.
Here, we apply a separation between high and low clouds to
resolve more meaningfully the diurnal cycle of height for different
kinds of clouds.

Data andMethods Section presents a brief overview of the ABI
and EPIC cloud effective height algorithms, and details the
methodology used to study diurnal variations of cloud height.
Absolute values of cloud height depend critically on the technique
and wavelengths used in the derivation and cannot generally be
directly compared. However, we maintain that it is acceptable to
compare relative changes in cloud top height between different
measurement techniques and betweenmeasurements and models
(Davies et al., 2017). Quantifying the amplitude and shape of
diurnal cloud height cycles derived from two sensors using
different retrieval principles can serve as a two-way cross-
validation of the respective retrievals. Results Section describes
in some detail the cloud height cycles of low and high clouds from
EPIC and ABI, both from global and regional perspective. EPIC

and ABI are alike from the perspective of being able to track
regional cloudiness throughout the daytime, albeit at a smaller
spatial scale for ABI. To provide a statistically reliable picture of
the cloud height diurnal cycles, we aggregate observations at
hourly local times. Once the diurnal evolution of cloud coverage
and height has been fully described in terms of cloud fraction and
height, we evaluate the correlation between the two variables
throughout their daily global evolution. This paper employs the
EPIC statistically derived diurnal maps at fixed local times to
investigate the correlation of cloud fraction and cloud top height
in order to characterize regional behavior.

DATA AND METHODS

The NOAA product from the GOES-R series of satellites provides
an official binary clear-sky mask, classifying each pixel as clear or
cloudy. The cloud mask algorithm uses 9 out of the 16 ABI
spectral bands to detect clouds based on spectral, spatial and
temporal signatures (Heidinger, 2012). The thresholds for this
binary classification were derived from analysis of space-borne
lidar and current geostationary imager data. The primary
validation sources are data from Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) and the Cloud-Aerosol LIdar
with Orthogonal Polarization (CALIOP) aboard the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite. The latter has an inherent high sensitivity
to cloud presence over all surface types and under all illumination
conditions (Schmit et al., 2017).

GOES-R ABI infrared observations aiming to measure the
height of clouds are impacted by their wavelength-dependent
emissivity, and by emissions from the surface and atmosphere.
Also, clouds often exhibit complex vertical structures that violate
the assumptions of the single layer plane parallel models. To
provide reliable cloud top retrievals, the ABI Cloud Height
Algorithm (ACHA) uses the 13.3 µm CO2 channels coupled
with multiple longwave IR windows (10.4, 11 and 12 µm)
within an optimal estimation framework where an analytical
radiative transfer model has central role. Cloud-top pressure
and cloud-top height are derived from the cloud-top
temperature product and the atmospheric temperature profile
provided by Numerical Weather Prediction data. GOES-R
retrievals combine therefore the sensitivity to cloud height
offered by the CO2 channel with the sensitivity to ice cloud
microphysics offered by the window channels, so no
microphysical assumptions need to be invoked (Heidinger and
Straka 2013).

EPIC’s 2,048 × 2,048 pixel CCD array provides reflectances at
ten channels spanning from the ultraviolet (318, 325, 340, and
388 nm) to the visible (443, 551, 680, and 688 nm) and near
infrared (764 and 780 nm). The cloud product algorithm uses a
surface-type based threshold method for cloud masking, applied
on the reflectances at the 388, 680, 780 nm and O2 A- and B-band
channels. The results are comparable with those provided by
geostationary (GEO) and low Earth orbit (LEO) satellites, with
differences of only 1.5% in the global cloud fraction of collocated
datasets (Yang et al., 2019). The EPIC cloud mask algorithm

FIGURE 1 | EPIC RGB image corresponding to 2020-05-01 17:54:31
UTC. The image has been enhanced to show the cloud coverage in detail.
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provides confidence level flags for its cloud detection outcomes;
less than 3% of the total number of pixels are flagged as low
confidence cloudy.

Unlike ABI, the EPIC cloud top height is derived from
observations of O2 A-band (779.5 and 764 nm) and B-band (680
and 688 nm) pairs. Due to photon penetration into the cloud, for a
given optical thickness and particle properties, the radiancemeasured
by EPIC’s A- and B-bands is not only a function of cloud top height,
but also a function of the cloud extinction coefficient profile (Yang
et al., 2013). Therefore, EPIC’s retrievals correspond to an “effective”
cloud top height, a measure of the mean height from which light is
scattered (“centroid”), an important parameter that has been widely
used in trace gas retrievals and climate studies (Stammes et al., 2008;
Wang et al., 2011; Joiner et al., 2012). Since ABI-derived cloud top
heights from IR methods are also not true geometrical top heights,
and therefore also considered “effective,” but in a different sense, we
will simply refer to “cloud top height” in many of the discussions that
follow, with the understanding that the retrieval principles for the two
cases are very different and responsible for the discrepancies in cloud
top height values.

The EPIC A-band and B-band cloud effective pressure
retrievals are based on the Mixed Lambertian-Equivalent
Reflectivity concept, extensively studied and applied in
operational settings (Koelemeijer et al., 2001; Wang et al.,
2008; Joiner et al., 2012; Yang et al., 2013). In this model, it is
assumed that the pixel contains two Lambertian reflectors, the
surface and the cloud. The cloud is assumed to be opaque,
i.e., no photon penetration occurs (even if that is not true in
reality). Cloud effective pressure and cloud effective fraction
are simultaneously retrieved and converted to cloud height
using the co-located atmosphere profile provided by GEOS-5
FP-IT (Lucchesi, 2015). EPIC cloud effective height can be
obtained either from the A- or B-band, providing slightly
different values due to the difference in photon penetration
depths, which contains information on cloud vertical

structure. In this paper, we use the less noisy A-band value
(Yang et al., 2019).

Both EPIC and GOES-R products are labeled in UTC time.
Exploiting their vast coverage areas, each dataset can be split into
different local time zones depending on the longitude and UTC
acquisition time. Figure 1 shows an EPIC RGB image whose
clouds have been enhanced for the purpose of illustration. The
center of the image always corresponds to local noon, while the
left and right edges to sunrise and sunset respectively. Since EPIC
acquires up to 13 (in Boreal winter) and up to 22 (in Boreal
summer) images per day, the local time of observation for various
regions varies by day, providing thus an average diurnal cycle of
cloudiness when accumulated over time. Geostationary satellites
with their high frequency data acquisition are also capable of
observing cloud evolution throughout the day, but their coverage
is limited to a fixed portion of the Earth. In order to create
comparable datasets for EPIC and GOES-R, we partition the
observation field into 1 × 1 grid cells. We follow a nearest
neighbor algorithm to find the matching grid cell for each
pixel by minimizing the Euclidean distance between the
longitude and latitude coordinates of each pixel and the center
of each grid cell. We then calculate average values of cloud height
for each grid cell.

By making use of the ability to track the daily evolution of
cloud properties, we split the data into local hourly bins, creating
24 local time maps for each satellite’s imagery. For EPIC, we
repeat this process with 4 years of data from June 2015 to June
2019 (approximately 16,500 full disk images) while for ABI we
use all the available retrievals for 2020 (approximately 52,500
images). The DSCOVR satellite was placed in a safe mode in June
2019 for almost 9 months, prompting us to use the 4 years of
consistent data prior to that date. For the purposes of our
statistics, we assume an ergodic seasonal behavior which
allows us to average each season of data for the 4 years to
obtain a single mean map for each season. For ABI, we use

FIGURE 2 | Diurnal cycles of cloud height for GOES-16 (red line) and EPIC over land. EPIC results are shown for the whole globe (dark blue) and for the same areas
as GOES-16 (light blue). Each column is a different season for high (A) and low (B) clouds.
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the latest complete full year available and average by season.
Given the large amount of data captured by ABI, 1 year of data is
sufficient to provide stable statistics. We then average the cloud
height of all the local time maps across the number of
observations for each grid cell and across all years for a
particular season, obtaining thus seasonally-averaged maps of
cloud height at all local times.

This methodology has proven useful in determining diurnal
cycles with EPIC data and quantifying the diurnal variability of
cloud fraction for low and high clouds consistently with
previous research (Delgado-Bonal et al., 2021). Due to
EPIC’s location at the L1 point, the best pixel resolution is
achieved at nadir ( ~ 8 km); off nadir the pixels become
elliptical with the long axis larger by a factor of about 1/
cos(SZA) and the short axis unaffected. Furthermore, as the
Earth’s axis is tilted 23.5° relative to its orbital plane around the
Sun, high northern latitudes in boreal winter and high
southern latitudes in boreal summer are excluded from
EPIC’s field of view. Moreover, some regions suffer
discontinuity behaviors in contiguous zones along
meridians during December-January-February due to lower
availability of data at specific local times, but broad patterns
can be easily inferred by observing adjacent zones.

We quickly realized that the diurnal behavior of high and low
clouds is distinct and thus study it separately. We consider all ABI
clouds below 3,000 m as low clouds, and all clouds above 6,000 m
as high clouds. Changing these cutoffs by ±1,000 m does not
impact our results substantially. For EPIC, we assign the low and
high cloud classes based on the most likely thermodynamic cloud
phase (liquid or ice) provided in the Level 2 datasets (Yang et al.,
2019) with all liquid clouds classified as low and all ice clouds
classified as high. EPIC’s cloud thermodynamic phase
determination is based on cloud effective temperature, which
is inferred from the cloud effective pressure derived from the
EPIC O2 A-band observations (Meyer et al., 2016; Yang et al.,
2019). Cloudy pixels are classified as ice if the effective
temperature is lower than 240K, and as liquid if it exceeds

260K, while the rest of cloudy pixels are classified as unknown
to avoid potentially erroneous classifications. This methodology
has been tested against MODIS (Meyer et al., 2016), yielding
agreement in the thermodynamic phase of approximately 77% of
the pixels, categorizing 21% of them as unknown, and
misclassifying only about 2% with respect to MODIS. By using
the most likely thermodynamic phase, we avoid possible
distortions of the daytime cycles due to misclassified pixels.

RESULTS

Integrated Area Results
While diurnal variations in cloud top height have been
previously reported for regions of various sizes, ranging
from specific locations of field experiments to larger
domains spanning like Eastern Asia or the contiguous
United States, there has never been a truly global analysis.
In this section, EPIC is employed for this task. At the same
time, we also examine the degree to which EPIC’s views of
cloud top height diurnal patterns are consistent with those
from ABI over land (GOES-16) and over ocean (GOES-17).
Similar to the low/high discrimination, land-ocean separation
is important for capturing the distinct nature of continental
and marine clouds, expected to have different amplitudes and
phases in their diurnal cycles. A prerequisite for such an
analysis is matching the overlapping portions of domains
viewed by EPIC and ABI.

To avoid potential sunrise and sunset artifacts at the edge
of EPIC images, we only consider pixels with local times
between early morning (8:00) and late afternoon (16:00),
while for ABI we extend to nighttime. Figure 2 shows the
diurnal cycle results for the integrated area of GOES-16 over
land, along with the same area for EPIC, and the full global
average of EPIC. Each column represents one season, with the
top panels corresponding to high clouds and the bottom panel
to low clouds.

FIGURE 3 | As Figure 2, but for GOES-17 over ocean.
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ABI cloud top height diurnal cycles for low clouds over land
reveal a minimum around 10 am Local Time (LT), whose
amplitude varies from approximately 250 m in boreal winter to
a maximum of 600 m in boreal summer. The same area
analyzed with EPIC yields a minimum around 11 am LT
and an amplitude of approximately 450 m. The cycles for
the whole globe obtained with EPIC have similar shape as
that for the GOES-16 domain although slightly displaced in the
vertical axis.

Along with the mean values, we determine the standard
deviation of the mean for each 1-by-1 degree cell. Then, we
average the standard deviation for the whole globe to provide
an hourly global standard deviation associated with every
hourly point showed in Figures 2, 3. For low clouds over

land, we obtain a standard deviation of approximately 550 m
for ABI, and of 500 m for EPIC. This value of standard
deviation indicates that the effective cloud top heights even
within the same cloud group (low/high) exhibit significant
variability for a particular time of the day. For example, in our
analysis, clouds at 7,000 m and at 14,000 m are considered
high clouds and are aggregated together in our statistical
analyses. To obtain the sampling error of the mean, we
divide the standard deviation by the square root of the size
of sample and multiply the result with the Z score of a 95%
confidence interval (Z = 1.96). By doing so, we obtain a
sampling error of less than 10 m for both EPIC and ABI.
This suggests that our sample is sufficiently large to calculate
mean values accurately.

FIGURE 4 | GOES-16 (A) and GOES-17 (B) diurnal cycle of low clouds height in meters. Left column shows the cloud top height at noon local time and the right
column shows the values at midnight. Cloud top height is higher during nighttime for both satellites.
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As stated above, direct comparison of the absolute values of
cloud top heights derived from instruments with different
capabilities and algorithmic philosophies is not advisable.
Furthermore, differences arise since low clouds for GOES-R
have been defined as those with tops below 3,000 m whereas
EPIC uses a definition directly linked to retrieved thermodynamic
phase. We therefore focus only on comparing the shapes of the
diurnal cycle curves. Despite the different definitions, the
existence of a characteristic diurnal cycle of cloud height even
at these very large scales is undeniable in both cases, echoing
behavior previously seen only in regional studies (Zuidema et al.,
2009; An et al., 2017; Painemal et al., 2013; Zhao et al., 2020).

The cycles of high clouds over land show a distinctive
sinusoidal wave shape. For GOES-16, cloud top height has a

minimum before noon followed by a steady increase that peaks
around 19 h. Throughout the day, the standard deviation for high
clouds is approximately 600 m. For the same area, EPIC generally
shows the same monotonic increase during the day, with a
maximum at the time of the last retrieval we retain, at 4 pm
LT, with a standard deviation around 500 m. In this case, global
results deviate from the regional picture: although an increase in
cloud top effective height during daytime is seen, it is not as clear
as that for the GOES-17 disc.

Figure 3 shows the corresponding results for GOES-17 and
EPIC, this time over ocean. The marine environment has a
discriminating effect on the amplitude of the cycles, which is
manifested in both low and high clouds. GOES-17 results for low
clouds indicate that the magnitude of the diurnal cycle is
approximately 200 m, which matches the EPIC results for the
same region and for the whole globe, as well as previous findings
in the southern Pacific (Painemal et al., 2013). The cycles for high
clouds are also characterized by smaller amplitudes, with their
minima shifted to early morning for GOES-17 but maintaining
the same progressive increase during daytime for both satellites.
The standard deviation for both EPIC and GOES-R is
approximately 500 m for clouds over ocean.

Diurnal Cycle Maps
Figure 4 shows two distinct moments of the diurnal low cloud
height cycles in boreal spring for GOES-16 (top) and GOES-17
(bottom). The left column presents the average cloud top height
between 11:00 am and noon LT, while the right column shows the
same disc at midnight. The figures illustrate the transition over
land from lower clouds around noon (blue hues) to higher clouds
at midnight (red hues). A smaller total change from noon to
midnight is seen over ocean. The land grid cells of the two GOES-
16 colormaps of Figure 4, when averaged, provide two of the
points for the timeseries of Figure 2. Similarly, two of the points
of Figure 3 come from the average of ocean only grid cells for the
GOES-17 images in Figure 4.

The diurnal cycles for low clouds seen by EPIC have the same
broad characteristics. Since EPIC observations are limited to
daytime, Figure 5 shows the global view of cloud top height at
early morning, noon and evening. The morning-to-noon
transition is characterized by a shift from red to blue shades,
only to be followed by an increase of cloud top height in the
afternoon, recovering the distinctive red tints over most of the
continental areas. While these cycles are generally similar across
the globe, regional differences can be spotted by careful
examination of Figure 5. For example, by looking at the
diurnal cycles over the United States and Brazil, one observes
that Brazil shows the expected increase in the afternoon while half
of the United States area remains with lower cloud heights.
Besides being regionally dependent, the diurnal cycles evolve
throughout the year.

Cloud Fraction/Cloud Height Correlation
Previous analyses studying the potential link between cloud
fraction and cloud height have been limited to the correlation
in time derived from daily data. For example, Gryspeerdt et al.
(2014) investigated the strength of the relationships between

FIGURE 5 | EPIC cloud height for liquid clouds in meters at three
selected times for Boreal spring.
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cloud fraction and cloud top pressure (which translates to cloud
top height) using data from MODIS Terra, defining the
correlation as the slope of a linear regression between the two
quantities. The study found a strong interrelationship between
the two variables, likely due to deep convective systems having
both high cloud fraction and cloud height. However, given Terra’s
fixed equator crossing time at 10:30 am, these findings do not
inform us about intraday correlations.

Once the diurnal cycles of cloud fraction (Delgado-Bonal et al.,
2021) and cloud height have been characterized using EPIC, their
co-evolution during the day can be examined. In general, cloud
fraction over land peaks around noon, which contrasts with the
minimum cloud fraction over ocean found at that time. Due to
this contrasting diurnal evolution of cloud fraction between land
and ocean, An et al., 2017 found a negative correlation between
cloud base height and cloud fraction over the contiguous
United States, while Painemal et al., 2013 found a positive

FIGURE 6 | Example of diurnal evolution of cloud fraction and cloud effective height in meters using EPIC for two locations in the Pacific Ocean during Boreal spring.
Even though the locations are physically close, they have opposite correlation coefficient sign.

FIGURE 7 | Spearman correlation coefficient between cloud fraction and cloud effective height for low clouds using EPIC. Blue colors indicate a negative correlation
while red colors a positive one.
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correlation between cloud top height and cloud fraction for two
locations over the southern Pacific. However, the sign of these
correlations is not necessarily representative of ocean and land
behavior overall, as evidenced by the variety of diurnal behaviors
seen regionally. Figure 6 shows two examples of oceanic regions,
only 5° in latitude apart, with opposing correlations between
cloud fraction and cloud effective height.

To quantify correlation, we use Spearman’s ρ as a
nonparametric measure of rank correlation (Myers and
Well 2003, pp. 508) with a range between +1 (positive
correlation) and −1 (negative correlation). This statistical
quantity is not limited to linear correlations and assesses
how well the relationship between two variables can be
described using a monotonic function. A positive value of
the coefficient indicates that as the value of one variable
increases, so does the value of the other variable, and vice-
versa. Figure 6 left shows an example of a positive correlation
between cloud top height and cloud fraction seen by EPIC with
a Spearman’s coefficient of +0.927 while the right side of the
figure has a negative coefficient of −0.951.

Exploiting EPICs spatial and temporal advantages, Figure 7
shows the correlation between cloud top height and cloud
fraction for low clouds, separately for the four seasons. Over
ocean, Boreal summer emerges as the season of strongest
correlation, and with positive correlations dominating
because as cloud fractions decrease during daytime over

ocean, reaching a minimum around noon, cloud top heights
also decrease, a state of affairs also reported by Painemal et al.,
2013. However, it must be noted that this is not a general
finding since other oceanic locations such as the west coast of
central America are characterized by a negative correlation
during boreal summer that turns positive during boreal winter.
The variety of behaviors highlights the importance of EPIC in
characterizing diurnal cycles.

Figure 8 shows EPIC’s counterpart correlation map for high
clouds. In this case, a positive correlation between high cloud fraction
and cloud height is observed for most of the globe. High cloud
fraction evolves diurnally regardless of the surface type, with higher
cloud fraction values in the afternoon than in the morning and noon
(see discussion and appendixes in Delgado-Bonal et al., 2021). The
diurnal cloud height cycles obtained in this paper (see Figures 2, 3)
follow a similar behavior during the day, with cloud height increasing
frommorning to evening, hence resulting in mostly positive regional
correlations.

CONCLUSIONS AND DISCUSSION

Radiation fluxes depend strongly and nonlinearly on the
diurnal variations of cloud properties (Bergman and Salby
1997; Delgado-Bonal et al., 2020b), with the amount of
radiation reflected to space depending on how cloud

FIGURE 8 | As Figure 7 but for high clouds.
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fraction changes during daytime correlate with the cycle of
solar insolation. On the thermal infrared side, cloud height is
also a major controlling factor of the planet’s energy balance
since low and high clouds have different impacts on the
greenhouse effect. Understanding cloud height variability is
thus essential for the characterization of the planet’s climate.
While previous research has focused on interannual variability
or regional studies because of lack of appropriate observations,
this paper employs appropriate data from EPIC and GOES-R
to study diurnal cloud top height cycles over large areas.

EPIC and ABI use different principles and parts of the
spectrum to retrieve cloud top height, so the physical meaning
of what cloud height they retrieve and how it relates to the true
geometrical cloud top height is different. We use this to our
advantage to show that, regardless of methodology, the diurnal
cycles of cloud height for both low and high clouds cannot only be
clearly inferred, but also compared in terms of their relative
shapes which have a prominent signal for even global averages.
Sensible changes in thresholds or definitions used to distinguish
between low and high clouds do not impact the conclusions in
any meaningful way.

To provide a holistic view of daytime cloud height cycles
for the entire planet EPIC retrievals are more appropriate. The
results from this instrument are generally in agreement with
those from the ABI instrument aboard geostationary satellites,
and prior research which was more geographically limited.
EPIC theoretical analyses show that its cloud height retrievals
are influenced by the solar zenith angle (SZA); because of the
observation geometry from the L1 point is essentially the same
as the viewing zenith angle, a convex shape with a minimum
during midday was expected (Yang et al., 2013). The extent of
the impact of such a systematic dependence is unknown. In
order to minimize possible interference of a geometrical
artifact in the results, we elected to report the diurnal
cycles only from 8 am to 4 pm LT. EPIC results for the
integrated areas presented in Figures 2, 3 did indeed reveal
the expected convex behavior for low clouds. At the same
time, our results show that: 1) we can achieve consistency with
previous findings; 2) the convex behavior is not found for high
clouds; 3) the amplitudes of those convex cycles are different
between land and ocean; and 4) the diurnal cycles from ABI
are similar even though these retrievals are not affected by the
same geometrical effects.

Finally, we explore the daytime correlation between cloud
fraction and cloud height Since the thermodynamic and
dynamical structure of the location may affect that
relationship, we develop global correlation maps using

Spearman’s coefficient. We show that, for low clouds, the
correlation is seasonally and regionally dependent, being
generally positive over ocean and negative over land as a
consequence of the opposite diurnal behavior of cloud
fraction for the two underlying surfaces. On the other
hand, high clouds are positively correlated for the most
part of the globe since the amounts of high clouds evolve
independently of the surface type.

In summary, we showed that:

• For low clouds, cloud height exhibits a minimum around
midday with amplitudes between 250 and 600 m. On the
contrary, high clouds exhibit a steady increase from
morning to evening of approximately 500 m.

• The amplitude of the diurnal cycles is smaller over ocean
than over land.

• The correlation between cloud fraction and height for low
clouds is mostly positive over ocean and negative over land.
For high clouds, the correlation is largely positive.
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Unique NISTAR-Based Climate GCM
Diagnostics of the Earth’s Planetary
Albedo and Spectral Absorption
Through Longitudinal Data Slicing
Andrew A. Lacis1*, Barbara E. Carlson1, Gary L. Russell 1, Alexander Marshak2 and
Wenying Su3

1NASA Goddard Institute for Space Studies, New York, NY, United States, 2NASA Goddard Space Flight Center, Greenbelt, MD,
United States, 3NASA Langley Research Center, Hampton, VA, United States

Deep Space Climate Observatory (DSCOVR) measurements of Earth’s reflected solar and
emitted thermal radiation permit a uniquemodel/data comparison perspective that is not readily
available fromother satellite data. The key factor is the unique Lissajous orbital viewing geometry
from the Lagrangian L1 point, which enables a continuous view of Earth’s sunlit hemisphere.
The National Institute of Standards and Technology Advanced Radiometer (NISTAR) is the
DSCOVRMission energy budget instrument, which views the reflected and emitted radiation of
the Earth’s sunlit hemisphere by means of single pixel active cavity full-spectrum (Band-A,
0.2–100 μm) and filtered solar wavelength (Band-B, 0.2–4.0 μm; and Band-C, 0.7–4.0 μm)
radiometer measurements. An additional solar wavelength photodiode channel (0.3–1.1 μm)
provides a calibration reference. The objective of this study is the assessment of climate GCM
performance via direct model/data comparisons. Such comparisons are difficult due to quasi-
chaotic natural variability present in real-world observational data and in climate GCM
simulations. This is where the unique DSCOVR viewing geometry makes possible the
longitudinal data slicing methodology for more direct model/data comparison. The key
point of the longitudinal slicing approach is that data integration over the entire sunlit
hemisphere eliminates the quasi-chaotic meteorological weather-scale noise, while
preserving intra-seasonal and planetary-scale variability. The rotation of the Earth that
retrieves this climate-style, large-scale longitudinal and seasonal variability. The hemispheric
averaging is accomplished automatically in NISTAR measurements with its single-pixel view of
the Earth. For climateGCMs, this requires implementing the Sunlit Hemisphere Sampling (SHS)
scheme to operate on theGCM run-time output data, utilizing the DSCOVRSatellite Ephemeris
data to assure precise viewing geometry between NISTAR measurements and GCM output
data, while averaging out themeteorological weather noise. However, GCMgenerated data are
radiative fluxes, while NISTAR (and EPIC) measurements are near-backscattered radiances.
Conversing NISTSR measurements into radiative fluxes cannot be accomplished using
NISTAR data alone, even with detailed support from conventional satellite data. But the
identical viewing geometry of Earth’s sunlit hemisphere, and synergistic analyses of EPIC data
make it feasible for this conversion of NISTAR near-backscatter radiances into radiative fluxes.
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INTRODUCTION

Figure 1 is a schematic representation of the NISTAR and EPIC
measurements from the Lagrangian L1 point 1.4 to 1.6 × 106 km from
the Earth in the direction of the Sun, where the disk-image of the
Earth is roughly the size of the Moon as viewed from Earth. To be
specific, the DSCOVR Satellite is not precisely located at the
Lagrangian L1 point. The DSCOVR Satellite is actually orbiting
around the Lagrangian L1 point in a Lissajous orbit (Koon et al.,
2000) as shown in Figure 2. The Lissajous orbit is forever evolving in
shape with a roughly 6-month period. The solar illumination of the
earth is determined by the Solar Ephemeris whereby (in the GCM
simulations) the grid-box local solar zenith angle changes are
updated on an hourly basis, as is the seasonal change in solar
irradiance due to the Earth’s orbital motion around the Sun.
But, for viewing Earth from the Lissajous orbit, the DSCOVR
Satellite viewing geometry must conform to the specification
given by the DSCOVR Satellite Ephemeris.

The changes in DSCOVR viewing geometry directly affect the
amount of reflected SW radiation that NISTAR and EPIC receive
(Marshak et al., 2021), and require explicit use of the DSCOVR
Satellite Ephemeris in the GCM SHS modeling to account for the
changing GCM grid-box projected area, as seen from the DSCOVR
Satellite perspective. With this explicit SHS modeling in place, the
GCM SHS sampled output data are collected with the same Sun-
Satellite viewing geometry of Earth as is the case for NISTAR and
EPIC observational data. The principal unresolved difference that
remains is that the GCM data are radiative fluxes, whereas the
NISTAR and EPIC data are near-backscatter radiances.

The Lissajous orbit also has a radial component that affects the
radial Earth-Satellite distance (Marshak et al., 2018), which instills an
inverse square distance dependence in the Earth reflected and emitted
radiances. Since NISTAR views the Earth as a single pixel, the
NISTAR measurements need to be normalized to a fixed standard
distance. For EPIC, the size of the Earth’s image on the detector
automatically changes in response to the distance change.

NISTAR: CAVITY RADIOMETER DATA

NISTAR, theDSCOVRMission’s global energy budget instrument, is
a cavity radiometer with four broadband channels designed to

measure the reflected and emitted radiation eminating from the
Earth’s sunlit hemisphere. As described in Figure 3, Band-A is an
open filter position, measuring the Total Outgoing radiation (TOR)
over the solar and thermal spectral regions (0.2–100 μm). Given that
NISTAR observations of the Earth are from the vicinity of the
Lagrangian L1 point, and are near zero phase angle, the expected
reflected solar SW flux from the sunlit hemisphere would be near
200Wm–2, and the outgoing longwave (OLR) near 240Wm–2.
However, the NISTAR data are near-backscattered radiances that
are sensitive to phase angle variability (Marshak et al., 2021). The
NISTAR near-backscattered radiance-to-flux conversion is still an
ongoing endeavor. Because of the complexity, it may be that a
uniform scaling factor might not be adequate for the radiance to
flux conversion. Accordingly, the NISTAR data are still being
expressed in their relative radiance units, as indicated in the figure
labels.

There is seasonal asymmetry clearly evident in the NISTAR
data directly attributable to the (Figure 2) Lissajous orbital phase
angle change that shifts the DSCOVR Satellite viewing geometry
of the Earth. In January, the DSCOVR sub-satellite latitude is at
its southern extreme (−25.3o). With its Lissajous orbital motion
oriented in the same direction as the change in solar declination,
by mid-May NISTAR is viewing the Earth from its northern
extreme (+25.3o). It then takes until December to return to its
southern extreme.

The seasonal variability of longitudinally sliced NISTAR data
is shown in Figure 3. Monthly-mean averages are accumulated
for different geographic regions, based on their sub-solar
longitude as the Earth rotates. The respective color-coded lines
correspond to the central meridian of a major landmass area
(Africa-Asia, 39° E longitude), a mostly ocean view of the sunlit
hemisphere (Pacific Ocean, 179° W longitude), and an
intermediate land-ocean region (S America 60° W longitude).
The NISTAR data are also tabulated in accord with the
Greenwich Mean Time (GMT), where each hour of GMT
corresponds to a 15o shift in longitude. Notably, the
continental Africa-Asia region has the highest reflectivity,
while the Pacific region has the lowest reflectivity, with S
America in between. NISTAR Band-A also includes a thermal
component, for which the highest day-time surface temperature
would occur over the Africa-Asia region, and the lowest over the
Pacific.

FIGURE 1 | Schematic diagram of NISTAR view of the Earth’s sunlit hemisphere from the Lissajous orbit around the solar Lagrangian L1 point. NISTAR views the
entire sunlit hemisphere as a single pixel in 4 broadband channels, while companion instrument EPIC records spatially resolved images.

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 7669172

Lacis et al. NISTAR Radiative Climate Model Constraints

222

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


NISTAR Band-C measures the NIR (0.7–4 μm) portion of the
reflected solar radiation, compared to (0.2–4 μm) for Band-B.
This selects the spectral region that is most sensitive to the
elevated spectral reflectivity of vegetation, located longward of
the 0.7 μm chlorophyl red edge. Compared to the Band-B RSR
measurement, the NISTAR Band-C measurement shows strong
enhancement over the Africa-Asia region, thus qualifying as the
“vegetation” channel.

Band-D (0.3–1.1 μm) is a silicon diodemeasurement, intended
more as a calibration reference. It is similar to the Band-B spectral
response, but with a reduced NIR contribution. The heavy black
line depicts measurements averaged over a full rotation of the
Earth, and thus all longitudes. It serves as reference for the
longitudinal variability that is displayed by the longitudinal
data slicing.

Figure 4 further illustrates how the low signal-to-noise
problem complicates the analysis of NISTAR active cavity
measurements. In the NISTAR active cavity approach, the
electrical current that acts to maintain a fixed cavity
temperature needs to be averaged over a substantial time
interval to diminish the background noise. In Figure 3, the
NISTAR Level 1B data are near-hourly averages spanning
roughly 15o in longitude, thus averaging out a substantial
amount of longitudinal variability. Meanwhile, in Figure 4, the
selected meridional data samples are from shorter time-averaged
NISTAR Level 1B data products, corresponding to longitudinal
swaths of approximately 4° in width. Figure 4 seasonal plots show
far greater noisiness than Figure 3, particularly for Band-C, for
which the April-May and July-August peaks become truncated,
clearly demonstrating the need for data averaging to reduce the

data noise. However, given that direct averaging of Figure 4 data
does not fully reproduce Figure 3 results, points to potential data
artifacts, or to more complex calibration issues.

There are several different sources for the increased noisiness
of the data. While a few of the plotted points might appear to be
artifacts, there is a physical basis behind the enhanced variability.
Part of the problem is in the sampling. For example, the monthly-
means for March are interpolated points, since no data are
archived for that month. Also, there are some months with
only a few days of archived data, which would bias the
seasonal context of the points from their monthly-mean
position, due to the large shifts in orbital position that the
DSCOVR spacecraft can undergo in just 1 month (see
Figure 2). But the change in the sunlit fraction projected area
of the image disk is small, varying only by ~0.25%, from 0.995.

On the other hand, the radiative effects of the rapidly changing
phase angle have a more significant effect. It is within the near-
backscatter range of phase angles (especially for scattering angles
greater than 175o) that the reflected radiation particularly
sensitive to small changes in the scattering angle. For spherical
(liquid water) cloud droplets, the magnitude of backscattered
radiation depends not only on cloud optical depth, but also on the
cloud particle size, including the size distribution variance (e.g.,
Hansen and Travis, 1974). Also, depending on the precise viewing
geometry, oriented ice crystals can exhibit substantial increased in
brightness (Marshak et al., 2017). Thus, there is little doubt that
much of the variability seen in the NISTAR data arises from a
changing distribution in the cloud and land/ocean surface
contributions, each with a different set of phase angle
dependent backscattering properties. It is unlikely the climate
GCM radiative fluxes will be expressible in terms of the near-
backscattered radiances any time soon. Meanwhile, efforts are
continuing to refine the sunlit hemisphere-mean radiance-to-flux
conversion factors based on EPIC image analyses.

The design feature of the DSCOVR measurements is that
taking the difference between Band-A and Band-B would isolate
the LW component of the outgoing thermal radiation (OLR),
which might also have a backscatter phase angle dependence, but
to a much lesser degree than the SW measurements. The main
calibration issue that affects the OLR determination is the need to
determine the absolute transmission characteristics of the Band-B
transmission filter. This needs to be determined indirectly
because of no internal calibration source in the instrument.
Then the remaining SW (beyond Band-B) needs to be
characterized and subtracted to isolate the OLR signal.

Figure 5 depicts the unique spectral ratios that are available
from NISTAR data. One obvious advantage of spectral ratios is
that to first order, most of the NISTAR calibration, backscattered
radiance, and viewing geometry issues cancel out. But more
importantly, the NISTAR NIR/SW spectral ratio, that straddles
the chlorophyl 0.7 μm red edge, is a key climate-specific
measurement that is not readily available from the current
satellite data. The choice of this spectral pivot point identifies
vegetated regions on the basis of their higher NIR spectral albedo.
Thus, as the Earth rotates, longitudinal slicing identifies and ranks
the geographical regions by their NIR reflectivity. This is a novel
diagnostic of GCM radiative modeling performance, and also

FIGURE 2 | The phase angle (also Sun-Earth-Satellite angle, or
180°—scattering angle) defines the angular separation between the DSCOVR
Satellite and the Sun, as viewed from the Earth. The color-coded sky-map
traces its evolving Lissajous orbital path around the Lagrange L1 point
starting from 1 January 2017 (blue) to 27 June 2019 (red). The directions N S,
and W E, represent the Satellite displacement relative to the Sun. Circles
depict the mid-month orbital positions with the numbers 1 to 6 representing
months January to June of the first orbit of the year, and the letters J to D
standing for July to December of the second orbit of the year.
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serves as a biosphere identifier in exoplanet studies (Carlson et al.,
2019).

Figure 5 shows the maximum spectral ratio (red line) to be
over Africa-Asia in April and July. As expected, the minimum
spectral ratio is over the Pacific (blue), but the large April-to-May
seasonal variability is not expected, and could indicate that NIR
water vapor absorption or GCM cloud distribution inaccuracies
could also be a factor. At Figure 5B, the inverse (B–C)/D ratio
emphasizes visible cloudy areas. Also shown is the seasonal TSI,
depicted by the heavy yellow curve (and Y-axis at left), showing
no apparent correlation with the seasonal variability of the
NISTAR data.

A somewhat better view of the seasonal variability is obtained
in the pinwheel format shown in Figure 6, where the NISTAR
data are plotted as a function of the DSCOVR sub-satellite
latitude. This is possible since the DSCOVR satellite effectively
makes two full orbits per year. This also illustrates more clearly
the effect of the Lissajous orbit on the seasonal variability of the
NISTAR data stream. As shown in Figure 6A, the DSCOVR
sub-satellite latitude is at its southern extreme (−25.3o) in

January. Because the Lissajous orbital motion is oriented in
the same direction as the solar declination change, by mid-May
NISTAR is viewing the Earth from its northern extreme
(+25.3o). It then takes until December to return to its
southern extreme. The solid red line illustrates the rapid
January-to-May northward trek for the Africa-Asia meridian,
while the much slower May-to-December southward return trek
is denoted by the red dash line. Notable on the southward return
trek is the pronounced June-to-September chlorophyl-fueled
hump that can be associated with the northern hemisphere
growing season (with its peak in July). At Figure 6B are the
corresponding results from the GISS ModelE2 NIR/SW spectral
ratio output data. On the positive side, the relative order of the
longitudinal slicing agrees with the NISTAR data. But, the
amplitude and seasonal variability of the GCM surface
albedo climatology is far too small.

Figure 7A illustrates the basic features of the seasonal
variability of the Earth’s global energy balance. The annual-
mean global average Total Solar Irradiance (TSI) is
340.2 Wm–2 (Kopp and Lean, 2011). The heavy yellow

FIGURE 3 | Four-hour averaged NISTAR measurements for year 2017 of the longitudinally sliced seasonal variability of the Band-A (0.2–100 μm) Total Outgoing
Radiation TOR (A), Band-B (0.2–4 μm) Reflected Solar Radiation RSR (B), Band-C (0.7–4 μm) Near-Infrared Reflected Solar Radiation NIR (C), and Band-D Silicon
Diode (0.3–1.1 μm) Visible Reflected Solar Radiation VIS (D). The heavy black lines depict (longitudinal) full day averages. The colored lines represent the longitudinal
slicing as the Earth rotates, whereby the specified geographical area with the high-noon Sun is also identified by its central meridian. The seasonal change in the
Lissajous orbital sub-satellite latitude is tabulated at figure bottom.
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curve depicts the seasonal TSI radiative forcing change due to
the Earth’s orbital motion, which in ModelE2 is defined by the
Solar Ephemeris. The red dash curve is the ModelE2 Total
Outgoing Radiation (TOR = RSR + OLR) run for thousands of
years to global energy balance equilibrium under pre-
industrial conditions. The red curve is the ModelE2 TOR
for current climate conditions, which displays the current
global-mean energy imbalance of 1.14 Wm–2, showing also
that there is seasonal variability present in the global energy
imbalance. Compared to the TSI radiative forcing, the TOR
amplitude is much reduced, but with a bimodality in phase.
The observational data from CERES (Loeb et al., 2018) and
ISCCP (Zhang et al., 2004) depicted by the green and blue dash
curves, respectively, exhibit similar variability, but with a
phase shift by about a month compared to the ModelE2
data. The differences may be small in the absolute sense,
but they are significant. The climate system response to
applied TSI forcing is not simply a radiative issue, but also
involves land/ocean energy transports, sequestration and
transport of absorbed solar energy, and its later release to
the atmosphere.

Upper right displays the ModelE2 results in the more compact
pinwheel format that provides a more compact perspective on the
seasonal variability of the global energy variables. Since the TSI
changes are precisely known in time andmagnitude, TSI radiative
forcing can serve as the X-axis. All climate variables are in fact
functions of solar radiative forcing, with the time of year defining
the Y-axis of the variable. Thus, on the left side Y-scale, TSI traces
out the black slanted line with the black dots marking the
monthly mean TSI values of the year, with July at the negative
extreme and January at the positive extreme. Likewise, on the
right-side Y-axis, the ModelE2 TOR monthly means are plotted
in accord with the time-of-year that is also implicit with the
X-axis solar forcing. If the heat capacity of the climate variable
was close to zero, the pinwheel path of that variable would be a
slanted line like that of the TSI forcing that retraces itself. If, on
the other hand, the heat capacity was infinitely large, the pinwheel
path would then be a horizontal line equal to its global annual-
mean value. As it is, the ModelE2 TOR traces out near-horizontal
bow-tie shaped figures with basically equal lobes that are rotating
clockwise in the northern hemisphere winter lobe and in the
counter-clockwise direction in the summer lobes. The seasonal

FIGURE 4 | NISTAR measurements for year 2017 of the longitudinally sliced seasonal variability of the Band-A (0.2–100 μm) Total Outgoing Radiation TOR (A),
Band-B (0.2–4 μm) Reflected Solar Radiation RSR (B), Band-C (0.7–4 μm) Near-Infrared Reflected Solar Radiation NIR (C), and Band-D Silicon Diode (0.3–1.1 μm)
Visible Reflected Solar Radiation VIS (D). The underlying NISTARmeasurements here are basically the same as in Figure 3 heavy black lines depict the daily (longitudinal)
average. The NISTAR Relative Radiance units are the archived data units.

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 7669175

Lacis et al. NISTAR Radiative Climate Model Constraints

225

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


change in global energy imbalance appears to be more
pronounced in the NH summer lobes.

Figure 7C shows the CERES and ISCCP TOR data in
pinwheel format. Except for a few points in April, July, and
November, December, there is close agreement between
CERES and ISCCP. As in the case of ModelE2, the
direction of pinwheel rotation is clockwise in the NH
winter lobe and counter-clockwise in the summer lobe.
However, the winter lobe is much larger than the summer
lobe for CERES and ISCCP. While the CERES/ISCCP NH
summer lobe is mostly horizontal, the winter lobe exhibits a
strongly inclined slope. The pinwheel shape, slope,
directionality, and hysteresis are the product of virtually all
of the GCM physical processes. It may well be that the CERES

and ISCCP TOR results are suggesting the ModelE2 coupled
atmosphere-ocean treatment may be seasonally too rigid, and
that there should be some seasonal shift in model dynamics
that can simulate a somewhat smaller heat capacity during the
NH winter months relative to the summer. To sort out the
different possibilities, future GCM runs are needed to identify
and quantify the factors that affect the shape and slope of the
pinwheel response to the seasonal change in solar radiative
forcing.

The Figure 7D shows the reflected SW in pinwheel format
for the CERES and ISCCP results and NISTAR Band-B (solid
red) and EPIC (black) derived SW flux results. There is
qualitative agreement between the CERES/ISCCP pinwheels
and the NISTAR/EPIC pinwheels as to overall shape, slope

FIGURE 5 | Seasonal variability of longitudinally sliced NISTAR Band-C (0.7–4 μm)/Band-B (0.2–4 μm) NIR/SW spectral ratio for year 2017 (A), and the inverse VIS/
VIS + spectral ratio of Bands-(B-C) (0.2–0.7 μm)/Band-D (0.3–1.1 μm) (B). The colored curves represent longitudinally sliced hemispheric views of geographical regions
identified by their noon-time meridians. The heavy black lines represent full-day averages. The heavy yellow curves depict the seasonal variation of the Total Solar
Irradiance (TSI) as referenced by the Y-axis scale at left.

FIGURE 6 | Seasonal variability of longitudinally sliced NISTAR Band-C (0.7–4 μm)/Band-B (0.2–4 μm) NIR/SW spectral ratio for year 2017 (A), expressed in
pinwheel format, and plotted as a function of the DSCOVR sub-satellite latitude. Noted at figure bottom are the mid-month positions of the DSCOVR spacecraft in terms
of its sub-satellite location (numbers identify the month of year 2017), and the corresponding sub-solar latitude (declination) denoted by the yellow circles. At (B) are the
corresponding NIR/SW spectral ratio results from the GISS ModelE2 reflected SW diagnostics output data sampled in accord with the DSCOVR Satellite
Ephemeris viewing geometry and aggregated over the sunlit hemisphere.
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orientation, and direction of rotation. But the agreement is
much tighter between CERES and ISCCP then with EPIC and
NISTAR. The EPIC results are a first step in the conversion of
backscattered spectral radiances into their radiative flux
equivalents (Su et al., 2018; Su et al., 2020). For this, the
EPIC spectral radiances were converted to broadband fluxes
using MODIS/CERES-based regression relationships, and
then, by means of the CERES angular distribution models,
into the EPIC reflected SW fluxes, which were then integrated
over the sunlit hemisphere to produce the monthly-mean data
points for the EPIC pinwheel. The EPIC global-mean CERES-
based cloud anisotropy factors were also used to convert
NISTAR data into radiative flux units for the NISTAR
pinwheel (Su et al., 2018).

Compared to TOR pinwheels in Lower left, the RSR pinwheels
exhibit somewhat steeper orientation and more equality in lobe
size. Otherwise, the direction rotation remains clockwise in NH

winter lobes and counter-clockwise in the summer lobes. Higher
frequency oscillation that are evident in the EPIC and NISTAR
pinwheels, but not in the CERES/ISCCP pinwheels, are likely
residuals originating from phase angle backscatter and Earth-
Satellite distance changes due to the Lissajous orbital motion.

As illustrated in Figure 8 the pinwheel format representations
enable a concise comparison of global energy budget components,
and they underscore the need for precise radiance-to-flux conversion
for a more productive model/data intercomparison. Top row of
Figure 8 displays NISTAR Band-A, Band-B, and Bands-(A-B)
monthly-mean, full-day average Level 1B radiance data in
pinwheel format representing the TOR, RSR, and OLR global
energy budget components (but with twice the solar SW included
in TOR, and incomplete subtraction of the total SW in the OLR
component). The heavy green pinwheels represent the Level 1B
NISTAR data as archived without having the Earth-Satellite distance
dependence due to the Lissajous orbital motion removed. Since

FIGURE 7 | Seasonal energy balance of the Earth between the incoming Total Solar Irradiance (TSI) and the Total Outgoing Radiation (TOR) computed by the GISS
ModelE2 for current climate (solid red line) and pre-industrial (red dash line) conditions with comparison to CERES and ISCCP data (A). The heavy yellow line depicts the
seasonal change in TSI radiative forcing. The CERES and ISCCP TOR determinations are depicted by the green and blue dash lines, respectively. (B) displays the GCM
seasonal TOR variability in pinwheel format (relative to the Solar Seasonal Forcing). (C) displays the CERES and ISCCP seasonal TOR variability, shown in (A), in the
same pinwheel format. (D) compares the reflected solar radiation RSR in pinwheel format between CERES and ISCCP results and NISTAR Band-B (solid red) and EPIC
(black) derived SW flux results. The numbered black dots connected by the vertical dotted lines refer to the monthly-mean mid-points of TSI and the corresponding
reflected SW flux.
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NISTAR views the Earth as a single pixel, the changing Lissajous
orbital distance imparts an inverse square variance on the NISTAR
measurement. While the changing Earth-Satellite distance effect on
the size of the sunlit fraction of the projected disk image is tiny
(0.25%), and thus of little concern, the distance square effect on the
NISTAR measurement can be as large as ± 13.8%, given that the
Lissajous orbital distance of the DSCOVR Satellite from Earth ranges
from a minimum near 1.4 × 106 km to a maximum near 1.6 ×
106 km.

The changing Earth-Satellite distance effect on the NISTAR
pinwheel shape is significant, as shown by the red dash distance
normalization. Radiance-to-flux conversion is also a much-
needed transformation for model/data comparison. Due to its
complexity, simple scaling is not sufficient. Another significant
factor involved in the pinwheel comparison is the fact that the

NISTAR pinwheel is for a projected image of the sunlit
hemisphere, where latitudinal viewing perspective from the
Lissajous orbital position comes into play, while the CERES,
ISCCP, and GCM pinwheels represent global-mean averages in
satellite retrieval data product format. Based on these
considerations, the NISTAR RSR pinwheel in Figure 8 is
transformed into the Figure 7D RSR pinwheel that is more
like the EPIC and CERES/ISCCP RSR pinwheels. Thus, except
for the spectral ratio results (for which the distance change,
backscatter radiance, and viewing geometry issues cancel out),
the full analysis of NISTAR measurements is still a work in
progress, despite its promising prospects.

The Figure 8B displays the ModelE2 TOR, RSR, and OLR
pinwheels, showing in more detail the seasonal change in the
global energy budget between the pre-industrial and current

FIGURE 8 | (A) Seasonal NISTAR data for Total Outgoing Radiation (TOR), Reflected Solar Radiation (RSR), and Outgoing Longwave Radiation (OLR) in pinwheel
format. The heavy green pinwheels are full-day (longitudinal) average Level 1B monthly-mean data. The red-dash curves represent the green pinwheel data but include
inverse square Earth-Satellite distance correction. (B) Seasonal variability of global monthly-mean ModelE2 TOR, RSR, OLR pinwheels for pre-industrial (red dash) and
current climate (solid red) conditions. (C) Seasonal variability of global monthly-mean CERES (green) and ISCCP (blue dash) pinwheels for TOR, RSR, and OLR.
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climate conditions. Overall, there has been a decrease by
1.14Wm–2 in global-mean energy balance, as indicated by the
TOR pinwheel. Interestingly, this has been accompanied by a
modest increase in RSR by 0.55Wm–2, and a dominating
decrease in OLR by 1.69Wm–2. Moreover, the RSR increase
has occurred during the months of September to April, with
hardly any change taking place in the reflected SW during the
summer months of May to August. For RSR, the pinwheel
direction of rotation is the same as for TOR, clockwise in the
NH winter lobe and counter-clockwise in the summer, with the
summer lobe being substantially larger than the winter lobe. For
the OLR pinwheel, there is little change in shape between pre-
industrial and current climate, just an overall decrease in OLR by
1.69Wm–2 due to accumulating greenhouse gas radiative forcing.
But, the OLR pinwheel shape, orientation, and rotation are quite
different from the RSR pinwheel. Instead of two lobes, it is
basically a single large summer lobe, with the winter lobe
shrunken down to near-nothing. The slope of the OLR
pinwheel orientation is negative, and the direction of rotation
is clockwise, opposite that of the RSR pinwheel.

For comparison, Figure 8C displays the CERES (green) and
ISCCP (blue dash) pinwheels for TOR, RSR, and OLR. The
CERES and ISCCP pinwheels are in good agreement with each
other. The RSR lobes are near-equal in size and are closely
oriented in slope with the TSI slanted line. Their direction of
rotation is the same as that of the TOR pinwheels, clockwise in the
NH winter lobe and counter-clockwise in the summer lobe. The
CERES and ISCCP OLR pinwheels are very similar to the
ModelE2 OLR pinwheels, in shape, size, orientation, and
direction of rotation. Perhaps that should not be surprising
since climate GCMs are typically tuned to reproduce the
historic trend in global surface temperature, with less attention
focused on the accuracy of the reflected SW radiation. If the
ModelE2 global surface temperatures are in agreement with
observations, then it is likely that the OLR is also in agreement.

However, there is a small but persistent difference between the
CERES and ISCCP OLR pinwheels in July and also in December.
In July, the CERES OLR is about 1Wm–2 higher than ISCCP, and
in December, the CERES OLR is about 1Wm–2 lower than
ISCCP. This difference is most likely due to a difference in
cloud altitude, and less likely to cloud fraction, since the
CERES and ISCCP RSR pinwheels show no significant
differences. Thus, CERES appears to detect clouds at a lower
altitude than ISCCP in July, but at a higher altitude in December.
Or, it is also possible that CERES detects more ice clouds (with
lower emissivity) in the July time frame, and fewer ice clouds than
ISCCP during December.

The RSR slope difference between CERES/ISCCP and
ModelE2 is harder to explain. It can’t simply be due to clouds,
since clouds also affect the OLR. It would need to be limited to
seasonal cloud albedo or cloud optical depth differences, to which
the OLR is less sensitive. Ultimately, it is the GCM energy
transports and energy sequestration that must be involved in
defining the pinwheel. The NISTAR and EPIC data are essential
for resolving the pinwheel differences between the CERES/ISCCP
and ModelE2 pinwheels. At this point in time, NISTAR data
calibration and signal-to-noise issues limit their effectiveness.

EPIC data analysis has made more rapid progress and serve as a
bridge to NISTAR data improvement.

DISCUSSION

NISTAR and EPIC measurements provide a unique perspective
of the Earth’s sunlit hemisphere from their Lissajous orbit vantage
point, which makes possible a new format model/data
comparison. Because the climate system is highly variable both
in space and in time with differences in viewing geometry, spatial
resolution, and diurnal cycle sampling time between observations
and climate model output, this can produce biases and distortion.
In addition, both climate GCMs and the real world operate in
quasi-chaotic fashion, which produces a “natural” uncorrelated
variability that is an unavoidable source of uncertainty in model/
data comparisons.

This “weather noise” problem is mitigated by integrating the
input data over the entire sunlit hemisphere, which NISTAR does
naturally with its single-pixel observations, and EPIC with its full-
disk image analysis. This approach provides broad-brush climate-
type information that summarizes the climate system’s response
to the seasonally changing solar radiative forcing. These sunlit-
disk data points are further averaged over time as monthly-
means. With weather noise averaged out, the rotation of the Earth
preserves the longitudinal variability of the land/ocean
distribution, and retains planetary-scale fluctuations such as
the MJO and ENSO/La Niña variability. Longitudinal slicing is
then used to display the data.

On the climate GCM end, identical space-time sampling
can be implemented to integrate the GCM run-time output
data over the sunlit hemisphere to reproduce the viewing
geometry identical to that of the DSCOVR Satellite NISTAR
and EPIC measurements. That is accomplished with the Sunlit
Hemisphere Sampling (SHS) simulator that has been installed
in the GISS ModelE2 to generate climate-style output data
with the same self-consistent space-time sampling as the
NISTAR data. The key difference that still remains is that
the GCM data are in radiative flux format, while NISTAR data
are near-backscatter radiances.

The anisotropy problem is largely alleviated in the case of the
NISTAR Band-C/Band-B spectral ratio analysis, which is a more
robust measurement in that the viewing geometry, calibration,
and backscattered radiance issues are, for the most part, cancel
out. This spectral ratio measurement is of fundamental
importance since there are no similar measurements available
from conventional satellite data. The NISTAR spectral ratio
measurements have demonstrated their value as a novel
radiative modeling diagnostic tool to assess climate GCM
performance, showing for example, that the GISS ModelE2
does not have sufficient seasonal or longitudinal spectral
variability in reflected SW flux, although ModelE2 does
reproduce the relative longitudinal ordering that is seen in the
NISTAR data (Carlson et al., 2019).

However, because of spectral dependence of the backscatter
radiance-to-flux anisotropy, there might be only partial
anisotropy cancelation in the Band-C/Band-B spectral ratio.
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The anisotropy parameter is likely to be larger for Band-B than it
is for Band-C (Marshak et al., 2021), in which case the NISTAR
spectral ratio variability would be reduced, thus mitigating the
spectral ratio disagreement between NISTAR and ModelE2 in
Figure 6. Such reduction in the NISTAR spectral ratio amplitude
would improve the comparison with the GCM results. The
coming CERES/Libera mission should help to resolve all of
these spectral ratio issues.

For added perspective, the NISTAR data comparison in
Figure 6 uses the pinwheel format for the spectral ratio
comparison. Here, the DSCOVR sub-satellite latitude serves as
the X-axis, helping to highlight the relative importance of the
Lissajous orbital motion on the seasonal asymmetry that is
apparent in the time-series plots. The DSCOVR Satellite is at
its southern-most extreme in January of 2017. Its orbital motion,
when in phase with the change in solar declination, carries it to its
northern-most extreme in only 4 months by May. The return trip
which is out of phase with the solar declination change, takes
about 8 months to get back to the southern-most extreme by
January of the following year. This asymmetric change in the
Lissajous orbital viewing perspective accounts for much of the
seasonal asymmetry that is evident in the time-series plot in
Figure 5.

The “bow-tie” shaped pinwheel perspective t in Figures 7, 8,
uses the (–11Wm–2 to +11Wm–2) change in the solar seasonal
radiative forcing as the reference X-axis, which is appropriate for
the NISTAR global energy balance visualization. In this format,
the left Y-axis and the slanted line refer to the incident solar
irradiance, for which the maximum TSI is at the upper right
corner in January, and minimum TSI at lower left in July. The
right-hand Y-axis represents the reflected SW flux, with the
implicit time dependence inferred from the seasonal solar
radiative forcing, which defines the placement of the monthly-
mean data points.

If the heat capacity of the climate system was negligible, and
the reflected SW flux was directly proportional to TSI, the shape
of the reflected SW pinwheel response would be a slanted line that
tracks the change in TSI. For a very large heat capacity, the
pinwheel shape would simply be a horizontal line. As it is, the
Earth’s climate system has both a large heat capacity and the
added complexity that a large amount of heat energy is being
sequestered by the southern oceans during the NH winter
months, transported northward, and then added to the
outgoing LW radiation during the NH summer months, with
corresponding changes in the global cloud cover. As shown by the
CERES/ISCCP reflected solar radiation (RSR) pinwheels in
Figure 8, maximum RSR occurs in December.

The decrease in RSR is more rapid than the decrease in the TSI,
with increasing energy going into ocean for sequestration. This
imparts a clockwise rotation to the NH winter lobe of the
pinwheel. The enhanced decrease in RSR (and planetary
albedo) continues through March, slowing down substantially
fromMarch to June, as TSI undergoes its most rapid decrease. As
a result, this shifts the pinwheel into its NH summer lobe where
the direction of rotation is counter-clockwise since the rate of
change during this time period is more rapid for TSI than it is for
RSR. There is an accelerated RSR decrease from June to August as

TSI reaches its minimum in July, and begins increasing again.
This completes the pinwheel NH summer lobe turn-around,
setting it up for a more in-step return back to its December
maximum. The CERES/ISCCP RSR seasonal change in the
reflected SW radiation is in close agreement with the EPIC
results while the results at individual meridians exhibit a high
degree of seasonal variability.

Except for its much smaller NH winter lobe, the ModelE2 RSR
pinwheel in Figure 8 is basically similar to the CERES/ISCCP
RSR pinwheel. The NISTAR RSR pinwheel has little resemblance,
implying significant seasonal variability for the RSR backscattered
radiance to flux conversion. But, the overall slope of the NISTAR
RSR pinwheel is actually in better agreement with the slope of the
ModelE2 RSR pinwheel, than it is with the slopes of the CERES
and ISCCP RSR pinwheels. The NISTAR OLR pinwheel shows
little similarity to the ModelE2/CERES/ISCCP OLR pinwheels. It
is probable that in this case that the problem may be the
incomplete subtraction of solar radiation in the NISTAR
Band-A minus the Band-B differencing. Interestingly, the
orientation of the OLR pinwheel, which is practically
orthogonal to the RSR pinwheel orientation, underscores the
phase difference between the energy sequestration and that of the
solar SW radiative forcing.

While NISTARwas designed to produce hemisphere-averaged
energy budget data of the Earth without numerical aggregation,
the problem is that the NISTAR data are near-backscattered
radiances that are aggregated from a broad range of contributors
which have different backscattering properties, with an ever-
changing viewing geometry that makes quantitative
comparison to climate GCM data problematic. It would
appear that essentially real-time anisotropy correction is
needed to convert the near-backscattered NISTAR radiances
into radiative fluxes with sufficient accuracy for global energy
balance analysis and comparisons (Su et al., 2015; 2021).

The importance of accounting for near-backscattered
radiation of NISTAR and EPIC measurements is discussed in
by Marshak et al. (2021). Their Figure 7 shows large differences
and strong dependence on the scattering angle of reflected
radiation by ice and water clouds in the near-backscatter
direction with the region between 175o to 180o scattering
angle being most prominent. Ice cloud and water cloud
particles have scattering functions that are different in this
near-backscatter angle range. Moreover, flat-plate ice cloud
particles often appear in oriented configuration to cause glint
(Marshak et al., 2017). Furthermore, there are finite sized
scatterers in vegetation canopies that can cast shadows. In
such vegetation canopies, shadowing is minimized under
backscatter conditions, and thus produce enhanced
brightening for decreasing phase angle (Marshak et al., 2021).
Mishchenko et al. (2002) describe exact vector theory results for
coherent backscattering for discrete random media, showing
sharply-peaked backscattering brightness enhancement by over
50% for spherical particulates at 0° phase angle, compared to
phase angles just larger than 10°.

The principal climate system constituents, ocean, land, snow,
ice, vegetation, as well as aerosols, water and ice clouds, possess
significantly different backscattering properties. As a result, the
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sunlit-hemisphere anisotropy parameter that would describe the
hemisphere-mean anisotropy of NISTAR data will vary as the
mix of climate constituents changes due to the rotation of the
Earth, and also in response to the Lissajous orbital change in
phase angle. Basically, there is no simple methodology to define
the NISTAR sunlit-hemisphere anisotropy parameter to convert
backscattered NISTAR radiances into radiative flux equivalents
with sufficient accuracy for quantitative global energy balance
comparisons to climate GCM simulations, which are invariably in
the form of radiative fluxes.

To help address this situation, a study was initiated by Su et al.
(2018; 2020) to convert EPIC spectral radiances into reflected SW
fluxes to calibrate the NISTAR Band-B backscatter radiances. For
this, the EPIC spectral radiances were converted to broadband
SW radiances using MODIS/CERES-based regression
relationships, and then transformed to radiative fluxes using
the CERES angular distribution models. These transformations
were performed at the pixel level. Integration over the entire
sunlit hemisphere converted each EPIC image into a single
climate-style data point of reflected SW flux. In way, 5388
EPIC images for year 2017 were processed to generate a table
of 12 × 24 monthly-mean planetary albedo points.

These sunlit hemisphere averages were normalized relative to
the CERES global annual-mean value for reflected SW radiative
flux of 99.1 Wm–2 (Loeb et al., 2018), and divided by the Total
Solar Irradiance 340.2 Wm–2 (Kopp and Lean, 2011), The
tabulated EPIC planetary albedo points serve as the input data
for the longitudinal slicing methodology to map and analyze the
seasonal and longitudinal variability of the Earth’s global energy
balance in terms of its planetary albedo, as described in our
companion paper (Carlson et al., 2022). They are also the first
order reference for NISTAR Band-B anisotropy calibration for
converting the near-backscatter radiances to radiative fluxes. The
process of NISTAR radiometry channel calibration is a complex
iterative endeavor that involves characterization of the Band-B
and Band-C cutoff filter transmission properties, which must be
accomplished while simultaneously battling poor signal-to-noise
as the radiometer channel calibration is being established. Also, as
the Earth rotates, the anisotropy parameter derived from EPIC
data keeps changing as the land/ocean/cloud distribution changes
and as the EPIC viewing geometry changes.

In view of the above, it has become clear that the accuracy of
the NISTAR Band-B radiative flux is totally dependent on the
successful outcome of the EPIC data conversion to radiative flux.
If the principal objective of NISTAR measurements was only to
serve an observational reference for the seasonal variability of the
Earth’s global energy balance geared to climate GCM
comparisons, then the NISTAR measurements could well be
viewed as largely superfluous. But, as already noted, it is the
spectral discrimination such as the Band-C/Band-B spectral ratio,
which to a large extent is not directly dependent on precise
radiance-to-flux conversion, that makes the NISTAR
measurements unique. With more precise calibration, there are
other spectral interval combinations available such as Vis Band
(Band-B—Band-C, 0.2–0.7 μm), the Near-IR Band (Band-
D—Vis Band, 0.7–1.1 μm), and the Mid-IR Band (Band-
B—Band-D, 1.1–4 μm). The Vis Band samples the least

absorbing part of the solar spectrum, while the Near-IR and
Mid-IR Bands sample spectral regions with different amounts of
absorption by water vapor and reflection by surface vegetation.
Nevertheless, the usefulness of these NISTAR spectral intervals
for differentiating the radiative effects of clouds, water vapor, and
surface vegetation are strongly dependent on the stability of the
NISTAR radiometric calibration and the effectiveness of the data
noise suppression for the present Level 1B version of the NISTAR
data compilation that has been the topic of this study to assess and
analyze.

Overall, it is the longitudinal slicing aspect of the NISTAR and
EPIC data that makes DSCOVR Mission measurements so
unique in their role as key climate modeling diagnostic tools.
In our prior NISTAR line plot data comparisons, radiative flux
comparability was the key objective. Thus, accurate radiance-to-
flux conversion was required. Also available are Hovmöller
format comparisons, specifically optimized for geographical
pattern visualization that are a natural fit to longitudinal
slicing, and are shown in Figure 9 for NISTAR Band-B (Left),
and photodiode Band-D (Right).

Since terrestrial weather patterns typically tend to evolve in the
East-West direction, rather than North-South, Hovmöller (1949)
found it more informative to average meteorological data over
the North-South dimension, before plotting the latitude-
averaged data as a function of longitude, with time
increasing upward along the Y-axis. For convenience the
X-scale is centered over the Central Pacific Ocean Date
Line, and also includes the Greenwich Mean Time (GMT)
of the high-noon Sun at that longitude. By nature of their
single-pixel measurement, NISTAR data are automatically in
Hovmöller format. Each point on the Hovmöller map
represents a sunlit-hemisphere average (with both
latitudinal and longitudinal meteorological activity averaged
out). The rotation of the Earth retrieves the planetary-scale
variability, hence longitudinal slicing by the Earth’s rotation.
To facilitate geographic location of different longitudes, a
coarse-grid GCM 5° × 4° world map is included.

Figure 9A shows NISTAR Band-B backscattered relative
radiance data from Figure 4A arbitrarily normalized to a
planetary albedo (with global annual-mean equal to the
CERES value of 29.1%, Loeb et al., 2018), interpolated to cover
the full range of longitude and GMT, and replotted in Hovmöller
format. This arbitrary action implies the assumption of a globally
uniform annual-mean anisotropy parameter for transforming the
NISTAR backscattered radiances of uncertain calibration into
radiative fluxes that match the CERES global annual-mean flux of
99.1 Wm–2. The objective is to assess and demonstrate how the
“vanilla” version of the NISTAR Band-B data compares relative to
the more idealized version derived from the analysis of EPIC data
described in our companion paper (Carlson et al., 2021), which is
also a part of the DSCOVR EPIC/NISTAR: 5-years of Observing
Earth from the first Lagrangian Point.

Figure 10A is the EPIC version of what the ideal NISTARBand-B
planetary albedo data for year 2017 should look like in their
Hovmöller format (from Carlson et al., 2021, their Figure 3).
What stands out in the Hovmöller format is the evolving pattern
of variability, in particular, the 2017 February-March La Niña feature
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with the 30° peak-to-peak longitudinal waves, that is not readily
apparent in the NISTAR/EPIC line plots. The world map places this
La Niña feature as occurring in the mid-Pacific, with the longitudinal
waves extending some 90° eastward.

In terms of the overall pattern of variability, NISTAR Band-B
planetary albedo in Figure 9 shows strong resemblance to the

EPIC results in Figure 10, re-affirming the thinking that the
NISTAR data have the intrinsic stand-alone capability to detect
changes in climate system variability, such as La Niña activity,
even without resolving the anisotropy issue. Though the sparse
longitudinal sampling of the NISTAR Band-B data (in Figures 4,
9) precludes conclusive confirmation, there is reason to expect

FIGURE 9 | (A) NISTAR solar shortwave (SW) near-backscatter relative radiances for year 2017 from Figure 4B for Band-B (0.2–4 μm), and (B) for photodiode
Band-D (0.3–1.1 μm) from Figure 4D, displayed as planetary albedo in Hovmöller format. In both cases, the NISTAR relative radiances are uniformly normalized to the
CERES global annual-mean of 99.1 Wm–2 (Loeb et al. (2018), to yield a global annual-mean of 29.1 percent for the planetary albedo. In the Hovmöller format, the Y-scale
has the time running upward starting from January at the bottom, through December at the top. The X-scale has the longitude running from 0° E longitude at the left
and 0°W longitude at the right. The X-scale also references the GMT of the noon-time Sun, starting at GMT = 0 at the Date Line at the center, increasing westward toward
the left, as the Earth rotates. A 5 ° × 4 ° GCM world map is included for geographic reference.

FIGURE 10 |Hovmöller-style contour plot of the EPIC (A) and the GISSModelE2 (B) planetary albedo for the year 2017. In both cases, the EPIC and GCM SW flux
is normalized to the CERES global annual-mean of 99.1 Wm–2 (Loeb et al. (2018), to yield a global annual-mean of 29.1 percent for the planetary albedo. The Y-scale has
time running upward starting with January at the bottom through December at the top. The X-scale is longitude running from 0° E longitude at the left to 0° W longitude at
the right. GMT references the location of high-noon Sun. The world map is included for longitudinal reference. The data for the EPIC (A) and GISSModelE2 (B) year
2017 planetary albedo are reproduced here from Carlson et al. (2021) modeling results.
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that with higher longitudinal sampling, the Band-B data would
have detected the longitudinal wave activity that is seen in
Figure 10A EPIC data. The main reason why the February-
March La Niña feature does not appear in the Figure 9 NISTAR
Band-B data is because the NISTARMarch data are missing in all
of the NISTAR data channels. Hence, the plotted results for
March are all spline interpolation values. Another take-away on
this topic is that data averaging for noise suppression needs to be
carefully managed in order to preserve the longitudinal
information. It is anticipated that the now available Version 3
of the NISTAR Level 1B of archived data with improved
calibration and noise reduction will permit improved model/
data cmparisons.

Other conclusions that can be drawn from the comparison of
Figures 9, 10, given that the range of variability for the NISTAR
Band-B planetary albedo is substantially larger than for the EPIC
planetary albedo, is that the radiance-to-flux conversion exhibits
space-time variability. Also, the space-time variability of the
relative brightness ratios is such that the anisotropy parameter
does not maintain the same time dependence with longitude, or
the same longitudinal dependence with time. This implies that a
significant fraction of the anisotropy dependence must come
from changong ice and water cloud distributions, which have
different backscattering properties, and thus require real-time
EPIC image analyses (e.g., Su et al., 2018; 2020) in order to
convert NISTAR Band-B radiances into radiative fluxes.

The Figure 9 comparison of NISTAR Band-B (Left) with the
photodiode Band-D results (Right) identifies the large decreases
in reflected radiance that are evident in Band-B data in Figure 4,
and appear as bull’s-eye features in Figure 9A during March-
April, June, July, September and November, but are absent in the
photodiode Band-D Hovmöller map in Figure 9B. Band-D has
less absorption, but with better signal-to-noise than Band-B. But
the Figure 9 Band-B/Band-D comparison also shows what may
be a calibration inconsistency. As denoted in the NISTAR line-
plot Figure 3 through 6, the DSCOVR sub-Satellite latitude is
25.3° S in January, 25.3° N in June, and 23.9° S in December. Why
is the Band-D reflectance so much smaller in January when the
DSCOVR Satellite is even more strongly over Antarctica in
January than in December?

For Band-B, the relative reflectance level over the E longitude
region is approximately the same for January, June and
December, contrary to the Band-D results. By comparison the
EPIC planetary albedos in Figure 10A, are by far the highest in
November-December, but with peak reflectivity occurring over
the 0° to 45° W longitude Atlantic Ocean region, while the
NISTAR Band-B October-November peak is over the 135° E
longitude East-Asia region. Most likely, this regional difference in
reflectance must be due to the regional differences in near-
backscatter ice and water cloud distributions, but Australia
land-surface albedos may also be involved.

However, the more far-reaching take-away from the Figure 9
Band-B/Band-D comparison are the spectral differences between
Band-B and Band-D that become most evident during the
summer months June through September over the continental
longitudes. Band-B includes the Mid-IR (1.1–4 μm) spectral
region that is not being measured by the photodiode Band-D,

which, over vegetated areas, would add significantly more to the
reflected radiation, than over the ocean areas.

Clearly, the other spectral intervals that are possible with the
NISTAR spectral bands, such as the Band-B—Band-C, Vis Band
(0.2–0.7 μm), the Band-D—Band-B + Band-C, Near-IR Band
(0.7–1.1 μm), and Band-B—Band-D, Mid-IR Band (1.1–4 μm).
These synthesized NISTAR spectral bands are designed to
provide improved spectral discrimination that would be more
effective in differentiating between the different climate system
constituents. The Vis Band, with minimum atmospheric
absorption, would be the primary cloud assessment band. The
Near-IR Band would have sensitivity to cloud, vegetation albedo,
and moderate water vapor absorption, while the Mid-IR Band
would be more sensitive to vegetated surface albedo and to strong
water vapor absorption. However, because of calibration
inconsistencies and the obvious artifacts in the NISTAR
Figure 4 Band-B and Band-C data, Hovmöller plots for these
spectral bands are not yet ready for prime time. In addition, it is
also more than likely that the anisotropy parameters needed to
transform the synthesized spectral radiances into radiative fluxes
would also differ greatly between the different spectral bands.

Figure 10B displays the Hovmöller contour map for the
planetary albedo for the GISS ModelE2 climate GCM for the
year 2017. As discussed in Carlson et al. (2021), the EPIC vs.
ModelE2 was used to deduce that the GISS ModelE2
overestimated clouds over ocean areas and underestimated
clouds over the continental land areas, in addition to
identifying the year 2017 La Niña feature in the EPIC
planetary albedo data. In comparing the normalized NISTAR
Band-B planetary albedo in Figure 9A with the GCM results in
Figure 10, it is clear that NISTAR Band-B results, even with the
arbitrary anisotropy normalization, are a far closer fit to the EPIC
planetary albedo, than the ModelE2 results. Also, from this
comparison, it is clear from Figure 9A that the maximum
summer-month planetary albedo (hence, cloud reflectivity)
occurs over the Asia continental longitudes, while the
significantly higher GCM planetary albedo occurs over the
East-Asia/West-Pacific Ocean region. These are conclusions
that could have been reached independently just from direct
comparison to NISTAR Band-B data, without requiring the
benefit from EPIC data insight.

Furthermore, the claim was made that NISTAR
measurements should also be capable of detecting La Niña
activity by means of Hovmöller contour maps of longitudinally
sliced monthly-mean NISTAR Band-B radiances. Because of
overly sparse longitudinal sampling, this conjecture could not
be fully demonstrated with the present data. Actually, it is the
spectral discrimination of NISTAR data that is their strong
point. This was demonstrated earlier in the study by Carlson
et al. (2019) regarding the capabilities of the NISTAR Band-C/
Band-B spectral ratio for constraining climate GCM treatment
of the spectral absorption of solar radiation, and identifying a
biosphere signature through the spectral partitioning at the
0.7 μm vegetation red edge. The additional Vis, Near-IR, and
Mid-IR synthetic spectral bands (also still to be demonstrated)
further expand on the unique NISTAR data capability of
spectral discrimination between key constituents of the
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climate system, that remains unmatched by EPIC data, or by
any other current satellite measurements.

On the other hand, the EPIC data are unique in providing the
sunlit-hemisphere integrated longitudinally sliced radiative
fluxes along with the corresponding cloud radiative
properties that enable a more complete understanding of
the seasonal and longitudinal variability of Earth’s planetary
albedo including identification of the 2017 La Niña feature in
the 2017/2018 EPIC planetary albedo data and providing of
observational constraints for climate GCM cloud treatment
constraints (Carlson et al., 2021). Moreover, there are
additional unique enhancements of the EPIC data analyses
that can be implemented to further enhance model/data
comparisons of climate GCM modeling results. In
particular, this involves data integration over the sunlit
hemisphere, so as to retain latitudinal information, and to
include other climate system variables in the EPIC Composite
database that has enabled cloud properties to be added to the
list of La Niña feature subject to longitudinal slicing. This is a
capability that can be readily implemented in the climate GCM
output data sampling, but cannot be reproduced within the
NISTAR data processing.

In view of the foregoing, the DSCOVER Mission instruments
EPIC and NISTAR, each in its own way, and as a
complimentary synergistic matching pair, working together
they provide a unique advance in quantitative model/data
intercomparison. The key for this advancement is the
longitudinal slicing capability made possible by the viewing
geometry of the Earth’s sunlit hemisphere from the Lagrangian
L1 point, and by the rotation of the Earth. The DSCOVR
Satellite viewing geometry, which can be precisely reproduced
in the climate GCM output data sampling, provides for
identical space-time sampling of the observational, as well
as of the GCM generated output data. Integrating the
observational data over the sunlit hemisphere in the EPIC
images, as well as in the single-pixel NISTAR measurement,
averages out the weather noise, resulting in climate-style data
points that retain planetary-scale information about the
climate system. The same principles apply to the
corresponding integration of the climate GCM output data
over the sunlit hemisphere in accord with the Lissajous orbit
viewing geometry from the Lagrangian L1 point. As an
additional point, the near-hourly EPIC images of Earth’s
sunlit hemisphere correspond closely to the GCM output
data sampling for a 1-h radiation time step.

The nature of the longitudinally sliced variability is planetary
scale and subtle, as evident from the year 2017 La Niña feature,
which is accompanied by characteristic longitudinal oscillations
exhibiting a 30° (~3,000 km) peak-to-peak variability. Comparing
individual EPIC images from February 2017 with similar images
from February 2018, shows no discernable differences in cloud
distribution or other cloud properties. Yet the feature persists.

Some Future Considerations
The principal objective of this study was to assess the capabilities
of the first version of the NISTAR Level 1B data. Difficulties with
the initial data quality led to some of the NISTAR objectives to be

performed through EPIC data analysis. This dual approach has
led to an improved understanding of the NISTAR data limitations
and capabilities. Given that both NISTAR and EPIC
measurements are near-backscatter radiances, radiance-to-flux
conversion is key for model/data comparisons, since the climate
GCM output data are all radiative flux based. For NISTAR, there
is no real option for a data-based radiance-to-flux conversion. But
for EPIC data, using MODIS-based regression relationships and
CERES angle models, Su et al. (2018) developed the EPIC
radiance-to-flux conversion procedure, which has made
possible our NISTAR/EPIC/ModelE2 intercomparisons.

Now that the Version 3 NISTAR Level 1B data have become
available, there is every expectation that the improved calibration
and signal-to-noise management will make good in
demonstrating that Band-B data with improved longitudinal
resolution should be able to duplicate the EPIC La Niña
activity detection without the need for radiance-to-flux
conversion. Similarly, Hovmöller plots of the synthetic Vis,
Near-IR, and Mid-IR NISTAR spectral bands even without
radiance-to-flux conversion should enable improved
discrimination between different climate system constituents.
Thus, the (0.2–0.7 μm) Vis Band should respond more directly
to cloud variability, and the (0.7–1.1 μm) Near-IR Band would
have more sensitivity to cloud, vegetation albedo, and moderate
water vapor absorption, while the (1.1–4 μm)Mid-IR Band would
be more sensitive to vegetated surface albedo and strong water
vapor absorption.

There is of course a need for having available the anisotropy
parameters for the for the synthetic Vis, Near-IR, and Mid-IR
NISTAR spectral bands, if for no other reason than to see if there
is a significant difference in the Hovmöller plot patterns for the
NISTAR near-backscatter radiances compared to radiative fluxes.
The EPIC-based analysis is unlikely to provide this information
since the EPIC-based radiative fluxes are derived for the full SW
spectrum. What would be helpful here, would be to develop a
climatology of anisotropy parameters for the synthesized spectral
bands that would provide an approximate value for the spectral
anisotropy parameters. Anything more would be an enormous
computational burden.

For the NISTAR-derived (Band-A—Band-B) LW thermal flux
determination, there is no other substitute for the EPIC-derived
radiance-to-flux conversion factors. Here, the EPIC results for
reflected solar SW flux are absolutely essential for accurate
determination of the NISTAR LW radiative flux. This involves
a potentially scene-dependent spectral calibration of Band-B filter
transmission, and accurate knowledge of the near-backscattered
anisotropy to enable the accurate subtraction of the NISTAR
Band-B near-backscattered radiance from Band-A radiance to
obtain the NISTAR LW back-scattered thermal emission, which
then needs to be converted to a LW radiative flux.

Since the NISTAR no-filter (0.2–100 μm) Band-A makes full
spectrum measurements, there is sometimes expressed
expectation that global energy balance (or imbalance)
determination might be possible. That lofty goal is well
beyond the reach of any NISTAR, or EPIC measurement. That
is because there is no definitive way to confirm the calibration of
the spectral transmissivity of the Band-B filter, and even when the
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Band-B filter transmission has been accounted for, the LW
emissivity in the viewing direction is dependent on the
atmospheric temperature profile and the vertical cloud
distribution.

It is also possible that an iterative inverse approach could be
successfully utilized to resolve the NISTAR LW radiative flux
determination. Figure 8 shows that the CERES, ISCCP, and GCM
OLR pinwheel renditions of the LW radiative fluxes are in basic
agreement. The approach would then be to see what it takes to
convert the NISTAR Band-A—Band-B near-backscattered
radiances into pinwheel format so as to reproduce the seasonal
pinwheel variability.

Nevertheless, the seasonal variability of global reflected SW
radiation and global emitted LW radiation provides compelling
observational constraints and a diagnostic assessment of climate
GCM performance. Thus, it is important to have an observational
basis for all aspects of the SW and LW components of the global
energy balance and their seasonal variability. To this end, satellite
measurements have shown that, on an annual basis, reflected
solar SW radiation is nearly identical from both hemispheres
despite large differences in land-ocean distribution (Vonder Haar
and Suomi, 1971). The large differences in surface albedo, imply
significant compensation to achieve hemispheric symmetry in
reflected solar SW radiation. This has been further analyzed and
quantified (e.g., Voigt et al., 2013, 2014; Stephens et al., 2015).
This is just one example where the modeling and understanding
of the NISTAR global SW and LW measurements requires going
beyond what is currently available. NISTAR measurements with
their single-pixel capability are clearly limited to recording only a
global-mean LW and SW response. However, the asymmetric
hemispheric components that form the global NISTAR response
could be fully resolved in the EPIC and GCM sunlit hemisphere
integrated results.

Application to Exoplanet Observations
By their very nature, the NISTAR single-pixel measurements of
the sunlit hemisphere from a shifting Lissajous orbital position do
have more than a passing similarity to current ongoing exoplanet
observations, except that for exoplanet observations, the typical
viewing geometry covers a far more extreme range of phase angle
than the small change in phase angle for NISTAR measurements.
We commented on this aspect in our earlier (Carlson et al., 2019)
paper. The basic NISTAR data stream is a continuous time-series
acquisition of single-pixel measurements of the Earth, made for
several different spectral intervals, as the Earth continues to
rotate. That is the same basic format that applies to exoplanet
observing. The biggest difference is that for the Earth, we know
precisely the rotation period, length of year, tilt of rotation axis,
the land/ocean geography, clouds, atmospheric structure and
composition, etc. For exoplanets, all of these quantities are
unknowns that need to be determined.

In earlier studies, Jiang et al. (2018) used spatially resolved
EPIC images of Earth as proxies to simulate exoplanet
observations by constructing a NISTAR-like time-series from
the EPIC data. A similar analysis regarding the information
content in EPIC data was also performed by Yang et al.
(2018), and more recently by Boyd et al. (2022). In these

examples, EPIC images of the Earth sunlit hemisphere are
used as the starting point where all the input data are known,
and where the changing viewing geometry is also known. From
this, a single-pixel time-series is generated, that can then be
inverted to retrieve the basic input information such as the
Earth’s rotation period, as well as changing land/ocean and
cloud distributions. In a similar study, Gu et al. (2021)
constructed single point spectral light curves from a year of
EPIC images to serve as exoplanet proxy data, and then
applied a Principal Component analysis for their spectral
image reconstruction.

In our experience with NISTAR and with the sunlit
hemisphere averaged EPIC data, where the information
content resides in the longitudinal ordering of the data time-
series, we found that the optimum in display to be the Hovmöller
format contour map. The success of this approach relies on the
longitudinal precision in tabulating the time-series observational
data relative to the Earth’s rotation period. Here, the precision of
the data resides in the time of data acquisition and that
relationship to the Earth’s period of rotation. The amplitude
of each data point’s intensity is displayed less precisely via the
more limited resolution of the Hovmöller color bar. The
Hovmöller approach was able to extract and display the year
2017 La Niña feature and the associated planetary-scale
longitudinal oscillations that were not otherwise discernable in
the time-series line plots.

Also important in probing the Earth’s biosphere, and similarly
for exoplanet studies, is selecting spectral intervals that will
emphasize the space-time variability that is associated with
some physical spectral characteristic. As an example, the
choice of the 0.7 μm vegetation red edge pivot point for the
NISTAR Band-C enable the NISTAR Band-C/Band-B spectral
ratio to be sensitive in identifying vegetated surface albedos.
Clearly, this is partial to the terrestrial climate system. But
then, that is probably part of the objective to facilitate the
identification of Earth-like exoplanets in preference to all others.

CONCLUSIONS

This paper describes a unique model/data comparison approach.
Longitudinal slicing consists of averaging observational and
model generated data over the entire sunlit hemisphere, and
by using the rotation of the Earth to extract the longitude
dependent information. This is made possible by the unique
NISTAR viewing geometry from the DSCOVR Satellite location
in its Lissajous orbit around the Lagrangian L1 point. From there,
NISTAR makes single-pixel measurements of reflected solar and
emitted thermal radiation from the entire sunlit hemisphere of
the Earth.

The principal advantage of the longitudinal slicing
methodology is that the sampling of climate GCM output data
with the same viewing geometry as the DSCOVR Mission
NISTAR and EPIC measurements establishes a precise and
self-consistent space-time sampling between observational data
and climate model generated output data. In the process, this
averaging of data over the entire sunlit hemisphere averages out
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the quasi-chaotic meteorological weather noise, but preserves the
large-scale seasonal and planetary-scale variability.

The unique aspect of the NISTAR measurements is in providing
observational constraints and diagnostic support for climate GCM
performance evaluation in the form of seasonal and longitudinal
broadband spectral comparisons that are not available from other
satellite data sources. The NISTAR Band-C/Band-B spectral ratio in
particular, has established that the treatment of absorbed solar SW
radiation in the GISS ModelE2 exhibits inadequate spectral contrast
between SW radiation that is absorbed shortward of 0.7 μm, and the
radiation that is absorbed longward of 0.7 μm. This deficiency in
spectral absorption points to inadequate specification of the vegetated
surface albedo and/or the radiative modeling of the absorption of SW
radiation under cloudy sky conditions.

The NISTAR full-disk single-pixel measurements of the sunlit
hemisphere of Earth are also a realistic example and test case for
the analysis of exoplanet observations. The NISTAR data stream
is a time-series of reflected solar radiation which can be inverted
and analyzed to infer basic aspects of the terrestrial climate
system such as planet’s rotation rate, seasonal change, polar
icecaps, and climate system variability.
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Temporal Variation of the Shortwave
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The Earth’s spherical albedo describes the ratio of light reflected from the Earth to that
incident from the Sun, an important variable for the Earth’s radiation balance. The
spherical albedo has been previously estimated from satellites in low-Earth orbits, and
from light reflected from the Moon. We developed a method to derive the Earth’s
spherical shortwave albedo using the images from the Earth Polychromatic Imaging
Camera (EPIC) on board National Oceanic and Atmospheric Administration’s (NOAA)
Deep Space Climate Observatory (DSCOVR). The satellite is located in the Lagrange 1
point between the Earth and the Sun and observes the complete illuminated part of the
Earth at once. The method allows us to provide continuously updated spherical albedo
time series data starting from 2015. This time series shows a systematic seasonal
variation with the mean annual albedo estimated as 0.295±0.008 and an exceptional
albedomaximum in 2020, attributed to unusually abundant cloudiness over the Southern
Oceans.

Keywords: albedo, EPIC camera, DSCOVR, shortwave radiation, radiation budget

INTRODUCTION

Solar radiation is the primary energy source of the Earth and largely determines Earth’s climate. The
proportion of the incoming solar radiation reflected back to space by the Earth is described by the
spherical (i.e., Bond) albedo. It depends on the reflective properties of the Earth and thus it is affected
by the proportion of the highly reflective areas relative to darker areas. For example, the melting of
the Antarctic and Greenland ice sheets results in increased absorption and decreased albedo. The
Earth’s spherical albedo is an indicator of the radiation budget and thus driving the global weather
and climate processes.

In the first half of the 20th century, estimates of the spherical albedo were based on an indirect
method of observing the Earth-lit Moon (Stephens et al., 2015), and this method is still used (Goode
et al., 2021). The earliest satellite measurement of the spherical albedo was made in 1959 by the
Explorer 7 satellite and its value has remained approximately 0.3 ever since (Kandel and Viollier,
2010). Since 1997 the albedo is being overseen by the Clouds and the Earth’s Radiant Energy System
(CERES), which includes five satellites and seven CERES radiometers (seeWielicki et al., 1996). As of
2017, only five radiometers are operational. The CERES albedo product is a combination of
observations from several instruments seeing different parts of the Earth, and as it takes
numerous hours for the CERES to scan the entire Earth while the cloud cover of the Earth
evolves in a matter of minutes, the spherical albedo evaluation method by the CERES instruments

Edited by:
Hartmut Boesch,

University of Leicester,
United Kingdom

Reviewed by:
Bing Lin,

National Aeronautics and Space
Administration (NASA), United States

Yves Julien,
University of Valencia, Spain

*Correspondence:
A. Penttilä

antti.i.penttila@helsinki.fi

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 07 October 2021
Accepted: 07 February 2022
Published: 11 March 2022

Citation:
Penttilä A, Muinonen K, Ihalainen O,

Uvarova E, Vuori M, Xu G, Näränen J,
Wilkman O, Peltoniemi J, Gritsevich M,

Järvinen H and Marshak A (2022)
Temporal Variation of the Shortwave

Spherical Albedo of the Earth.
Front. Remote Sens. 3:790723.
doi: 10.3389/frsen.2022.790723

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 7907231

ORIGINAL RESEARCH
published: 11 March 2022

doi: 10.3389/frsen.2022.790723

238

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.790723&domain=pdf&date_stamp=2022-03-11
https://www.frontiersin.org/articles/10.3389/frsen.2022.790723/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.790723/full
http://creativecommons.org/licenses/by/4.0/
mailto:antti.i.penttila@helsinki.fi
https://doi.org/10.3389/frsen.2022.790723
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.790723


can have noticeable uncertainties in the measured albedo value
(Wielicki et al., 1996; Kandel and Viollier, 2010).

To measure the spherical albedo directly one needs to
simultaneously detect radiation reflected by the Earth from all
directions, which renders such measurements impractical. To
circumvent this, we use the Earth Polychromatic Imaging Camera
(EPIC) on board the Deep Space Climate Observatory
(DSCOVR) spacecraft combined with angular distribution
models (ADM) provided by the CERES based on many years
of dedicated measurements. A related approach was presented in
Su et al. (2018), Su et al. (2020) for the outgoing flux from Earth,
instead of deriving the spherical albedo, using EPIC and
NISTAR data.

The DSCOVR is a spacecraft orbiting in the Lagrange point 1
around 1.5 million kilometers from Earth, which allows the EPIC
to always view practically the entire sunlit hemisphere of the
Earth. The DSCOVR was launched in 2015, and the EPIC has
been operational ever since apart from one 6-month maintenance
break in 2019 (Marshak et al., 2018). Data from the EPIC
instrument, with the CERES ADM models, allows us to
propose an algorithm that automatically translates directional
reflectance obtained from the EPIC images into estimated value
of shortwave spherical albedo. We have launched a web service
that collects the computed spherical albedo of the Earth from the
whole operational period and updates the data daily with the
latest observations1. This daily time series of the Earth’s albedo
spans over 7 years in time. This enables us to analyze the pattern
of temporal variation in albedo over a year which demonstrates
anomalies in albedo behavior. The accurate estimate of the
shortwave spherical albedo is important in evaluating the
energy balance of the earth’s climate system.

The aim of this article is to derive a novel method for
estimating the spherical shortwave albedo of the Earth using
EPIC imagery and introduce the results. The objective is to
improve the estimation of the global albedo value resulting in
enhanced input for the radiation budget models of the Earth. In
this article, we introduce first the EPIC imagery and the methods
that we use to derive the albedo in Materials and Methods. In
Results, we show the results of the albedo estimation over the
years 2015–2021. Finally in Discussion we discuss the
implications of the results.

MATERIALS AND METHODS

Spherical Albedo From the EPIC Images
The EPIC images constitute a time series of the sunlit part of the
Earth, including the atmosphere, starting from June 2015 and
continuing at the present time. There are usually about 22 images
per day during Northern Hemisphere summer, and 13 during
winter. Each multispectral image has 10 wavelength channels
between 317 and 780 nm. The channels have full-width-at-half-
maximum (FWHM) values between 1 and 3 nm (Ohtake et al.,

2010; Ohtake et al., 2013; Geogdzhayev and Marshak, 2018;
Herman et al., 2018).

Each image pixel represents the radiance reflected by the
corresponding area of Earth. This radiance is a function of the
reflective properties of the area, and the solar and satellite angles.
The DSCOVR satellite is located in the first Lagrange point
between the Earth and the Sun, therefore the radiance is
observed close to the backscattering geometry with satellite
and solar angles being almost equal. To convert measured
narrowband radiances at backscattering into integrated
broadband albedo values at top-of-atmosphere (TOA; see
Narrowband-to-Broadband and Radiance-to-Radiosity
Transformations for more details), we apply the ADMs
provided by the CERES project (Su et al., 2015a; Su et al.,
2015b). The ADMs are provided for several surface types and
cloud fractions, and we combine these into three types for our
analysis: clear land, clear ocean, and cloud-covered areas. The
reason for this is that the angular resolution of the tabulated
ADMs available at the CERES project web pages2 is only 10°, and
we want to interpolate with a finer resolution in the
backscattering direction and combining similar surface types
gives us more robust estimation (see Scattering Geometry and
Interpolation of Angular Distribution Models). Additionally,
estimating temporary cloud fractions from EPIC images is
challenging, a more robust method can be developed for
simple clear versus cloud-covered area estimation. Land or
ocean surface classification is available from the International
Geosphere–Biosphere Programme, and temporal cloud coverage
we estimate from the EPIC images using a logistic regression
model with input from EPIC channels at 325, 551, and 780 nm
(see Cloud Classification in EPIC Images).

The TOA albedo values for each pixel over the Earth’s sunlit
disk are averaged for albedo of the Earth at each narrowband
wavelength channel. Finally, the narrowband albedos are
summed with weights from incident solar spectra at each
channel, obtained from NOAA’s climate data record of solar
spectral irradiance (Coddington et al., 2015; see Narrowband-to-
Broadband and Radiance-to-Radiosity Transformations). The
solar spectrum is taken as constant in this study with only the
distance between the Earth and the Sun influencing the total
flux level.

The daily averaged time series has been filtered to remove
outliers. For some EPIC images, not all the wavelength channels
are present. If there is not a proper coverage of usable images over
the day, some parts of Earth are not present, and this would
introduce a bias to the mean albedo of that day. Therefore, these
days are left out from our time series data. There is a period
between mid-2019 and early 2020 when the EPIC camera was not
operational.

We derive the mean yearly shortwave spherical albedo of the
Earth by grouping the daily time series values by the day in the
year, averaging per day, and finally averaging over days in a year.

1http://albedo.physics.helsinki.fi. 2https://ceres.larc.nasa.gov/data/angular-distribution-models/.
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Narrowband-to-Broadband and
Radiance-to-Radiosity Transformations
The EPIC images contain 10 narrowband channels, namely at
317, 325, 340, 388, 443, 551, 680, 688, 764, and 780 nm. The
FWHM values for the channels are between 1 and 3 nm. The
channels are measuring the directional radiance. On the other
hand, we are interested in the broadband value of the TOA
integrated radiosity, i.e., reflected flux integrated over all
directions, and the broadband albedo, i.e., the ratio of the
reflected flux to the incident flux.

The ADMs provide the conversion from directional
broadband radiance to TOA integrated radiosity. They are
applied for example in Su et al. (2018), Su et al. (2020) for
broadband radiance that is first derived with a narrowband-to-
broadband conversion model from the EPIC images. In this work
we first apply the ADMs and second the narrowband-to-
broadband conversion, but we would like to point out that
both of these conversations can be described together with a
single linear transform and that the order of narrowband-to-
broadband and radiance-to-radiosity is interchangeable.

After the radiance-to-radiosity conversion with the ADMs we
combine the narrowband channels into a broadband estimate.
We use 8 of the 10 EPIC channels for this conversion. Channels at
688 and 764 nm are measuring the O2 absorption and are left out
of the conversion, since they do not describe the reflectance
outside these narrow channels. The solar spectral irradiance
(Coddington et al., 2015) is convoluted with the response
curves of the eight EPIC channels to give weights for the
narrowband contributions that are summed together for the
broadband estimate.

As the EPIC channels range from 317 to 780 nm, strictly
speaking this is the coverage of our broadband estimate. The
portion of the solar input in this range is 52.7%. In ultraviolet
(UV) below 317 nm there is only 0.5% of the total energy, so we
can safely extend the validity of our broadband range into UV.
The CERES ADMs, on the other hand, are derived for shortwave
broadband range of 300–5000 nm. The use of ADMs to the
broadband with wavelength range of 317–780 nm only can be
a source of bias in our estimate. However, Su et al. (2018) reports
successful usage of ADMs with only three EPIC channels (443,
551, and 680 nm) for narrowband-to-broadband transformation.

Cloud Classification in EPIC Images
The algorithm for cloud classification in the EPIC images was
trained with a manually prepared data set of spectral radiances
together with subjective cloudy/clear label decision. For image
data, we collected images from the first week of every month in
2018. We converted the original HDF5 library data for one multi-
channel image into PNG image stack of all the wavelength
channels. We opened the image stacks in ImageJ3, and
manually selected areas of either clear or cloud-covered land
and ocean surfaces. The spectral radiance values of pixels within
these areas were recorded together with the label (1) clear land/(2)

clear ocean/(3) cloud-covered area. Altogether, we produced 338
areas of clear land, 331 areas of clear ocean, and 481 areas of
cloud-covered areas. Each area contains several tens of pixels, the
mean values over the areas were employed in the analysis. The ice
sheet covered areas, such as Antarctica, are indistinguishable
from cloud-covered areas.

A logistic regression model was separately fitted into data with
clear land and cloud-covered areas, and data with clear ocean and
cloud-covered areas. A logistic regression model has a linear
function modeling the log-odds of the probability of an event. In
our case, the event is that the surface is covered with clouds. The
model can be written as

p � 1

1 + e−(β0+β1x1+/+βkxk)
where p is the probability of cloud-cover, and β0 + β1x1 +/ +
βkxk is the linear function with unknown coefficients βi and
known radiances xi from channels 1, . . . , k.

We executed forward-selection stepwise regression to
optimize the model with the best value of the Bayesian
Information Criterion (BIC) statistics of the model. We ended
up with models with a constant coefficient β0 and three
coefficients for the EPIC wavelength channels at 325, 551, and
780 nm. For land vs. clouds model, all the four coefficients were
tested significant with p-values less than 0.1%. For ocean vs.
clouds model, all other but the coefficient for the channel 780 nm
were significant with the same p-value limit. The values for the
model coefficients are given in Table 1. The final classification is
done with the probability limit of 1/2: if p≤ 1/2 the pixel is
classified as cloud-covered. The channel values in this stage are in
the counts/second units and are not yet converted into directional
radiance.

Scattering Geometry and Interpolation of
Angular Distribution Models
We found it realistic to successfully classify pixels of clear or
cloudy land or ocean areas from the EPIC images, but not
different cloud types (water or ice) or levels of cloud cover
that are present in CERES ADMs. ADMs are also divided into
different wind speeds for ocean and into different vegetation
types for land. To exploit these, wind speeds on ocean pixels
would need to be connected from weather models into our
analysis together with up-to-date land cover information. We
feel that this would complicate the albedo estimation too much at
this stage and could be a topic for future development. We
decided to emphasize more the interpolation of the scattering
geometry inside the ADMmodels over having many ocean/land/
cloud subtype ADMs.

The scattering geometry in the EPIC observations is such that
the observation is always done close to backscattering. The phase
angle between the Sun and the DSCOVR spacecraft, as seen from
Earth, is below 12° except for few rare cases in years 2020–21. On
average, phase angle has been 8.2°. After the break in the
DSCOVR operations in 2019, the minimum phase angle has
gradually started to decrease (see Figure 7). It was never below 4°

before 2020, but now the minimum value is 1.8°.3https://imagej.github.io.
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While in terms of phase angle EPIC is observing close to
backscattering, the local solar zenith angle on each Earth pixel
varies between 0° and 90°. The ADM tables, on the other hand,
have 10° bins for all the three angles (solar zenith, viewing zenith,
azimuth). So, our backscattering geometry implies that we need
ADM table values inside cells where the solar and viewing zenith
angles are in the same bin and azimuth angle is in the bin 0–10°.
Thus, the 3-dimensional (in angle) ADM tables will reduce for
our purposes to 1-dimensional tables that can be parametrized
with the solar zenith angle only.

We find the reduced 1-dimensional table binning of 10° too
coarse as it would introduce inaccuracies when applied to pixels
having the solar zenith angle anywhere between 0° and 90°.
Therefore, we interpolate the reduced ADM tables over the 0°

and 90° range using a cubic spline interpolation. We use these
interpolated coefficients when converting the TOA radiances
measured by EPIC into integrated TOA albedos. We find that
the reduced 1-dimensional tables show relatively similar behavior
for all clear ocean surfaces regardless of the wind speed, for all
clear land surfaces, and for all cloud-covered areas regardless of
the cloud type or coverage. Thus, our final set of ADM coefficients
come from interpolated data on these three categories, averaged
over their subtypes.

RESULTS

The time series of the daily spherical shortwave albedo of the
Earth is shown in Figure 1. One can see the evident annual cycle
and the typical variation in the albedo with ± 3σ value of ± 0.024
around the mean. The mean albedo of the Earth, from the
currently available data up to 2 September 2021, is 0.295 ±
0.008. The value agrees well with the earlier estimates of
0.286–0.301 by satellites in low-Earth orbits, see Kandel and

Viollier (2010), and 0.297 from earthshine measurements done by
observing the Moon, see Goode et al. (2001), Goode et al. (2021).

The yearly annual cycle on albedo can be seen more clearly
from Figure 2, where the years have been stacked together. In
each year, there are two minima and two maxima. The minima
are located close to the Northern and Southern equinoxes, and
the maxima slightly before the Northern and Southern solstices.
This indicates that the reflectivity of the Earth is at maximum,
when either one of the pole areas are tilted more towards the Sun.

In Figure 3, we show the derived spherical albedo values on the
map. The values are averaged over the months of the equinoxes
(March and September) and solstices (June and December). These
maps can give further insight of the input of different surface types
and the annual variation in the albedo. The polar areas show large
contributions during albedo maxima. Interestingly, the Indonesia
region in the equator shows high albedos throughout the year. The
clouds over the ocean areas are high in albedo, but because of their
transient nature, only the most constantly cloud-covered areas
show up in the monthly averaged maps.

The year 2020 is highlighted with red color in Figure 2 because
of the anomaly in the second annual maximum. In the EPIC data,
there are observations of four other Northern solstice maxima, but
the one in 2020 is significantly higher. We can verify the anomaly
in December 2020 statistically by studying the monthly averages
for each year. The combined monthly averages are shown in
Figure 4, plotted as variations from the overall average albedo
in a box-and-whiskers chart. The one-way analysis-of-variance test
of the differences in themeanmonthly values over several years can
find significant (p-value less than 0.1%) differences for all months.
However, by far the smallest p-value, and therefore the largest
difference, is for December, formally less than 10−29.

When conducting t-tests for year pairs inside a month, we find
that the only year which differs from all the other years when
using the Bonferroni-corrected p-value limit of 0.001/mi, where

TABLE 1 | The fitted coefficient values for the logistic regression models for cloud-covered vs. clear surface.

β0 β1 (325 nm) β2 (551 nm) β3 (780 nm)

Clear/cloud-covered land 312.58 −0.014156 −0.017217 0.019545
Clear/cloud-covered ocean 36.451 0.017356 −0.0039826 0.0022967

FIGURE 1 | Daily average of the Earth’s albedo over the whole operational time of the EPIC camera.
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mi is the number of yearly data sets on month i, is the year 2020
and months August and December. Bonferroni correction is a
method to counteract the bias when doing multiple statistical
tests on the same phenomena. From these analyses, we conclude
that the largest yearly variations in a month are in December, and
that is mainly due to year 2020.

We can conclude on the results on temporal variation on Earth’s
spherical albedo by summarizing that there are two maxima and
two minima. The main maximum occurs in December–January
during the Southern Hemisphere summer and the Southern
solstice, and the secondary maximum in June during the
Northern Hemisphere summer and the Northern solstice. The

FIGURE 2 | Daily averages of the Earth’s albedo with all years stacked together. Data from the year 2020 is highlighted with red color, years 2015–2019 and 2021
are shown in gray.

FIGURE 3 | The spherical albedo of the Earth. The monthly averages are presented for the months of equinoxes (March and September) and solstices (June and
December). Darker and bluer values indicate lower albedo, brighter and more yellow values higher albedo.
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minimum values are in March–April, and on September, around
equinoxes. The coefficient of variation, that is the standard
deviation divided by mean, of the daily average values over a
year is 2.7%, and the range of minimum-to-maximum deviation of
the daily averages from annual average is 0.031 (10.3 percentage
points in scale relative to the mean annual albedo). In December
2020, the daily albedo values were up to 0.023 (7.2%, on December
13) larger than the average daily value over all the years.

DISCUSSION

Annual Albedo Variation
The annual variation of the Earth’s spherical (Bond) albedo is
described for the first time in detail. Previous investigations mainly

describe the variations on the incident solar flux due to the Earth’s
elliptic orbit (see Figure 5 in Kandel and Viollier, 2010), as for us,
this effect is considered and properly accounted for Su et al. (2018),
Su et al. (2020) are using also EPIC images, but they do not reduce
the albedo but produce outgoing fluxes. The accurate annual
albedo behavior enables the detailed analysis of local geographic
and atmospheric effects on the albedo during a year.

The Earth contains regions of low albedo (e.g., cloud-free
ocean areas, vegetated land areas) and high albedo (e.g., clouds,
ice and snow surfaces). Diurnal and annual variations in the
albedo time series (Figure 1) result from a modulation of these
two aspects, depending on the apparent longitude (diurnal
variations) and latitude (annual variations). Especially, the
cloud-covered ocean areas increase the albedo. The daily
cloud-covered ocean fraction, estimated from the EPIC

FIGURE 4 | Monthly variation in the daily averages of the Earth’s spherical albedo. Values are relative differences from the overall mean albedo of 0.295. The
horizontal white line shows the average over the month, the box indicates the range from the first quartile to the third quartile, and the lines the range from the minimum to
the maximum.

FIGURE 5 | EPIC natural color constructed images, taken at 2020-12-13 at 04:40 UCT (left), and 2020-08-04 at 22:25 UCT (right). The image on the left has one of
the largest albedos in 2020 (0.350), and the image on the right has one of the lowest (0.253). Image credits: NASA EPIC team, https://epic.gsfc.nasa.gov/.
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images, has the correlation coefficient value of 86% with the daily
albedo value (see Figure 7).

In annual albedo variations, the main albedo maximum occurs in
December, around Southern solstice, when the Antarctic ice sheet, sea
ice, and snow cover are visible entirely. At this time, cloud formations
of the mid-latitude cyclones over the Southern Ocean are well
pronounced. Albedo is further enhanced by the shallow convective
cloud cover over the subtropical oceans and the relatively small areas
of cloud-free ocean areas visible, on average, at this time of the year.

The secondary albedo maximum occurs in June, around
Northern solstice, when the Greenland ice sheet and sea ice in
the Arctic Ocean are well exposed. Cloud formations of the mid-
latitude cyclones of the North Atlantic and Pacific storm tracks
are active, although reduced from their winter maxima. Deep
convective clouds of the inter-tropical convergence zone are on
the Northern Hemisphere at this time of the year. Again,
relatively little cloud-free ocean areas are visible.

The main albedo minimum precedes the main maximum in
August–September when neither of the Polar regions is visible. At
this time of year, there are relatively few shallow convective clouds
over the subtropical Northern Atlantic and Pacific, as well as over the
Mediterranean. North Atlantic and Pacific storm track activities are
near to theirminima. Also, vegetation is at itsmaximum extent in the
Sahel region. Monsoon is in active phase over the Indian peninsula
and South-East Asia, thus enhancing the albedo. The secondary
minimum precedes the secondary maximum in March–April.

The solar energy input at the Earth’s average distance from the Sun
is 1361W/m2 for the sunlit disk of the Earth over all wavelengths
(Coddington et al., 2015). The EPIC filters range from 317 to 780 nm
in wavelength and the portion of the solar input between these
wavelengths is 52.7%. We can make a rough estimate that the
albedo derived here is valid for somewhat longer wavelengths, say
to 60%of the reflection or absorption of the total solar input.With this
estimate, the input energy that is absorbed into the area of sunlit
Earth’s disk and atmosphere is about 4.9W/m2 more during the

albedo minimum in September than on average. During the albedo
maximum in December, about 8.7W/m2 less energy is absorbed.

Exceptional Albedo Maximum in December
2020
An exceptional albedo occurred on 13 December 2020 and
persisted for about a week before and after the peak value.
This anomaly coincides with the main annual maximum in
December. Our main explanation is a short-lived and
exceptional maximum in the amount of shallow convective
clouds over the subtropical Indian Ocean and the Pacific east
of Australia, see Figure 5. The development of exceptionally wide
shallow cloud cover coincides and is favoured by a constellation
of several mature mid-latitude cyclones, feeding moist air from
the subtropics towards the Antarctic. At the time of the maximum
albedo, all relevant large-scale atmosphere-ocean indicators were
in close-to-neutral stages4: the Madden-Julian oscillation (MJO)
phase centre was in the Oceanic continent, but the amplitude was
weak; the Indian Ocean Dipole (IOD) was neutral; El
Niño–Southern Oscillation (ENSO) was in a weak La Niña
phase (El Niño 3.4 index) and returning to neutral.

In December 2020, the EPIC-derived daily albedo was elevated
to 0.334 from its typical December value of 0.312 in 2015–2019.
Assuming these to represent well the planetary reflectivity, the
emission temperature of the Earth would decrease by 2.1 K
through a 7.8 W/m2 reduction in the absorbed solar radiation.
For comparison, the global mean sensible heat flux from the Earth
surface to the atmosphere amounts to about 20W/m2 and the
absorbed solar radiation in the atmosphere to about 80W/m2

FIGURE 6 | Differences between daily albedo values and corresponding values from an average year, as a function of the phase angle of the observation. The solid
line shows the second-degree linear fit to the data. The data before and after the DSCOVR operations break in 2019–2020 is shownwith different colors, but the model is
fitted to both sets together.

4Bureau of Meteorology, climate monitoring, http://www.bom.gov.au/climate/.
Accessed 31 January 2022.
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(Hartmann, 2015). It is therefore fair to treat the short-term
albedo peak in December 2020 as quite remarkable.

Effect of Phase Angle on Albedo
The phase angle of EPIC observations varies between 2° and 12°.
After the DSCOVR operations break in 2019, the phase angle
variation has increased, and the minimum phase angle has
decreased from previous 4°–1.8° (Marshak et al., 2021). These
decreasing phase angles introduce a possible source of bias in our
albedo estimation. The resolution in the binned data of the ADM
models that we use is 10° in all three angles, indicating that we do
not have exact information on how possible backscattering effects
(self-shadowing, coherent backscattering) are behaving on small
phase angles inside this bin.

Currently, we can only estimate the possible bias resulting
from small phase angles. We can do this by computing the
deviations of daily albedo values from the average-year albedo
values, and by modeling how they are changing as a function of
the observation phase angle. From Figure 6 we can see that there
is an obvious correlation between these, the linear correlation
coefficient being −0.59. Decreasing phase angles are introducing a
positive bias, on average, into the albedo values. A second-degree
linear fit has the p-values of all the model coefficients significant
below 0.1% level, and a slightly better value (0.37) of adjusted R2

measure of the model than with the first-degree model (0.36).
According to this model, there can be up to 0.01 positive average
bias coming from the phase angle effect if the phase angle
approaches 2°.

This same bias can also be roughly estimated from the small
upturns in daily albedo values in November 2020 and March
2021, see Figures 1, 7. These upturns are simultaneous with local
phase angle minima of about 2°. Graphical estimation of possible
excess in albedo values in these upturns also suggests a value of
0.01 at most.

The exceptional albedo values in December 2020 were at most
0.023 larger than the average December value. This exceptional
value was received at the time of local phase angle minima of the
DSCOVR spacecraft, 2.1°. We conclude that the effect of the

phase angle can explain, at maximum, about half of the
difference, and that December 2020 is exceptional in our
albedo time series even when taking the possible phase angle
effect into account.

CONCLUSION

We introduce here a novel method for following the spherical
shortwave albedo of Earth. The albedo values are updated daily
and in almost real time with only a few days delay. The data
processing pipeline is fully automated and the estimated albedo
values are publicly available. The average yearly albedo estimated
with our method, 0.295±0.008, agrees well with the previous
works on the albedo. With the albedo time series presented here
from 2015 up to date we can study the seasonal variations in
albedo, and we find an annual trend with two maxima and two
minima, approximately associated with the solstice and the
equinox dates. We can also find one anomalous feature with
the unusually large yearly maximum in December 2020.

The variations in the albedo can support studies of the
radiation budget of Earth and its temporal variation. As the
method can also map the albedo values geographically one can
relate better the varying local weather and climate conditions with
the variations in the albedo.

This method of deriving the spherical shortwave albedo from
the EPIC imagery is presented here for the first time. There are
several aspects in this method with prospects for further studies
and improvements. The cloud classification could probably be
improved by taking the local solar zenith angle into account in the
model. The CERES ADMs have editions with more detailed
angular binning (Edition 4, Su et al., 2015a; Su et al., 2015b).
They are not publicly available as they are much larger in size and
coupled with the CERES software libraries, however, with
adequate resources they could be employed. The increased
variation in the phase angle of the EPIC observations after
2020 might call for modeling the effect of the phase angle in
the albedo estimation. Finally, a detailed comparison of our

FIGURE 7 | The daily average albedo values (blue lines), the daily average fraction of clouds over oceans (orange lines), and the scattering angle (complement of the
Sun-Earth-vehicle angle) of the EPIC observations (green lines). The curves have different vertical scales and have been shifted in vertical direction and rescaled for
improved visualization.
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albedo estimate to other estimates of albedo or outgoing flux
would be very interesting.
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EPIC/DSCOVR as a Pathfinder in
Cloud Remote Sensing Using
Differential Oxygen Absorption
Spectroscopy
Anthony B. Davis1*, Yuekui Yang2 and Alexander Marshak2

1NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States, 2NASA Goddard Space Flight
Center, Greenbelt, MD, United States

We argue that the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate
ObserVatoRy (DSCOVR) platform has blazed new pathways in observational technology,
starting with its ~ 1.5 × 106 km stand-off distance, but also in remote sensing science. We
focus here on EPIC’s two oxygen absorption channels that 1) are unique in their spectral
sampling and 2) have stimulated deep innovation in cloud remote sensing using Differential
Oxygen Absorption Spectroscopy (DO2AS). Although first formulated 6 decades ago,
DO2AS-based cloud probing from overhead assets is still an emerging observational
technique. It is indeed somewhat paradoxical that one should use absorption by a gas to
assay scattering by particles. After surveying the history of space-based DO2AS, and
looking into its future, we see that EPIC/DSCOVRmarks an inflection point in this important
development. EPIC’s unique DO2AS capability motivated a notable sequence of papers
revisited here. This research indeed spawned a rare occurrence of information content
analysis coming from radically different—yet complementary—perspectives. First, we
adopted the increasingly popular machinery of optimal estimation (OE) that is
grounded in Bayesian statistics and uses a somehow linearized radiative transfer (RT)
model. Nonetheless, OE feels like a black-box algorithm that outputs a number of “degrees
of freedom” (a.k.a. independent pieces of information about clouds under observation).
However, the very same conclusions are reached using fully transparent physics-based
modeling for the RT, with a few approximations that enable closed-form analytical
formulation. Lastly, we preview a novel DO2AS technique for regaining shortwave
sensitivity to cloud optical thickness past the threshold where cloud reflectivity flattens off.

Keywords: DSCOVR, EPIC, oxygen A-band, oxygen B-band, clouds, pathlength distribution, pathlength moments

1 INTRODUCTION AND OUTLINE

Since the beginning of operational satellite meteorology, NASA’s TIROS-1 (launched 1960), we have
been accustomed to seeing clouds as a dynamical 2D map projected onto the Earth’s surface.
However, meteorologists and atmospheric scientists in general yearn for knowledge of clouds in the
vertical dimension where complex processes in cloud physics unfold, from nucleation to
precipitation. This unsatiable thirst for knowledge of the vertical distribution of clouds persists
to this day. In fact it permeates NASA’s 2017 Decadal Survey (National Academies of Sciences,
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Engineering, and Medicine, 2018) not only in the Designated
Observables from the Aerosol/Cloud-Convection-Precipitation
(ACCP) arena but also in the more experimental Planetary
Boundary Layer (PBL) Incubator program.

The earliest known publications on the potential use of
molecular absorption to determine cloud height are in a
discussion initiated by Hanel (1961), just a year after TIROS-
1’s launch. He was indeed promptly engaged by Yamamoto and
Wark (1961) and Chapman (1962) who suggest using the oxygen
A-band (759–769 nm) because O2 is a dominant constituent with
a well-characterized pressure profile. Thus started the idea of
using differential Oxygen absorption spectroscopy (DO2AS), a
special case of differential optical absorption spectroscopy
(DOAS), to probe clouds from space.

In the following Section 2, we survey the history and
geography of DO2AS-based sensing of scattering particulates
in the Earth’s atmosphere from space. We focus on the period
ending in 2010 because that is more-or-less when theory-
dominated research is superseded by data-driven work since,
by then, several satellites with O2 A-band coverage were in orbit.
To balance the theory-heavy literature survey, we describe more-
or-less chronologically the core technological aspects of satellite
missions so far with DO2AS capability, underscoring EPIC/
DSCOVR’s uniqueness. Finally, we gaze into what lies ahead
for O2 absorption in satellite missions to be launched in the
foreseeable future.

This leads to the lessons-learned from investigating the cloud
information content of EPIC’s (764 ± 0.2 nm) and B-band
(687.75 ± 0.2 nm) channels using both physics and statistics in
Section 3. From there, we connect the implicit dependence of
EPIC’s O2 absorption channel responses on the mean pathlength
of sunlight in the cloudy medium to recent advances in statistical
physics. In turn, that deep dive into the fundamental physics of
O2 absorption in scattering media such as clouds reveals a new
path toward the inference of cloud optical thickness (COT) for
very opaque clouds from DO2AS, not just through radiance levels
in continuum channels that are soon saturated as COT increases.

We summarize in Section 4, and contemplate the future of
DO2AS observation of clouds from space.

2 BRIEF HISTORY OF SPACE-BASED
DO2AS, A LOOK INTO THE NEAR-FUTURE
ANDTHESPECIAL ROLEOFEPIC/DSCOVR
Soon after the first suggestion of using DO2AS in cloud sensing
(Yamamoto and Wark, 1961; Chapman, 1962), the mathematical
connection between the distribution of light paths in scattering
media and the detailed shape of the absorption spectrum was
rigorously established (Irvine, 1964) This key development was
followed by the physically-correct analogy with non-stationary
radiation transport (Katsev, 1969; Katsev and Zege, 1974).
Astrophysical theoreticians made important early
contributions (e.g., Ivanov and Sabashvili, 1972; Nagirner,
1974). The earliest known observations of clouds from space
in the O2 A-band are from 1965, using a handheld camera
operated aboard Gemini-5 (Saiedy et al., 1965; Saiedy et al.,

1967; Wu, 1985). It seems that the first non-astronaut
counterparts were performed by a sensor aboard Kosmos 320
in 1970 (Gorodetskiy et al., 1971; Syachinov and Kozlov, 1974),
and possibly as early as 1967 with the near-identical Kosmos 149
(Malkevich, 1974).

At any rate, a considerable amount of research on cloud
remote sensing using overhead DO2AS was performed in the
Former Soviet Union in the 1970s (Dianov-Klokov et al., 1970;
Dianov-Klokov and Krasnokutskaya, 1972; Kargin et al., 1972;
Malkevich et al., 1975; Dianov-Klokov, 1976; Grechko et al., 1976;
Dianov-Klokov et al., 1977; Grechko, 1978), including
observations from an aircraft (Grechko et al., 1973) and a
satellite (Gorodetskiy et al., 1971; Syachinov and Kozlov,
1974), and into the 1980s (Badayev and Kozlov, 1980;
Grechko et al., 1982; Romanova and Ustinov, 1982; Skorinov
and Titov, 1984; Gusev and Dvoryashin, 1990). In theWest, there
was a fast-growing interest in O2 absorption as a means of
probing clouds during the 1990s (Fisher et al., 1991; Fisher
and Grassl, 1991; O’Brien and Mitchell, 1992; Kuze and
Chance, 1994; Asano et al., 1995; Hayazaka et al., 1995;
O’Brien et al., 1999) and into the 2000s (Heidinger and
Stephens, 2000; Partain et al., 2000; Stephens and Heidinger,
2000; Kokhanovsky et al., 2004; Kokhanovsky and Rozanov,
2004; Rozanov and Kokhanovsky, 2004), with an increasing
emphasis on 3D RT signatures (e.g., Heidinger and Stephens,
2002; Kokhanovsky et al., 2007; Davis et al., 2009).

The above extensive but non-exhaustive literature survey of
cloud-focused space-based DO2AS ends in 2010. Indeed, by the
end of the first decade of the 21st century, there were already
several satellites in orbit collecting real DO2AS data on clouds, as
we will document in the following (Table 1). We therefore view
2010, somewhat arbitrarily, as the end of an era of theory-
dominated research on space-based cloud remote sensing
using DO2AS and the beginning of data-driven research. Since
then, activity in this field has of course continued to grow steadily.
In view of this sustained growth, aWorkshop on “Remote sensing
in the O2 A-band” was convened at KNMI in de Bilt, Nederlands,
in 2016. A Second Workshop on “Remote Sensing in Oxygen
Absorption Bands”was planned to happen in Berlin, Germany, in
2020, but has been postponed because of the COVID-19
pandemic to a future date in 2022. At any rate, this shows
that there is a well-defined scientific community engaged in
DO2AS, for clouds and from space in particular.

We can now take a more-or-less chronological stroll through
satellite missions with imaging DO2AS capability, whether or not
implemented with clouds in mind.1 We see five clusters emerge,
with spectral sampling and spatial resolution being distinguishing
factors. We distinguish between moderate and low spatial
resolution based on the implicit definition of “moderate” (M)

1We pass on the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the
OrbView-2 (a.k.a. SeaStar) satellite mission, from 1997 to 2010. Its channel 7
(745–785 nm) covers the O2 A-band but it was never exploited for atmospheric
scattering. In fact, the O2 absorption was a minor impediment for the targeted
ocean color sensitivity that was eventually “corrected” out of the signal (Wang,
1999).

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 7962732

Davis et al. EPIC: A Pathfinder for Probing Clouds with O2 Absorption

248

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


resolution used by MODIS (MODerate resolution Imaging
Spectro-radiometer), namely, pixels that are on the order of
1 km in scale. By this standard, sensors with “low” (L)
resolution have pixels on the order of 10 km in scale, and
“very low” (VL) resolution sensors have pixels that are several
10s of km.We also distinguish “low,” “moderate” and “very high”
(VH) spectral resolutions: respectively, ~2-to-5, ~10s, ~1000s of
spectral samples across the (~10 nm wide) A-band, all of which
are useful. Alternatively, there is the “two-channel” (2C) strategy,
typically in-band and out-of-band channels from which a single
DOAS ratio can be formed; however, it can also be implemented
with a narrow/in and broad/in-and-out pair of channels, as was
done for POLDER (POLarization and Directionality of the
Earth’s Reflectances). Either way, in the 2C scenario, it is
important to know if there are single or multiple views.
Table 1 displays satellite missions with DOAS capability that
we have identified over the past two-and-a-half decades,2 with
some key defining characteristics and a reference for more
information. Five clusters emerge.

EPIC’s DO2AS capability is new and unique in at least two
respects in the realm of technology. First, it has an extreme
standoff distance of ~1.5 106 km to the Lagrange-1 point. From
there, the sensor sees almost all of the sunlit hemisphere all the
time, i.e., there is no down-time. Additionally, EPIC uses a special
spectral sampling strategy based on both the A- and B-bands of
the di-oxygen molecule. The advantage in this is not, as we will
see in the next section, that these bands have different absorption

strengths. Rather, the surface albedo is low, hence less
confounding for cloud probing, in at least one of these bands:
over water, in both; over vegetated land, in the B-band.

The future of DO2AS in space is bright, especially in Low-
Earth Orbit (LEO). There will be two more OLCI/Sentinel-3
launches in the late 2020s, followed by ESA’s TROPOMI/
Sentinel-5 series (Veefkind et al., 2012)—with a precursor
mission already launched in 2017. EUMETSAT will have a
multi-angle/multi-spectral/multi-polarization imager (3MI)
(Manolis et al., 2013), with POLDER (hence A-band) legacy,
on all of its future MetOp second-generation satellites, starting in
2024. Moreover, EUMETSAT’s Sentinel-4 series (Meteosat Third
Generation, MTG), due to be launched in 2023 and 2030, will
carry the S4 UVN Multispectral Spectrometer (Riedl et al., 2019)
to Geostationary orbit (GEO), with the O2 A-band covered at
0.12 nm resolution. Back in LEO, NASA/JPL’s Multi-Angle
Imager for Aerosols (MAIA) mission (Diner et al., 2018) will
have a 2C/multi-angle take on the A-band at moderate spatial
resolution. NASA’s Plankton, Aerosol, Cloud ocean Ecosystem
(PACE) mission (Werdell et al., 2019) will cover the A-band with
two of its three sensors at relatively low spectral resolution:

• GSFC’s Ocean Color Instrument (OCI) (Meister et al.,
2019), with a moderate spatial resolution, and

• SRON’s SPEXone (Rietjens et al., 2019), with a somewhat
lower spatial resolution but offering multiple views and
polarization across all wavelengths.

MAIA and PACE are scheduled to launch in the October
2024 – March 2025 timeframe. Last but not least, as part of
NASA’s next generation of Earth observing satellites, the
Atmospheric Observing System (AOS) implements the 2017
Decadal Survey’s ACCP element; it will include a UV-VIS
imaging spectrometer in polar orbit that covers the O2 A-band
at low spectral and moderate spatial resolutions, with a launch
date in the late 2020s.

TABLE 1 | Compendium of satellite missions with DOAS capability ordered chronologically and clustering sensors with similar characteristics. To the best of our knowledge,
SCIAMACHY is the first instrument with an operational DO2AS-based cloud product (Kokhanovsky et al., 2005), followed by the POLDER series (Buriez et al., 1997;
Vanbauce et al., 1998) and EPIC (Yang et al., 2019). Research cloud property retrievals have been developed for these missions, e.g., MOS-A (Preusker et al., 2007),
POLDER-3 (Ferlay et al., 2010), and others, most recently, OCO-2/3 (Richardson et al., 2017; Richardson and Stephens, 2018; Richardson et al., 2019; Richardson et al.,
2020). Such experimental retrievals can and have been transitioned into fully operational elements in the data processing pipeline.

Sensor Developed Platform Agency Dates Spatial Spectral Multi- Reference
Name by . . . resolution Sampling view?

GOME DLR ERS-2 ESA 1995–2011 VL M n Burrows et al. (1999)
MOS-A DLR IRS-3 ISRO 1996–2004 M M n Thyagarajan et al. (1996)
SCIAMACHY SRON Envisat ESA 2002–2012 VL M n Bovensmann et al. (1999)
GOME-2 DLR MetOp-A/-B/-C EUMETSAT 2006-/2012-/2018- VL M n Callies et al. (2000)

MERIS ALCATEL Envisat ESA 2002–2012 M 2C n Rast et al. (1999)

POLDER CNES ADEOS I NASDA 1996–1997 L 2C y Deschamps et al. (1994)
POLDER-2 CNES ADEOS II NASDA 2002–2003 L 2C y
POLDER-3 CNES PARASOL ESA 2004–2013 L 2C y

OCO-2 JPL NASA 2014- M VH n Crisp et al. (2008)
OCO-3 JPL ISS NASA 2019- M VH n Eldering et al. (2019)
OLCI ACRI-ST Sentinel-3A/B ESA 2016-/2018- M M n Nieke et al. (2012)

EPIC GSFC DSCOVR NASA + NOAA 2015- L 2C (A,B) n Marshak et al. (2018)

2At first glance, Table 1 seems to show that NASA was the last space agency to
develop and launch satellite missions with DO2AS capability as late as the mid-
2010s. That is, however, far from true. Both NASA/JPL’s CloudSat and the joint
NASA/LaRC - CNES CALIPSO (co-launched into the A-train in 2006) were
originally planned to have A-band imagers that were later descoped. With their
inherent sensitivity to CTH, these A-band cameras would have extended at least
CTH detection from the actively-probed sub-track “curtain” into the across-track
direction.
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3 INFORMATION CONTENT OF THE
PATHLENGTH DISTRIBUTION

We contend that EPIC not only blazed a new path into the
observational technology of DO2AS from space, but also in the
associated remote sensing science, which we view as enabling
Earth system science via remote sensing. To make this point, we
briefly revisit a series of papers motivated by EPIC’s two pairs of
DOAS channels for the A- and B-bands.

Even before the DSCOVR launch, Yang et al. (2013) devised a
method for extracting two cloud properties from EPIC’s two
DO2AS ratios, namely, cloud top height (CTH) and cloud
geometric thickness (CGT). Specifically, the authors used the
sum and difference apparent cloud heights from both ratios,
where “apparent” refers to the fact that in-cloud propagation and
scattering are not accounted for. However, the fact that they are
different is precisely because of the finite pathlength cumulated
inside the cloud and the different strengths of the A- and B-bands.
Two-entry (CTH,CGT) look-up tables (LUTs) were therefore
generated to retrieve the two cloud properties, much like how the
Nakajima and King (1990) algorithm delivers cloud optical
thickness (COT) and cloud particle effective radius given two
reflected radiances, one VIS (with dominant sensitivity to COT)
and one SWIR (with dominant sensitivity to particle size).

After the DSCOVR launch and EPIC’s first light, it became
clear to the cloud product team that it is important to factor into
their algorithms the sensor’s finite radiometric signal-to-noise
ratio (SNR). Davis et al. (2018b) therefore followed the well-
beaten path of optimal estimation (OE) theory (Rodgers, 2000) to
do that. OE is, in essence, a formalism grounded in probabilistic
information theory and linear algebra that relates measurement
(Level 1) error and any prior/Baysian knowledge to retrieval
(Level 2) error. OE has, at its core, a forward RT model that is
either linearized or run at sufficient numerical precision to
compute accurate Jacobian matrices by finite differencing.
However, once implemented in code, the mathematical
expressions of OE feel like a “black box” procedure that just
has to be trusted. The authors concluded from their formal OE-
based cloud information content analysis of EPIC’s two DO2AS
ratios that CHT can be inferred with useful accuracy, but
not CGT.

It is rare to have a second opinion on the assessment of
geophysical information content of some set of measurements
that is more transparent in nature, but this did occur for EPIC’s
two DO2AS ratios. Indeed, Davis et al. (2018a) derived from first
principles a model simple enough to be expressed in closed form,
yet realistic enough to capture the main radiative processes
unfolding from source to sensor. The authors used this
physics-based approach to assess the sensitivities of EPICs
DO2AS ratios to CTH and CGT, bearing in mind the finite
amplitude of the sensor noise, and they again found a strong
response to CTH and a weak one to CGT.

In hindsight, the series of three papers published in the Journal
of Quantitative Spectroscopy and Radiative Transferweave a story
about adjusting expectations to sensor and algorithm realities. In
the case, it is about EPIC’s ability to probe clouds: cloud top from
O2 absorption channel ratios and COT from the radiometrically-

calibrated continuum channels, assuming either liquid or ice
particles (cf. Yang et al., 2019), but unfortunately not cloud
base height via CTH.

That is not however the end of EPIC’s influence on the remote
sensing science of O2 absorption observations in application to
cloud profiling. By happenstance, EPIC’s DO2AS research team
was alerted by N. Ferlay, an expert in POLDER’s A-band
information content, about a powerful invariance property of
mean pathlength 〈L〉 cumulated inside a scattering optical
medium of arbitrary shape and internal structure: 〈L〉 = 4V/S,
where V is the volume of the medium and S is its surface (Blanco
and Fournier, 2003). This remarkable result is predicated on
uniform and isotropic illumination of the medium, which clashes
with the cloud-illuminated-by-the-sun scenario, and integration
over all possible escape positions and directions, which conflicts
with single direction sampled in remote sensing. There is
nonetheless a strong message: once reduced to just in-cloud
paths, 〈L〉 informs us directly about the size of the medium.
For plane-parallel media, where V and S are infinite, 〈L〉 = 2H,
with H being the geometrical thickness of the slab.3

FIGURE 1 | Pathlength moments 〈L〉 and Var[L](τ) are plotted versus τ in
log-log axes. Symbols mark the Monte Carlo simulation results, while diffusion
model outcomes are solid lines. The invariance of 〈L〉 is verified exactly.
Furthermore, the diffusion-theoretical prediction that Var[L](τ) = (1 − g)τ/
2χ (with extrapolation scale factor χ set to 2/3) becomes very accurate at
τt = (1 − g)τ ~4. Two phase functions were investigated: g = 0 (isotropic
scattering) and g = 0.85 (forward-peaked Henyey and Greenstein (1941)
scattering). Adapted from Davis et al. (2021), where 〈L〉 is denoted 〈ct〉.

3Picture a finite cylinder with radius R and thickness H: V = H×(π R2) and S = 2×π
R2 + H×(2πR). As R → ∞, 〈L〉 = 4V/S → 2H.
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This begs the question about what pathlength variance
Var[L] = 〈(L − 〈L〉)2〉 = 〈L2〉 − 〈L〉2 brings to the table in
terms of cloud information. Blanco and Fournier (2006) show that,
unlike the mean, higher-order statistical moments of L depend on
the opacity of the medium: if σ is the mean extinction coefficient,
then 〈Lq〉 ∝ 〈L〉/σq−1, q = 1,2,3,/ , as σ → ∞ (i.e., RT diffusion
limit). The cloud remote sensing implication is that knowledge of
both 〈L〉 and Var[L] for in-cloud pathlength L can be used to infer
both the bulk size and mean opacity of the cloud;. In plane-parallel
cloud geometry, that translates to both CGT H and COT τ = σH,
irrespective of the value of the latter. In other words, we are no
longer limited to the range of COT where there is enough
sensitivity in (continuum) reflected radiance to distinguish a
change in COT from a fluctuation in the noise, i.e., up to a few
10s.4 Moreover, while the use of reflected radiance calls for absolute
radiometric calibration, inference of moments of L, being based on
DO2AS, only requires a relative calibration across spectral
channels.

Figure 1 is adapted from a forthcoming paper by Davis et al.
(2021) where a new derivation of the invariance law for 〈L〉 is
presented along with a specific prediction for Var[L](τ) in the
diffusion limit for plane-parallel geometry. Numerical validation of
the diffusion-theoretical predictions for 〈L〉 and Var[L](τ) is
performed. Figure 1 shows both moments as a function of τ
for both isotropic and Henyey and Greenstein (1941) phase
functions, assuming that asymmetry factor g = 0.85 in the latter
case. As anticipated, the agreement is exact for 〈L〉 across all
COTs, and the diffusion-based prediction for Var[L](τ)
becomes excellent as the scaled COT τt = (1 − g)τ exceeds
~4 (τ ≳ 25). At any rate, given 〈L〉 and Var[L](τ), one can
infer H and τ at any value above ~ 1/(1 − g), which is precisely
when cloud reflectivity in the continuum starts to loose
sensitivity to τ.

In-cloud pathlength L is a random variable, and its moments
are emerging here as key intermediate quantities in DO2AS that
can be inferred from spectroscopic data at sufficiently high
resolution (Davis et al., 2021). Figure 1 indeed shows that,
given 〈L〉(H) and Var[L](H, (1 − g)τ), we can infer H and τ,
knowing that g hardly deviates from 0.85 in liquid clouds.
MUltiple Scattering Cloud Lidar (MUSCL) (Davis et al.,
1999a; Davis A. B. et al., 1999b; Davis et al., 2009) is another
emerging technology in cloud remote sensing from above or
below (Cahalan et al., 2005; Polonsky et al., 2005; Davis, 2008)
where the whole distribution of in-cloud pathlengths is measured
directly. This is done by temporal binning the return times (i.e., L/
c) of photons injected into a cloud using a pulsed laser beam.
Now, the signal in each time bin can be noisy, but the statistical
moments 〈L〉 and Var[L] are robust. As different as are their
instrumental implementations, it is clear that DOxAs and
MUSCL share the same fundamental signal physics grounded

in time-dependent RT. Interestingly, DO2AS is an inherently
daytime observation while MUSCL operates strictly at nighttime
since the steady sunlight diffusely reflected or transmitted by the
cloud would overwhelm the laser light in every time-bin (Davis,
2008). DO2AS and MUSCL are therefore the ideal pair of
instruments for a satellite mission for pathlength-based cloud
observation that would deliver CTH, CGT, COT and possibly a
measure of internal variability from turbulence (Davis et al.,
2009).

4 SUMMARY AND DISCUSSION

In this PERSPECTIVE article, we above all celebrate space-
based remote sensing using O2 absorption to track clouds in
the vertical dimension above every pixel. To that effect, we
survey the relevant literature emphasizing theory up to 2010,
which is roughly when there were enough space assets
delivering O2 A-band observations of clouds to see the
research become predominantly data-driven. We hope to
see others write the important literature review about post-
2010 studies of clouds from space-borne O2 absorption
observations. Another worthwhile review would focus on
ground-based cloud studies with O2 absorption
spectroscopy, and yet another should focus on using O2

absorption spectroscopy from above or below to locate
aerosol layers in the vertical dimension.

Building on our limited-scope literature survey, we support
the viewpoint that EPIC/DSCOVR has been a pathfinder in O2

absorption-based cloud remote sensing. Several other satellites
carry sensors with O2 absorption capability, EPIC however has
by far the largest standoff distance and is also unique in its
spectral sampling strategy: “in-band” and “continuum” pairs of
channels each for the A- and B-bands. Another hallmark of
EPIC’s use of O2 absorption to probe clouds is the impetus it has
generated for progress in the associated remote sensing science
that is centered on the concept of pathlength cumulated by
sunlight, from source to sensor, between every scattering event
along the way. To substantiate this claim, we revisited three
papers in the Journal of Quantitative Spectroscopy and Radiative
Transfer that directly address EPIC’s characterization of clouds
using O2 absorption, and previewed a key result from a
forthcoming one.

Determination of cloud structure in the third dimension is a
goal shared by O2 absorption spectroscopy and other emerging
techniques in cloud remote sensing, for instance, 3D
computational cloud tomography (CCT). CCT has, so far,
been demonstrated on data with small pixel scales that are
readily achievable with airborne multi-view sensors, whether
imaging (Levis et al., 2015; Levis et al., 2017; Levis et al., 2020;
Levis et al., 2021) or not (Alexandrov et al., 2021). When dealing
with such fine pixels, in the 10s of meters, there are necessarily
significant radiative fluxes crossing pixel boundaries, thus
requiring 3D RT forward modeling. There has been recent
progress toward 3D CCT from space using moderate (~100s
of meters) resolution multi-angle data from the likes of MODIS
and MISR/Terra. On top of the 3D RT effects, this effort has to

4Indeed, an opaque cloud’s reflectivity R(τ) can be approximated by
1/(1 + 2χ/(1 − g)τ), with χ = 2/3. Maximum sensitivity to τ on a %-scale is
realized when (d/d log τ)2 R = 0, which occurs in the above diffusion
approximation at τ = 2χ/(1 − g) ≈ 9 for the canonical value of g = 0.85 for
liquid clouds.
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deal with complications from the larger pixels (optically thick,
potentially with high internal heterogeneity) and accordingly
larger clouds (Forster et al., 2021).

Looking ahead, we know that O2 absorption observation is
typically implemented in spectroscopy, and the more channels
in the absorption band the better since the diversity in
absorption coefficient ensures probing different depths into
the cloud. However, this key ability can also be obtained
using a single absorption channel, as for either of EPIC’s O2

absorption bands, in a multi-view angle collection. POLDER
(2004–2013) pioneered the multi-view O2 absorption
observation strategy, and that path will be followed in short
order by MAIA, SPEXone/PACE and 3MI. Spectroscopy-based
O2 absorption is also heading into a bright future, starting with
OCI/PACE and NASA’s upcoming Atmospheric Observing
System (AOS). Someday, we may see the deployment of
DSCOVR follow-on missions at Lagrange-1 and Lagrange-2
(Valero et al., 2021). At any rate, it will be interesting to see how
future synergistic retrievals will blend O2 absorption
spectroscopy with other passive sensing modalities, such as
multi-view imaging and CCT, thus enabling robust 3D cloud
property retrievals on a global scale.
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The NASA EPIC/DSCOVR Ocean PAR
Product
Robert Frouin1*, Jing Tan1, Mathieu Compiègne2, Didier Ramon2, Marshall Sutton3,
Hiroshi Murakami4, David Antoine5,6, Uwe Send1, Jeff Sevadjian1 and Vincenzo Vellucci6

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States, 2HYGEOS,
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of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia, 6Laboratoire d’Océanographie de Villefranche, CNRS,
Sorbonne Université, Institut de la Mer de Villefranche, Villefranche-sur-Mer, France

The EPIC/DSCOVR observations of the Earth’s surface lit by the Sun made from the first
Lagrange point several times during the day in spectral bands centered on 443, 551, and
680 nm are used to estimate daily mean photosynthetically available radiation (PAR) at the
ice-free ocean surface. The PAR algorithm uses a budget approach, in which the solar
irradiance reaching the surface is obtained by subtracting from the irradiance arriving at the
top of the atmosphere (known), the irradiance reflected to space (estimated from the EPIC
Level 1b radiance data), taking account of atmospheric transmission and surface albedo
(modeled). Clear and cloudy regions within a pixel do not need to be distinguished, which
dismisses the need for often-arbitrary assumptions about cloudiness distribution within a
pixel and is therefore adapted to the relatively large EPIC pixels. A daily mean PAR is
estimated on the source grid for each EPIC instantaneous daytime observation, assuming
no cloudiness changes during the day, and the individual estimates are remapped and
weight-averaged using the cosine of the Sun zenith angle. In the computations, wind
speed, surface pressure, and water vapor amount are extracted from NCEP Reanalysis 2
data, aerosol optical thickness and Angström coefficient from MERRA-2 data, and ozone
amount from EPIC Level 2 data. Areas contaminated by Sun glint are excluded using a
threshold on Sun glint reflectance calculated using wind data. Ice masking is based on
NSIDC near-real-time ice fraction data. The product is evaluated against in situ
measurements at various locations and compared with estimates from sensors in polar
and geostationary orbits (MODIS, AHI). Unlike with MODIS, the EPIC PAR product does
not exhibit gaps at low and middle latitudes. Accuracy is satisfactory for long-term studies
of aquatic photosynthesis, especially given the much larger uncertainties on the fraction of
PAR absorbed by live algae and the quantum yield of carbon fixation. The EPIC daily mean
PAR product is generated operationally on a Plate Carrée (equal-angle) grid with 18.4 km
resolution at the equator and on an 18.4 km equal-area grid, i.e., it is fully compatible with
the NASA Greenbelt OBPG ocean-color products. Data are available since the beginning
of the DSCOVR mission (i.e., June 2015) from the NASA Langley ASDC website.

Keywords: photosynthetically available radiation, satellite remote sensing, Lagrange L1 orbit, EPIC sensor, DSCOVR
mission, light absorption and scattering, ocean biogeochemistry
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1 INTRODUCTION

The solar energy flux reaching the ocean surface in the spectral
range 400–700 nm, referred to as photosynthetically available (or
active) solar radiation (PAR), controls the rate of photosynthesis
by phytoplankton and therefore the development of crustaceans,
fish, and other consumers (e.g., Ryther, 1956; Platt et al., 1977;
Kirk, 1994; Falkowski and Raven, 1997). It ultimately regulates
the composition of marine ecosystems. Sunlight absorbed
differentially by the upper ocean affects mixed-layer dynamics
and oceanic currents (e.g., Nakamoto et al., 2000, 2001;
Murtugudde et al., 2002; Sweeney et al., 2005; Ballabrera-Poy
et al., 2007), with local and remote consequences on atmospheric
temperature and circulation (e.g., Miller et al., 2003; Shell et al.,
2003). Absorption by phytoplankton and other water
constituents tend to reduce the planetary albedo, i.e., warm
the planet (Frouin and Iacobellis, 2002). Knowing the
spatiotemporal distribution of PAR over the oceans is critical
to understanding biogeochemical cycles of carbon, nutrients, and
oxygen and biological-physical interactions (a major uncertainty
in coupled climate models) and, therefore, to addressing
important global change issues such as the fate of
anthropogenic atmospheric carbon dioxide and making
accurate projections of future climate (e.g., Frouin et al., 2018a).

Regional and global maps of PAR at the ocean surface can be
obtained from a variety of passive Earth-viewing satellite optical
sensors. The sensors operating from geostationary altitude
provide adequate temporal sampling to deal with cloud
diurnal variability but have degraded spatial resolution at high
latitudes, and they only cover part of the oceans, i.e., several
sensors, optimally positioned are necessary to provide global
coverage. Sensors in polar orbits provide the same spatial
resolution at all latitudes but pass less frequently over the
same target at middle and low latitudes. For ocean primary
productivity computations, it is convenient to estimate both
PAR and bio-optical variables (phytoplankton chlorophyll
abundance, absorption coefficients) from the same sensor.
Ocean-color sensors offer this capability, even though they are
principally designed to retrieve water reflectance if they do not
saturate over clouds. The same data preprocessing is required,
i.e., PAR can be produced with little extra effort as part of the
same processing line. In this way, the key variables in primary
production modeling are provided together at the same
resolution, facilitating studies of photosynthesis and ecosystem
dynamics.

In this context, a simple yet efficient and fairly accurate
algorithm has been developed to estimate the daily mean PAR
at the ocean surface from Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) data (Frouin et al., 2003) and adapted for application
to MODerate resolution Imaging Spectroradiometer (MODIS)
data (Frouin et al., 2012), GLobal Imager (GLI) data (Frouin and
Murakami, 2007), GOCI data (Frouin andMcPherson, 2013; Kim
et al., 2016), Medium Resolution Imaging Spectrometer (MERIS)
data, Visible Infrared Imaging Radiometer Suite (VIIRS) data,
Second-generation Global Imager (SGLI) data, and Advanced
Hiwamari Imager (AHI) data with plans for an extension to
future ocean color sensors. Daily mean PAR refers to the 24-h

averaged planar quantum energy flux from the Sun in the spectral
range 400–700 nm. It is expressed in units of Einstein per meter
squared per day, i.e., Em−2d−1. The global daily mean PAR
products from SeaWiFS, MODIS, VIIRS, and MERIS data
have been routinely generated by the National Aeronautics
and Space Administration (NASA) Ocean Biology Processing
Group (OBPG) and made available to the user community from
their website (https://oceancolor.gsfc.nasa.gov). Estimated
uncertainty, based on comparisons against in situ
measurements, expressed in relative root-mean-square (RMS)
difference and bias, is typically 10-30% and 4-9%, respectively,
depending on satellite sensor and atmospheric conditions (Frouin
et al., 2003; Frouin et al., 2012; Laliberté et al., 2016; Ramon et al.,
2016; Somayajula et al., 2018). Somayajula et al. (2018) compared
satellite-based PAR algorithms used in primary production
studies; they concluded that the best overall performance was
obtained with the NASA OBPG algorithm. This uncertainty is
reasonable for large-scale studies of aquatic photosynthesis (e.g.,
Frouin et al., 2012; Frouin et al., 2018a), but better accuracy is
desirable. Note, in this respect, that primary productivity models
depend not only on PAR but also on efficiency factors that are
difficult to estimate with uncertainty comparable to (i.e., as low
as) that of PAR.

The standard Level-2 and -3 PAR products generated by the
NASA OBPG have been used extensively in the science
community for a variety of applications. In primary
productivity calculations, they have replaced PAR estimates
obtained from a clear sky model corrected for cloudiness using
fractional cloud coverage or deduced from satellite estimates of
total solar irradiance, the treatment applied in Longhurst et al.
(1995), Antoine et al. (1996), and Behrenfeld and Falkowski
(1997) to obtain the first global maps of seasonal and/or
annual oceanic primary productivity from space. Such
treatment is limited, because the effect of clouds on PAR does
not depend only on fractional coverage, but also on optical
thickness, and the relation between total solar irradiance and
PAR, rather constant under clear skies (Baker and Frouin, 1987),
varies strongly with water vapor and cloud liquid water content
(Frouin and Pinker, 1995). Studies using the NASA OBPG PAR
products have addressed a variety of topics, including biosphere
productivity during an El Niño transition (Behrenfeld et al.,
2001), chlorophyll-a and carbon-based ocean productivity
modeling (Behrenfeld et al., 2005; Platt et al., 2008), climate-
driven trends in productivity (Behrenfeld et al., 2006; Kahru et al.,
2009; Henson et al., 2010), phytoplankton class-specific
productivity (Uitz et al., 2010), inter-comparison of
productivity algorithms (Carr et al., 2006; Lee et al., 2015),
and the relation between primary productivity, vertical mixing,
and atmospheric input (Tang and Shi, 2012). They have also been
used to check the stability of CERES measurements (Loeb et al.,
2006).

The parameters governing PAR variability are essentially the
Sun zenith angle and the cloud transmittance. Aerosol properties
and surface albedo have a smaller impact. Since the Sun zenith
angle can be computed precisely, estimating daily PAR from data
collected by a single sensor aboard a Sun-synchronous satellite is
chiefly limited, in terms of accuracy, by the lack of information
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about diurnal variability of cloud properties, especially at low and
middle latitudes. This variability may be large in some regions, as
evidenced by the International Cloud Climatology Project
(ISCCP) cloud analyses (Bergman and Salby, 1996; Rossow
and Shiffer, 1999) and other studies (e.g., Wang and Zhao,
2017; Zhao et al., 2019; Yang et al., 2020). Consequently, the
PAR products from individual polar-orbiting sensors exhibit
biases, not only with respect to ground truth but also between
themselves, as evidenced in inter-comparison and evaluation
studies (Frouin et al., 2003, 2012; Tan and Frouin, 2019).
Merging data from several sensors with different overpass
times may significantly improve the quality of daily PAR
estimates, as demonstrated with MODIS-Terra, SeaWiFS, and
MODIS-Aqua, which cross the equator at approximately 10:30,
12:00, and 13:30 local time (Frouin et al., 2012). In generating a
long-term PAR time series, however, one must deal with various
sensor combinations, and there is a need, for ocean
biogeochemistry studies related to climate change to reduce
the individual biases against in situ measurements and make
the PAR estimates consistent across individual sensors (Frouin
et al., 2018a).

The Earth Polychromatic Imaging Camera (EPIC) onboard
DSCOVR, operating from the first Sun-Earth Lagrange point (L1)
one million miles from Earth (Marshak et al., 2018; https://avdc.
gsfc.nasa.gov/pub/DSCOVR/Web_EPIC/), provides a great
opportunity to generate accurate PAR products and address
issues associated with polar-orbiting sensors. By frequently
observing the sunlit part of the Earth, EPIC inherently allows
one to account properly for diurnal cloud variability, while
maximizing spatial coverage. In other words, EPIC with
respect to PAR can do the job of several geostationary sensors
with the further advantage that spatial resolution at high latitudes
is less of an issue (the L1 orbit is much farther from Earth than the
geostationary orbit). The spectral bands centered on 443, 551, and
680 nm, the non-saturation of measured radiance over clouds,
and the spatial resolution of 10 km at nadir are adequate for PAR
calculations, especially using the NASA OBPG algorithm, which
does not require knowing whether the pixel is clear or cloudy,
i.e., is applicable to large pixels.

In view of the above, the current NASA OBPG daily mean
PAR algorithm has been modified/adapted for application to
EPIC data. Algorithm uncertainties have been associated with
EPIC PAR estimates on a pixel-by-pixel basis. A full processing
line has been created and implemented to generate operationally
daily mean EPIC PAR products at the NASA Center for Climate
Simulation (NCCS). The data are archived at and distributed by
the Langley Atmospheric Science Data Center (ASDC). In
Section 2, the methodology to estimate daily mean PAR from
EPIC data is presented and the various steps to obtain the surface
flux values are detailed. The tasks include integrating atmospheric
functions spectrally and temporally during the day (the number
of observations in a day varies depending on geographic
location), eliminating data contaminated by Sun glint,
incorporating ancillary information such as ozone content, sea
ice extent (for masking), and aerosol optical properties, and
remapping the data to a common grid. In Section 3, a
procedure is described to associate algorithm uncertainties

(i.e., bias and standard deviation) to each EPIC daily mean
PAR estimate as a function of parameters readily available
from applying the algorithm, i.e., daily mean clear sky PAR
and cloud factor (characterizes the effect of clouds on daily
mean PAR). In Section 4, EPIC PAR estimates are compared
to in situmeasurements routinely collected from long-term fixed
buoys. Experimental performance is also compared to that of
MODIS PAR estimates. In Section 5, examples of global daily
mean PAR products are displayed and examined in view of
corresponding MODIS and AHI products, and PAR time
series at contrasted locations are presented to illustrate the
capability of EPIC to describe PAR seasonal to interannual
variability. In Section 6, finally, the EPIC PAR algorithm and
its performance against field data and other satellite estimates are
summarized, advantages and limitations of using observations
from the L1 orbit are pointed out, the significance of the new
ocean PAR product in complementing existing PAR time series
for a wide range of research applications is emphasized, and a
perspective for future work to estimate variables used more
directly in primary productivity or water reflectance models,
such as scalar PAR, spectral PAR, and average cosine of the
light field just below the surface, as well as ultraviolet fluxes, is
provided.

2 ALGORITHM DESCRIPTION

The algorithm estimates daily mean PAR reaching the ice-free
ocean surface, as defined above. Following Frouin et al. (2003), a
budget approach is used, in which the solar flux reaching the
surface is obtained by subtracting from the flux arriving at the top
of the atmosphere (know) the flux reflected to space (estimated
from the EPIC measurements) accounting for atmospheric
transmission and surface albedo (modeled). Clear and cloudy
regions within a pixel do not need to be distinguished, which is
appropriate to the relatively large (i.e., 10 km at nadir) EPIC
pixels. This approach was shown to be valid by Dedieu et al.
(1987) and Frouin and Chertock (1992).

Based on the previous work, the PAR model assumes that the
effects of clouds and other atmospheric constituents are
decoupled. The planetary atmosphere is therefore modeled as
a clear sky layer that contains molecules and aerosols positioned
above a cloud/surface layer, and surface PAR is expressed as the
product of a clear-sky component and a transmittance that
accounts for cloudiness and surface optical effects. Under solar
incidence (zenith angle) θs, the incoming spectral solar flux at the
top of the atmosphere, ETOAcos(θs), is reduced by a factor
Ta(θs)Tg(θs)[1 − SaA(θs)]−1 by the time it enters the cloud/
surface system, where Ta is the clear-sky transmittance (due to
scattering by molecules and aerosols), Tg is the gaseous
transmittance (essentially due to absorption by ozone), Sa is
the spherical albedo of the clear atmosphere, and A is the
cloud/surface system albedo. As the transmitted flux,
ETOAcos(θs)Ta(θs)Tg(θs)[1 − SaA(θs)]−1, passes through the
cloud/surface system, it is further reduced by a factor 1—A.
The instantaneous planar flux reaching the ocean surface at any
wavelength in the PAR spectral range, E, is then given by:
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E(θs) � E0(θs)[1 − A(θs)][1 − As(θs)]−1[1 − SaA(θs)]−1, (1)
where As is the albedo of the ocean (surface and water body) and
E0(θs) � ETOAcos(θs)Ta(θs)Tg(θs) is the solar flux that would
reach the surface if the cloud layer and the surface were non-
reflecting. In clear sky conditions, A reduces to As and E to
Eclear � E0(1 − SaAs)−1. The term [1 − SaA(θs)]−1 in Eq. 1
represents interactions between the cloud/surface layer and the
clear atmosphere.

To compute E, A is expressed as a function of the radiance
measured by EPIC in bands centered on 443, 551, and 680 nm,
and this for each observation collected during the day
(i.e., between sunrise and sunset). These bands do not saturate
over clouds, and they sample sufficiently the PAR spectral range.
In this range, the scattering properties of molecules and aerosols
vary smoothly with wavelength, gaseous absorption is relatively
weak, and A is quite constant spectrally. The algorithm works on
a pixel-by-pixel basis, i.e., a daily mean PAR estimate is obtained
for each pixel of the satellite imagery. The various processing
steps and procedures are detailed in the following.

First the bidirectional reflectance of the cloud/surface layer,
ρ, is determined from the instantaneous EPIC Level 1b
reflectance data at source resolution. This is only
accomplished for pixels that are not contaminated by sea ice
or Sun glint. For sea ice masking, fractional ice coverage at
25 km resolution from the National Snow and Ice Data Center
(NSIDC) is used. If the fractional coverage is greater than 0.1,
then the pixel is discarded. For Sun glint masking, the Fresnel
signal at the wavy interface surface is calculated from the wind
speed according to Cox and Munk (1954), and all pixels with a
glint reflectance above 0.05 at 780 nm are eliminated. National
Centers for Environmental Prediction (NCEP) Reanalysis-2
wind data at 1o and 6-h resolution is used after interpolation
to the EPIC observation time. Both ancillary data sets are
remapped to the source grid prior to masking. Since in the
modeling the clear atmosphere is located above the cloud/
surface layer, ρ is obtained from the top-of-atmosphere
(TOA) reflectance, ρTOA by inverting the following equation
(Tanré et al., 1979):

ρTOA(θs, θv, ϕ) � Tg(θs, θv)[ρa(θs, θv, ϕ)
+ ρTa(θs, θv)(1 − Saρ)

−1
], (2)

where ρa is atmospheric reflectance and θv and ϕ are view zenith
and relative azimuth angles, respectively. In Eq. 2 Tg and Ta are
transmittances along the Sun-to-surface and surface-to-sensor
path. This expression is strictly valid for an isotropic target of
reflectance ρ, which is not the case for the cloud/surface layer,
but a good approximation for many geometries, except when
θs is large and clouds are optically thin, i.e., when the albedo
of that layer, A, is relatively close to ρ (Zege, et al., 1991). At
large θs, however, E becomes small since modulated directly
by cos(θs), and when clouds are thin their impact on (1 − A)
in Eq. 1 is also small, which tends to minimize effects on daily
mean surface fluxes. A better treatment would be to use the
following equation (Tanré et al., 1979; Deschamps et al.,
1983):

ρTOA(θs, θv, ϕ) � Tg(θs, θv){ρa + [ρ(θs, θv, ϕ) − A(θs)]e−τam
+ A(θs)Ta(θs, θv)[1 − SaA(θs)]−1} , (3)

where τa is the optical thickness of the clear atmosphere andm is
airmass, i.e., m � 1/cos(θs) + 1/cos(θv). Eq. 3 reduces to Eq. 2
when ρ is isotropic. The retrieval of ρ would be accomplished
through iteration. This would require a first estimate of A, which
can be obtained as described below for isotropic ρ.

To compute the atmospheric functions Tg, Ta, and ρa, the
surface pressure and water vapor amount are extracted from
NCEP Reanalysis 2 data, aerosol optical thickness at 550 nm,
Angström coefficient, and single scattering albedo at 550 nm
from MERRA-2 data at 0.625o × 0.5o (Gelaro et al., 2017), and
ozone amount from EPIC Level 2 data at source resolution
(Herman et al., 2018). Single scattering albedo is assumed
constant over the PAR spectral range. For ρa, the quasi-single
scattering approximation (Q-SSA) used in Frouin et al. (2003),
which gives too high values at large zenith angles, is replaced by a
parameterization that combines Q-SSA and exact single-
scattering approximation (SSA):

ρa � fSSA(m, τaer)ρa(SSA) + fQ-SSA(m, τaer)ρa(Q−SSA), (4)

where fSSA and fQ−SSA depend on m and aerosol optical
thickness, τaer, but are independent of the aerosol model.
These functions were obtained from the simulations with
the 6S code (Kotchenova et al., 2006, 2007) for atmospheres
containing various mixtures of maritime and continental
aerosols and angular geometries. Figure 1 displays ρa at
443, 551, and 680 nm as a function of θv for θs = 70o.
Scattering angle, quasi constant with EPIC, is fixed at
171.5o. The aerosols are of maritime type and τaer at
550 nm is 0.2 and 0.4 (top and bottom panels, respectively).
The parameterization works well yielding ρa values very close
to the 6S values except in the blue, where τaer is large (0.4) and
the molecular scattering is effective. At 443 nm the coupling
between aerosol and molecule scattering is relatively
important and the 6S ρa is substantially smaller than
ρa(Q–SSA), even at θv < 65o, which is partly explained by
the fact that in Q-SSA the molecule and aerosol contributions
to atmospheric reflectance correspond to the atmosphere
containing only molecules or aerosols, i.e., the neglected
aerosol-coupling term is negative (Deschamps et al., 1983).
The 6S and SSA values are quite similar at that wavelength, a
consequence of the SSA formulation that also assumes either
molecules or aerosols, i.e., the probability of encountering one
type of scatterer is enhanced (SSA values are expected to be
lower in the presence of both molecules and aerosols). As
wavelength increases, this effect is less prominent because the
atmosphere is less thick optically contributing to larger
differences between 6S and SSA values.

Once the reflectance of the cloud/surface layer, ρ, is
determined, it is converted into albedo A. This is
accomplished for each observation during daytime and the
three spectral bands by applying a cloud bidirectional
correction factor F (independent of wavelength) to ρ − As

since A ≈NAc + As where Ac is cloud albedo and N is
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fractional cloud cover (see Frouin and Chertock, 1992; Frouin
et al., 2003), i.e.,

A � F(ρ − As) + As, (5)
Analytical formulas developed by Zege et al. (1991) for

optically thick scattering layers in the non-absorbing medium
are used for F. The parameterization depends on the
asymmetry coefficient of the cloud indicatrix, g, and the
cloud optical thickness, τc, which are fixed at 0.853 and 15,
respectively. Sensitivity of F on g and τc is an issue, especially
when τc is relatively small (ρ exhibits more directionality), but
since E depends on (1 –A) the relative impact on E computed
from Eq. 1 is reduced in such situations (A is also small). The g
and τc variables can be viewed as tuning parameters, e.g., to
reduce biases in estimated fluxes. The surface albedo As is
parameterized as a function of the Sun zenith angle, aerosol
optical thickness at 500 nm, and wind speed following Jin et al.
(2004). In the As calculation, the chlorophyll-a concentration
is fixed at 0.1 mgm−3, and the wind speed is from NCEP
Reanalysis-2 data.

Next, the daily mean PAR, <EPAR > , is computed by
integrating over the PAR spectral range, i.e., 400 to 700 nm,
and the length of the day:

<EPAR > � (
1
24
)∫

t
[cos(θs(t))G(t)]dt

withG � ∫
λ
[ETOATg Ta (1 –A)(1 − As)−1(1 − SaA)−1]dλ,

(6)

where ETOA is the extraterrestrial spectral solar flux per unit of
wavelength corrected for Earth-Sun distance variation during the
year and time t is expressed in hour. The integral is calculated for
each EPIC observation during the day. In other words, if after
masking a surface target (pixel) is observed n times during the
day, the algorithm generates n daily mean PAR values. The
dependence of A and As on θs is accounted for in the time
integration, but assuming that the characteristics of the
atmosphere and surface are unchanged during the day. This is
a crude assumption, especially for cloudiness, but diurnal
variability of the atmosphere is considered implicitly in the
final step of the algorithm (see below).

In the final step, the individual daily mean estimates obtained
on the source grid (number varies from 1 to 13 depending on
geographical location, the time during the year, and data
availability) are first remapped to an 18.4 km equal-area grid
and weight-averaged using the cosine of the Sun zenith angle and
then remapped to a Plate Carrée (equal-angle) grid with 18.4 km
resolution at the equator. The remapping algorithm is exactly the
one used by NASA OBPG to generate a Level 3 binned ocean
color products (https://oceancolor.gsfc.bnasa/gov/docs/format/
l3bins). Triangular-based linear interpolation is used to fill
missing pixels at the edges.

The weighting procedure to obtain the final <EPAR >
estimates is accurate, except when only one or two EPIC
observations per day is available. Such situations are
infrequent; they are due to instrument problems and mission
activities (e.g., sensor calibration, spacecraft maneuvers). The
accuracy of the weighting procedure was checked from
radiative transfer calculations with hourly MERRA-2 data for

FIGURE 1 | Atmospheric reflectance ρa parameterization using SSA, Q-SSA, and a combination of SSA and Q-SSA (green, blue, and black dots, respectively). 6S
calculations (RT) are displayed as red curves. Sun zenith angle is 70 deg., scattering angle is 171.5 deg., aerosols are of maritime type with optical thickness of 0.2 and
0.4 at 550 nm, and wavelengths are 388, 551, and 680 nm.
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cloud and aerosol properties and ozone and water vapor contents.
In the calculations, EPAR was expressed as
EPAR � EclearPAR(1 −NAc), where Ac is obtained from τc
according to Fitzpatrick et al. (2004) and EclearPAR is
simulated with the 6S code assuming a chlorophyll-a
concentration of 0.5 mgm−3 and a wind speed of 5 ms−1. Two
dates, i.e., January 1 and July 1, 2018, and ocean locations evenly
distributed in the spatial domain within 60°S to 40°N and 180°W
to 180°E, i.e., every 5° along latitude, and every 6.25° along
longitude, were selected. Table 1 displays the comparison
statistics of cos(θs)-weighed <EPAR > obtained from 1, 2, 3,
6, 9, and 12 individual <EPAR > estimates during the day versus
the <EPAR > value obtained by trapezoidal integration of all the
hourly EPAR values at the time of the MERRA-2 observations
(referred to as actual or theoretical<EPAR > ). The individual
estimates correspond to hourly observations randomly
distributed between sunrise and sunset. In estimating
<EPAR > for each observation, the aerosol and cloud
properties and gaseous absorber amounts are assumed
unchanged during the day, but the dependence of Ac and As

on θs are accounted for in the time integration, as in the EPIC
daily mean PAR algorithm. The cos(θs)-weighted <EPAR >
values agree well with the theoretical ones when 3 and more
observations per day are used, with biases less than 0.10 (0.4%)
Em−2d−1 in magnitude and root-mean-square difference (RMSD)
less than 3.83 (14.2%) Em−2d−1. RMSD is reduced to 1.34 (4.5%)
and 1.07 (3%) Em−2d−1 with 9 and 12 observations per day. The
biases are small because of the random sampling of times during
the day and the large number of locations considered in the data
ensemble. RMSD is noticeably larger when 1 or 2 <EPAR >
estimates are used, i.e., 7.00 (25.9%) and 4.86 (18.0%) Em−2d−1,
respectively. In such situations, the alternative procedure to
obtain<EPAR > , i.e., trapezoidal integration of hourly EPAR

values, would also give inaccurate results.
A way to reduce the sampling biases in such situations, not yet

implemented in the algorithm, is to use MERRA-2 hourly cloud
products for the very day of the EPIC observations, as proposed
by Tan et al. (2020). If τcMERRA andNMERRA denote the MERRA-
2 cloud optical thickness and fractional coverage, A is replaced by
A’ in Eq. 5 as follows:

A′ � (A − As)[NMERRA(t)Ac(τcMERRA(t))]/
× [NMERRA(ti)Ac(τcMERRA(ti))] + As, (7)

where ti is the time of satellite observation and Ac is computed
from τcMERRA at time t and ti. Basically, the quantity A − As is
adjusted by the ratio ofNAc computed fromMERRA-2 products
at times t and ti In Eq. 6 A, determined at ti, is corrected for
variations with θs, but assuming that cloud properties are
unchanged. Figure 2 illustrates the potential improvement
expected using Eq. 6. It displays scatter plots of OBPG
MODIS-A <EPAR > estimates at source resolution (about
1 km) versus in situ measurements at the Chesapeake Bay
CERES Ocean Validation Experiment (COVE) site (36.9oN,
75.7oW) in the Western Atlantic during 2003–2014 (see Tan
et al., 2020, for details about the in situ data collected at that site).
Bias is reduced from 1.72 (5.3%) to −0.05 (-0.1%) Em−2d−1,
i.e., practically eliminated on average, but RMSD is marginally
improved, i.e., 7.02 (21.4%) instead of 7.37 (22.5%) Em−2d−1,
when using the hourly MERRA-2 cloud products.

3 UNCERTAINTY ASSIGNMENT

Associating uncertainty to each <EPAR > estimate is necessary to
use properly the information provided by the estimate. It allows
one to verify that variability and trends are actual to merge
different datasets optimally, and to constrain adequately model
predictions (Frouin et al., 2018a; IOCCG, 2019). Comparisons
with contemporaneous and collocated in situ measurements at a
few sites, the current approach to quantify experimental
performance may not be sufficient to describe uncertainty in
the wide range of conditions expected to be encountered.
Representing uncertainty on a pixel-by-pixel basis requires
modeling the measurement, identifying all possible error
sources (e.g., noise in the input variables, imperfect or
incomplete mathematical model), and determining the
combined uncertainty (JGCM-100, 2008; Povey and Grainger,
2015; IOCCG, 2019). Algorithm uncertainty is due to model
approximations and parameter errors (e.g., using plane-parallel
atmosphere, decoupling effects of clouds and clear atmosphere,
neglecting diurnal variability of clouds, fixing cloud optical
thickness to a constant in bidirectional correction) if the input
variables (EPIC TOA reflectance at wavelengths in the PAR
spectral range) are known perfectly. A complete pixel-by-pixel
uncertainty budget should include, not only algorithm
uncertainty, but also uncertainty due to measurement noise,

TABLE 1 | Statistics of comparing cos(θs)-weighted < EPAR > with actual (theoretical) <EPAR > using different number of observations at randomly distributed hourly times
during the day on January 1 and July 1, 2018, at ocean locations within 60°S to 40°N and 180°W to 180°E. The number of data points (N) is slightly different when six and
more hourly observations per day are used, because such number of observations may not be available for some locations during some days of the year.

No. of observations R2 Bias (Em−2d−1) RMSD (Em−2d−1) N

1 0.859 −0.07 (−0.3%) 7.00 (25.9%) 1,874
2 0.929 0.04 (0.1%) 4.86 (18.0%) 1,874
3 0.955 −0.10 (−0.4%) 3.83 (14.2%) 1,874
6 0.987 0.06 (0.2%) 2.04 (7.4%) 1,851
9 0.993 −0.02 (−0.1%) 1.34 (4.5%) 1,682
12 0.996 −0.06 (−0.2%) 1.07 (3.0%) 1,095
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radiometric calibration, and preprocessing to Level 1b, a
component that is difficult to determine accurately.

The procedure described in Frouin et al. (2018a, b) is used to
estimate and provide, for each pixel of the daily mean PAR
product, the algorithm uncertainty component of the total
uncertainty budget, which is expected to dominate. The bias
and standard deviation portions are calculated as a function of
clear sky daily mean PAR, <EclearPAR > , and cloud factor,
<CFPAR > � <EPAR > /<EclearPAR > (characterizes the effect
of clouds on PAR and varies from 0 to 1), by simulating for many
situations the satellite measurements and corresponding
<EPAR > and comparing the latter to the <EPAR > estimated
from the TOA reflectance. The simulations were performed with
the Atmospheric Radiative Transfer Database for Earth and
Climate Observation (ARTDECO) code (Dubuisson et al.,
2016; https://www.icare.univ-lille.fr/artdeco/) using as input

several years (2003 to 2012) of MERRA-2 hourly data (aerosol
and cloud properties). The large number of data points allows one
to sample a wide range of geometric configurations for the
satellite data and atmospheric variability, in particular many
situations of daytime nebulosity for all latitudes. At this stage,
the resulting look-up-tables (LUTs) only depend on
<EclearPAR > and <CFPAR > , but other parameters, e.g.,
angular geometry and latitude, will be considered in the
future. Since the final <EPAR > is a cos(θs)-weighted average
of individual <EPAR > estimates during the day, the uncertainty
on the final <EPAR > is obtained by weighting the individual
uncertainties in the same way.

Figure 3 displays the resulting uncertainty (bias and standard
deviation) on individual <EPAR> estimates as a function of
<CFPAR > for several <EclearPAR > levels, i.e., 12, 35, and
58 Em−2d−1. The bias between estimated and simulated

FIGURE 2 |MODIS-A <EPAR> estimate vs. in situ data collected at the COVE site in theWestern Atlantic. Left: No correction for cloud diurnal variability. Right: Using
MERRA-2 hourly cloud products.

FIGURE 3 | Algorithm uncertainity on individual <EPAR> estimates (i.e., using one observation per day) as a function of <CFPAR > for several values of< EclearPAR > .
(A) Bias (estimated minus simulated values); (B) standard deviation. The theoritical uncertainity was obtained from simulations of the TOA reflectance and <EPAR>for a
wide range of situations using 10 years of MERRA-2 aerosol and cloud data (see text for details).

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8333407

Frouin et al. EPIC/DSCOVR Ocean PAR Product

261

https://www.icare.univ-lille.fr/artdeco/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


<EPAR > values (Figure 3A) is small (mostly within 1 Em−2d−1

in magnitude) and does not vary much with <CFPAR > at low
and moderate <EclearPAR > values (blue and red curves) but
reaches 3 Em−2d−1 at high <EclearPAR > values when <CFPAR >
is small (black curve). The standard deviation (Figure 3B) is
peaked toward intermediate cloud factors (the risk or probability
that cloudiness at the time of satellite measurement may not be
representative of the conditions at other times during the day is
larger), increasing from about 2.2 to 8.7 Em−2d−1 when
<EclearPAR > increases from 12 to 58 Em−2d−1 and
<CFPAR > = 0.5, i.e., about 15% relatively.

As mentioned above, a complete per-pixel uncertainty budget
must include errors in the Level 1b data, which may require
estimating the sensitivity of <EPAR > to input reflectance and
the covariance in the various spectral bands (JGCM-100, 2008).
Noise in the input data is difficult to estimate, especially spectral
correlations, but this can be attempted by analyzing the Level 1b
imagery using structure functions or variograms (e.g., Curran and
Dungan, 1989; Wald, 1989) and considering information gleaned
from inflight calibration studies. The approach, therefore, would
be to establish the uncertainty LUTs using noisy TOA reflectance
simulations. Note, however, that in the case of MERIS
comparisons with match-up data at the COVE site have
revealed that experimental uncertainties are similar to
algorithm uncertainties obtained from modeled data without
noise (Frouin et al., 2018b). Similar results are expected for
EPIC <EPAR > uncertainties.

4 EVALUATION AGAINST IN SITU
MEASUREMENTS

4.1 Datasets
The EPIC <EPAR> product has been evaluated against in situ
measurements at three mid-latitude oceanic sites (Figure 4),
where long-term E measurements are routinely acquired from
moored buoys i.e., BOUée pour l’acquiSition d’une Série Optique
à Long termE (BOUSSOLE) and California Current Ecosystem
(CCE) buoys 1 and 2 (hereafter denoted CCE-1 and CCE-2).
Table 2 lists the main characteristics of the data sets. Although
situations for which Sun zenith angles stay large during the day
(such as in polar regions) were not sampled, the atmospheric
conditions at the three sites exhibited large variability in cloud
and aerosol properties making the datasets appropriate for
statistically quantifying uncertainties in the <EPAR > estimates.

The BOUSSOLE above-surface downward solar irradiance
dataset (http://www.obs-vlfr.fr/Boussole/html/project/boussole.
php; Antoine et al., 2008) consists of high frequency EPAR

measurements (every 15 min) collected from the long-term
mooring located at 43.37°N and 7.90°E in the Western
Mediterranean Sea about 60 km off the coast (between Nice
and Corsica, France). The EPAR measurements were made by
Satlantic cosine radiometers installed on top of the immerged part
of the buoy during May 29, 2015-July 28, 2019
(i.e., corresponding to the EPIC operational phase). Four
deployments were made during this period, but there was a
large data gap between December 11, 2017 and February 16,
2019. Before conversion into geophysical quantities, the raw data
were calibrated using coefficients provided by the manufacturer
and checked for outliers. The EPAR measurements were corrected
for tilt effects according to Antoine et al. (2008). To obtain daily
mean values, i.e., <EPAR > , instantaneous EPAR with tilt angles
less than 20o was integrated over time from sunrise to sunset.

The CCE-1 and -2 datasets were collected at two surface
moorings in the California Current (http://mooring.ucsd.edu/
cce/). Multiple deployments are available and for this study we
used the CCE-1 deployments from October 23, 2017 to June 9,
2020, and the CCE-2 deployments from August 15, 2017 to May
7, 2019. CCE-1 is located at 33.46°N, 122.53°W in the core of
California Current, approximately 220 km off Point Conception,
California. The CCE-2 mooring is operated at 34.31°N and 120.
80°W and closer to the shore, approximately 35 km off Point
Conception. For both mooring locations, the E measurements
were made every 30 min at 412 nm, 443 nm, 490 nm, 510 nm,
555 nm, 620 nm, and 669 nm by Sea-Bird OCR-507 sensors. The
raw data were calibrated to actual E using radiative transfer (RT)
simulations. First, clear sky days were identified by carefully
examining the shape of raw data as a function of time each
day. Only those following strictly the cosine function EPAR �
acos(θs)e−β/cos(θs) with limited error (Tan et al., 2020, Section 4.
1) were selected. Second, the theoretical E for these clear days
were simulated using the 6S code with aerosol properties, water
vapor, and ozone, wind speed, and chlorophyll-a concentration
from NASA OBPG MODerate resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) Level 2 products. Only days with
τaer less than 0.1 at 550 nm were retained and θs was limited
to 60o. For those τaer and θs conditions the aerosol transmittance,
about 1 − 0.16τaer/cos(θs) according to Tanré et al. (1979), is
above 0.97, i.e., aerosols affect minimally E. Third, linear relations

TABLE 2 | I Characteristics of the in situ above surface downward solar irradiance datasets used in the evaluation of the EPIC <EPAR > estimates.

Sites Geographic
location

Platform
type

Sensor type Time period Measurement
frequency (min)

BOUSSOLE 43.3667°N, 7.9°E Moored buoy PAR (400-700 nm) 5/29/2015–7/28/
2019

15

CCE-1 33.462°N,
122.526°W

Moored buoy Multispectral (412 nm, 443 nm, 490 nm, 510 nm, 555 nm,
620 nm, 669 nm)

10/18/2018–6/9/
2020

30

CCE-2 34.309°N,
120.804°W

Moored buoy Multispectral (412 nm, 443 nm, 490 nm, 510 nm, 555 nm,
620 nm, 669 nm)

8/15/2017–9/8/
2020

30
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y � ax were determined by comparing the simulated E and raw
data yielding the calibration coefficients to be applied to the raw
counts. This was done for each deployment since instruments
were switched for different deployments and it is expected that the
calibration coefficients are different. The raw data corresponding
to tilt larger than 10o were not used in this process and dark
subtraction was performed before running the linear regression.

Figure 5 displays calibration results at wavelengths 443, 555, and
669 nm for selected deployments. Uncertainty of the calibration
gain a (expressed in 10–6/Count) associated with the least-squares
fit varies from ± 0.25% to ±0.68% depending on wavelength.
Finally, the calibrated spectral E data were first integrated over
wavelength and then over time during the day to
generate<EPAR > .

FIGURE 4 | Location of the three in situ sites (BOUSSOLE in the Western Mediterranean Sea and CCE-1 and -2 in the Northeast Pacific Ocean) used to evaluate
EPIC <EPAR> estimates.

FIGURE 5 | Examples of derived calibration coefficients for CCE-1 (deployment #13) and CCE-2 (deployment #9) datasets at 443, 559, and 669 nm. Raw counts
are compared with E simulation in conditions of clear sky with small aerosol optical thickness (see text for details).

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 8333409

Frouin et al. EPIC/DSCOVR Ocean PAR Product

263

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


4.2 Calibration and Adjustment
The calibrated datasets need to be checked and eventual biases
removed before evaluating the EPIC <EPAR > estimates. This is
important because laboratory calibration errors and other errors
(e.g., due to exposure to the marine environment and data
processing) may significantly affect the quality of the in situ
measurement. An independent check-of-calibration can be
performed, as indicated above, by comparing the calibrated
measurements to RT simulations in clear sky conditions that
allow accurate computations of the atmospheric transmittance.
Since the CCE-1 and -2 datasets were already calibrated using
such RT simulations, as described in the previous sub-section, no
further bias adjustment is necessary for those datasets.

The BOUSSOLE dataset, however, was checked against 6S
simulations. The same procedure as described for CCE-1 and -2
datasets, including the selection of clear sky days with small
aerosol content and θs less than 60o, was used. Only five suitable
clear sky days were identified during deployments #3 (June 29,
2016—May 24, 2017) and #5 (February 16, 2019—July 28, 2019);
the processing, therefore, was limited to those deployments.
Corrections were then applied to the in situ data based on the
best linear fits (y � ax) obtained by regressing, for each
deployment separately, instantaneous E simulations against
corresponding in situ measurements.

Figure 6 displays scatter plots of 6S-simulated versus
measured E for the two BOUSSOLE deployments before and
after correction. The overall bias before correction (Figure 6, left)
decreased from 0.55 Em−2 d−1 (0.4%) to -0.14 Em−2 d−1 (−0.1%)
after correction (Figure 6, right) and RMSD from 2.07 Em−2 d−1

(1.6%) to 1.69 Em−2 d−1 (1.3%). The small bias and RMSD in the
BOUSSOLE data before correction indicate that the BOUSSOLE
data are well-calibrated for those deployments and suggests that
one may use with confidence the data from other deployments,
even without adjustment. Examination of those deployments,
however, revealed abnormal E values. Therefore, only data from
deployments 3 and 5 were used, and for consistency with the

CCE-1 and -2 datasets the small bias adjustment was still applied
to the data.

4.3 Match-Up Comparison
EPIC <EPAR > estimates remapped at 18.4 km spatial resolution
(equal-area grid) were matched with in situ measurements at the
three evaluation sites. The EPIC pixel with center closest to the
site was selected. One may wonder whether, due to the size of the
EPIC <EPAR > pixel, satellite estimates are mismatched with the
local in situ measurements. Comparisons of MODIS-Aqua and
-Terra <EPAR > estimates at 4.6, 9.2, and 18.4 km resolution
during June 13, 2015 (beginning of the EPIC dataset), to June 23,
2021, indicated practically no biases at the BOUSSOLE and CCE-
1 sites and a slight overestimation by about 0.5–0.7% at 18.4 km
resolution with respect to 9.2 and 4.6 km resolution, respectively,
at the CCE-2 site. RMSD was 3.9–4.7% between estimates at 9.2
and 18.4 km resolution depending on site and sensor, increasing
to 5.6–6.8% between estimates at 4.6 and 18.4 km resolution. In
other words, the relatively large spatial resolution of the EPIC
pixels is expected to minimally affect statistical performance in
terms of bias at the three sites, but RMSD might be significantly
underestimated.

Figure 7 displays for each site scatter plots of EPIC, MODIS-
Aqua, and MODIS-Terra PAR estimates versus in situ
measurements. In the comparisons, MODIS values at 9.2 km
resolution were averaged to the 18.4 km resolution. The satellite
estimates agree with the measurements, but statistical
performance is better using EPIC, with bias and RMSD of
0.12 Em−2d−1 (0.4%) and 3.93 Em−2d−1 (12.0%) for
BOUSSOLE, -0.5 Em−2d−1 (−1.5%) and 3.4 Em−2d−1 (10.2%)
for CCE-1, and 0.8 Em−2d−1 (2.2%) and 4.6 Em−2d−1 (13.3%)
for CCE-2. The MODIS-Aqua and -Terra estimates are more
biased and exhibit more scatter, reflecting the points made above
about using one instead of multiple observations during the day.
In particular, the positive bias obtained with MODIS data is likely
due to a higher probability of having clear skies at the time of

FIGURE 6 | Comparison between 6S-modeled and field-measured instantaneous <EPAR> in very clear sky conditions at the BOUSSOLE site using hourly data:
(Left) before any correction; (Right) after adjustment of the measured values to the 6S value via linear regression.
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satellite overpass, i.e., late morning or early afternoon, yielding
higher than actual daily mean values. Such overestimation was
documented in many studies (Section 1) and recently reported by
Tan et al. (2020), who compared Medium Resolution Imaging
Spectrometer (MERIS) <EPAR > estimates against in situ
measurements when the satellite observation was made under
clear skies. In many instances, theMERIS-derived values were too
high, resulting in an overall positive bias, which was explained by
the presence of clouds at other times during the day.

Algorithm uncertainty was calculated for each <EPAR >
estimate of the match-up data set, as described in Section 3,

but is not displayed in Figure 7. The resulting average bias and
RMSD uncertainty (includes bias and standard deviation
components) are respectively 0.49 and 3.63 Em−2d−1 at
BOUSSOLE, 0.70 and 4.73 Em−2d−1 at CCE-1, and 0.77 and
4.28 Em−2d−1 at CCE-2. These values resemble those obtained
experimentally, i.e., 0.12 and 3.93 Em−2d−1 at BOUSSOLE,
−0.49 and 3.38 Em−2d−1 at CCE-1, and 0.57 and
4.77 Em−2d−1 at CCE-2, see Figure 7, suggesting that the
procedure to associate uncertainty is adequate and that it
might not be necessary to include EPIC imagery noise in
the theoretical uncertainty budget.

FIGURE 7 | Comparison of EPIC, MODIS-T, <EPAR> estimates against in situ data collected at the three evaluation sites (BOUSSOLE, CCE-1, and CCE-2). Left
columns are for EPIC, middle columns for MODIS-A, and right columns for MODIS-T.
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5 APPLICATION TO SATELLITE IMAGERY

Figures 8A–C displays an example of an EPIC <EPAR > product
with associated uncertainties. The date is March 20, 2018
(equinox); the land is in black and the sea ice is in white. The
values range from a few Em−2d−1 at high latitudes to about 58 E
m−2d−1 at equatorial and tropical latitudes with atmospheric
disturbances modulating the <EPAR > field, especially at
middle latitudes (Figure 8A). The bias uncertainty tends to be
positive when <EPAR > values are high (overestimation by up to
2 Em−2d−1) and slightly negative when <EPAR > values are low
(underestimation by up to 1 Em−2d−1). The overestimation is
relatively larger when <EclearPAR > is high and cloud factor is
low, which occurs at low and middle latitudes (Figure 8B). The
standard deviation uncertainty is more variable spatially, ranging
from 2 to 8 Em−2d−1, with highest values obtained at moderate
cloud factors and high <EclearPAR > values, as expected from
Figure 3, for example off the coast of Chile and Peru at about 25oS
and 80oW where cloud factor is about 0.5 (Figure 8C).

Compared with the MODIS-Aqua <EPAR > product
(Figure 8D), the EPIC product (Figure 8A) is less noisy due
to multiple observations during the day and does not have any
spatial gaps at low/middle latitudes (gray color). The difference
map between the two products (Figure 9A) shows good
agreement, with higher differences generally encountered in
middle to high latitude regions affected by storm activity. The
MODIS-Aqua values cover a slightly larger range, which is
expected because more extreme values are likely to be
encountered with only one observation per day (Figure 9B).
The frequency of values between 15 and 30 Em−2d−1 is higher for
EPIC reflecting the lower probability of having very low values

when several observations during the day are used in estimating
<EPAR > in cloudy conditions. The difference histogram
indicates that the EPIC <EPAR > values are slightly lower
than the MODIS-Aqua values, by 0.7 Em−2d−1 on average
(Figure 9C). This may result from MODIS-Aqua observing at
about 1:30:pm local time, i.e., when cloudiness is usually reduced
(e.g., Bergman and Salby, 1996).

The EPIC <EPAR > imagery of March 20, 2018, was also
compared with corresponding imagery from AHI onboard
Hiwamari-8 (operated by the Japanese Meteorological Agency)
over the oceans and seas surrounding East and Southeast Asia
and Australia (Figure 10). The AHI <EPAR > product, available
at 5 km resolution on the equal latitude-longitude grid from the
Japanese Aerospace Exploration Agency (JAXA) was generated
from geostationary observations acquired every 10 min using an
adapted version of the algorithm described in Frouin and
Murakami (2007). It was remapped to the equal-angle grid
(18.4 km at the equator) for comparison to the EPIC
<EPAR > product. The spatial features are very similar in
both products (Figure 10A,B), and differences do not exhibit
a distinct pattern, although there is some evidence that larger
differences often occur near the edges of low-pressure systems
(Figure 10C). This may be due to the different temporal
resolution of the two products with AHI capturing more
accurately the daily variability of moving disturbances. The
range of <EPAR > values is practically the same for EPIC and
AHI, but the AHI histogram exhibits a small number of higher
values between 5 and 25 Em−2d−1 and lower values above
55 Em−2d−1 (Figure 10D). Again, this is plausibly attributed to
using more observations during the day in the AHI <EPAR >
estimation. The <EPAR > differences are generally small

FIGURE 8 | (A) <EPAR> derived from EPIC imagery of March 20, 2018; (B,C) Algorithm uncertainity (bias, standard deviation) associated to EPIC <EPAR> estimates;
(D) <EPAR> derived from MODIS-Aqua imagery of March 20, 2018.
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(i.e., mostly between -5 and 5 Em−2d−1) but may be as large in
magnitude as 20 Em−2d−1, resulting in an overall bias (higher
EPIC values) of 1.34 Em−2d−1 or 3.6% (Figure 10E). Of course,
this bias is only valid for the date and area considered in the
comparison—it is expected to differ depending on region and
period, yet it corresponds to a wide range of atmospheric
conditions.

Figure 11 displays the time series of EPIC and MODIS daily
and monthly mean EPAR during the entire DSCOVRmission until
August 2021 at 50oN and 30oW (North Atlantic) and 0o and 30oW
(Equatorial Atlantic). The MODIS values are averages of MODIS-
Aqua and -Terra estimates. The seasonal cycle and day-to-day
variability are large at 50oN, while short-term variability dominates
at the Equator. SeasonalEPAR changes are depicted in the sameway
by EPIC and MODIS, but the MODIS values tend to be slightly
higher, as expected. These examples of time series, and the good
performance against in situmeasurements (Figure 7), illustrate the
potential of the EPIC <EPAR > product in ocean biogeochemistry
studies.

6 CONCLUSION

An algorithm was developed to estimate daily mean PAR at the
ice-free ocean surface, EPAR, from EPIC observations in spectral

bands centered on 443, 551, and 680 nm. The algorithm, based on
Frouin et al. (2003), uses a budget approach that does not require
distinguishing whether a pixel is clear or cloudy, which is
appropriate for the coarse EPIC pixels. Algorithm
uncertainties (bias and standard deviation) were associated to
each <EPAR > estimate using LUTs established from RT
simulations. A preliminary evaluation showed good agreement
with <EPAR > estimates from other satellite sensors (polar-
orbiting MODIS and geostationary AHI) and in situ
measurements at ocean moorings. Match-up data analysis
indicated that the EPIC-derived <EPAR > was less biased than
the MODIS <EPAR > , and the EPIC <EPAR > imagery was less
noisy, which was explained by using multiple observations during
the day with EPIC instead of only one observation with MODIS.
The uncertainty of the EPIC <EPAR > product, with biases of
−1.5 to 2.2% and RMSDs of 10.0–13.3% depending on the site is
lower than the uncertainty of other parameters coming into play
in primary production modeling (e.g., phytoplankton absorption
and quantum yield). The <EPAR > 2015–2021 time series at
selected oceanic locations demonstrated the algorithm ability to
capture monthly to interannual variability for investigating the
ocean response to temporal changes in available light over a wide
range of scales.

The EPIC <EPAR > product is generated routinely by the
NASA Center for Climate Simulation (NCCS) and distributed by

FIGURE 9 | (A)Map of the difference between EPIC and MODIS-A <EPAR> estimates for March, 20, 2018; (B) histogram of the EPIC and MODIS-A <EPAR> values;
(C) histogram of the EPIC difference between EPIC and MODIS-A <EPAR> estimates.
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the Langley ASDC. The data (with documentation) are archived
since the beginning of the DSCOVRmission, i.e., June 13, 2015, at
https://asdc.larc.nasa.gov/project/DSCOVR/ DSCOVR_EPIC_
L3_PAR_01. They are available on equidistant cylindrical Plate
Carrée grid with 18.4 km resolution at the equator and in 18.4 km
equal-area sinusoidal projection, i.e., on spatial grids that are
compatible with MODIS and VIIRS Level 3 NASA OBPG ocean-
color products.

The current algorithm can be improved in several ways, i.e., by
calculating atmospheric reflectance more accurately at large zenith
angles (LUTs may be used instead of approximate analytical
representation), by relaxing the Lambertian assumption in the
retrieval of the cloud/surface layer reflectance, by improving the
parameterization of cloud bidirectional effects, and by including from
reanalysis data information about cloud variability, which would
provide better accuracy when only a few EPIC observations are
available to estimate the daily means. Uncertainty may also be
specified as a function of angular geometry and latitude, even
region, instead of using an average estimate for all latitudes over
several years of MERRA-2 data, and they can be fitted by a
generalized additive model with proper auxiliary variables.

Other <EPAR > datasets exist (e.g., OBPG MODIS and VIIRS
products), but the EPIC time series is uniquely valuable for several
reasons. First, the daily mean PAR estimates, which exploit the multiple
EPIC observations from sunrise to sunset (i.e., consider diurnal cloud
variability), are more accurate than those from sensors in polar orbit

(i.e., typically use one observation per day). Second, coverage is global on a
daily time scale at low and middle latitudes, which is currently not
achieved with instruments onboard polar orbiters (due to Sun glint,
limited swath). Sensors operating from geostationary orbit have limited
coverage and reduced spatial resolution at high latitudes, a smaller
problem with EPIC. Third, and particularly important, comparisons
between daily <EPAR > estimates from EPIC and concurrent polar-
orbiting sensors (e.g., MODIS and VIIRS) would determine biases
associated with estimates from these sensors, allowing for a consistent
<EPAR > time series across sensors, not only during the overlap period,
but before and after, i.e., for a long-term (over several decades) science
quality <EPAR > record.

The EPIC <EPAR > product is useful to a wide range of
research applications, such as primary production and carbon export
modeling, ecosystem dynamics and mixed-layer physics,
photochemical transformations of dissolved organic matter, and
control of stable soluble iron in marine waters. It complements
existing <EPAR > datasets and, as mentioned above, may bring
about consistency across sensors, allowing a better description of
biological phenomena that could lead to new information about
temporal variability of biological processes.

The methodology can be easily extended to estimating ultraviolet
(UV) surface irradiance using the EPIC spectral bands centered on
317, 325, 340, and 388 nm, especially since ozone content, a key
variable governing atmospheric transmittance in the UV, is a
standard EPIC product. Furthermore, planar and scalar fluxes

FIGURE 10 | (A) <EPAR> derived from EPIC imagery of March, 20, 2018; (B) same as (A), but AHI imagery; (C)map of the difference between EPIC and AHI <EPAR>
estimates; (D) histogram of the EPIC and AHI <EPAR> values; (E) histogram of the difference between EPIC and AHI <EPAR> estimates.
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below the surface, as well as average cosine for total light (a measure
of the angular structure of the light field), variables more directly
relevant to addressing science questions pertaining to
biogeochemical cycling of carbon, nutrients, and oxygen can also
be estimated without major difficulty from the above-surface
quantities. Approaches have been identified and procedures
devised (Frouin et al., 2018a); they are based on LUTs of clear
sky and overcast situations and the derived cloud factor, <CF>
(<CFPAR > for the PAR spectral range), from the EPIC
observations (Frouin et al., 2018a). Following Mobley and Boss
(2012), the LUTs may only depend on a reduced set of parameters,
the most important ones being the location and date, which control
the day length and mean Sun zenith angle, then the influence of the
clouds which is between null (clear sky) and maximum (100% cloud
cover), and finally the wind speed. In other words, the observed
<CF> may be used as a proxy for the actual cloud factor in linearly
interpolating between clear sky and overcast LUTs as a function of
<CF> . The prospects are promising for ocean biogeochemistry
applications.
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Unique Observational Constraints on
the Seasonal and Longitudinal
Variability of the Earth’s Planetary
Albedo and Cloud Distribution Inferred
From EPIC Measurements
Barbara E. Carlson1*, Andrew A. Lacis1, Gary L. Russell 1, Alexander Marshak2 and
Wenying Su3

1NASA Goddard Institute for Space Studies, New York, NY, United States, 2NASA Goddard Space Flight Center, Greenbelt, MD,
United States, 3NASA Langley Research Center, Hampton, VA, United States

Thorough comparison to observations is key to developing a credible climate model
forecasting capability. Deep Space Climate Observatory (DSCOVR) measurements of
Earth’s reflected solar and emitted thermal radiation provide a unique observational
perspective that permits a more reliable model/data comparison than is possible with
the otherwise available satellite data. The uniqueness is in the DSCOVR satellite’s viewing
geometry, which enables continuous viewing of the Earth’s sunlit hemisphere from its
Lissajous orbit around the Lagrangian L1 point. The key instrument is the Earth
Polychromatic Imaging Camera (EPIC), which views the Earth’s sunlit hemisphere with
1024-by-1024-pixel imagery in 10 narrow spectral bands from 317 to 780 nm, acquiring
up to 22 high spatial resolution images per day. The additional feature is that the frequency
of EPIC image acquisition is nearly identical to that of the climate GCM data generation
scheme where climate data for the entire globe are ‘instantaneously’ calculated at 1-h
radiation time-step intervals. Implementation of the SHS (Sunlit Hemisphere Sampling)
EPIC-view geometry for the in-line GCM output data sampling establishes a precise self-
consistency in the space-time data sampling between EPIC observational and GCM
output data generation and sampling. The remaining problem is that the GCM generated
data are radiative fluxes, while the EPIC measurements are backscatter-dependent
radiances. Radiance to flux conversion is a complex problem with no simple way to
convert GCM radiative fluxes into spectral radiances. The more expedient approach is to
convert the EPIC spectral radiances into broadband radiances by MODIS/CERES-based
regression relationships and then into solar radiative fluxes using the CERES angular
distribution models. Averaging over the sunlit hemisphere suppresses the meteorological
weather noise, but preserves the intra-seasonal larger scale variability. Longitudinal slicing
by the Earth’s rotation permits a self-consistent model/data comparison of the longitudinal
model/data differences in the variability of the reflected solar radiation. Ancillary EPIC
Composite data provide additional cloud property information for climate model
diagnostics. Comparison of EPIC-derived seasonal and longitudinal variability of the
Earth’s planetary albedo with the GISS ModelE2 results shows systematic
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overestimate of cloud reflectivity over the Pacific Ocean with corresponding
underestimates over continental land areas.

Keywords: DSCOVR, deep space climate observatory, self-consistent space/time data sampling, longitudinal
slicing, sunlit hemisphere observations, climate diagnostic data, EPIC

INTRODUCTION

Model/data comparisons are essential for improved
understanding of the Earth’s climate system. But, as illustrated

in Figure 1, this seemingly straightforward task is not simple.
Climate GCMs and the real world are quasi-chaotic in behavior.
So, there is no reason to expect agreement except for averages
taken over sufficiently large space and time scales. Moreover,

FIGURE 1 |ModelE2 4 × 5 degree horizontal resolution monthly-mean planetary albedo (Upper Left) and total cloud cover (Middle Left) computed for July 2018.
The corresponding observational counterparts are the CERES planetary albedo (Upper Right) on a 2 × 2.5 degree grid averaged over the years 2001–2013, and the
ECMWF Re-Analysis-Interim (ERAI) total cloud cover (Middle Right) also on a 2 × 2.5 degree grid averaged over the years 1979–2014. Seasonal CERES EBAF
planetary albedo (Bottom) for 2003–2019 (Loeb et al., 2009; 2018) with the ensemble annual mean subtracted. For comparison, the black squares depict the
ModelE2 decadal-mean seasonal variability of the global planetary albedo for years 2000–2010 with the annual mean subtracted.
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most climate system variables exhibit strong diurnal variability
(e.g., Eastman andWarren, 2014). Whereas GCM output data are
computed uniformly over the globe at uniform time-steps, and
uniformly averaged into monthly-mean latitude-longitude tables
such as the planetary albedo and total cloud cover in Figure 1
(Left panels), the observational data typically use sequential
space-time sampling from a sun-synchronous satellite track,
such as the CERES planetary albedo data (Top Right), with
considerable uncertainty as to how the diurnal cycle might
have been averaged or referenced. The European Centre for
Medium-Range Weather Forecasts Reanalysis Interim
(ECMWFs ERAI) total cloud cover, which is a global re-
analysis product of observations acquired over the past 3.5
decades. These data comparisons show qualitative similarity,
but with substantial small-scale differences. Even for monthly-
mean averages, considerable meteorological weather noise
remains. By averaging data over the entire globe, the weather
noise can be minimized, as in Figure 1 Bottom. The seasonal
CERES Energy Balanced and Filled (EBAF) planetary albedo for

2003 to 2019 (Loeb et al., 2009, Loeb et al., 2018) is the reference.
The GISS ModelE2 planetary albedo seasonal change shown by
the black squares. There is a close similarity, but the off-sets are
difficult to interpret quantitatively. All data comparisons are
useful, but they focus on different aspects of the climate
variables. The longitudinal slicing methodology used here
describes an approach that averages out the weather noise, but
retains important intra-seasonal and longitudinal variability that
is not simple to extract from conventional data.

EPIC-DERIVED CLIMATE CONSTRAINT

EPIC makes full-disk images of the Earth’s sunlit hemisphere in
10 narrow spectral band channels with a 1024 × 1024 (download)
spatial resolution. Depending on telemetry rate, 13 to 22 images
per day are acquired from the Lissajous orbit at the Lagrangian L1
point 1.4 to 1.6 × 106 km from the Earth in the direction of the
Sun. The procedure for converting the EPIC spectral radiances

FIGURE 2 | Planetary albedo from EPIC reflected SW flux for 2017 and 2018 (Upper Left and Upper Right), normalized by the CERES global annual-mean SW
radiative flux (Loeb et al., 2018), and divided by the seasonal Total Solar Irradiance (Kopp and Lean, 2011). The longitudinal slicing is depicted by the colored lines, which
represent longitudinally contiguous regions, and which correspond to Greenwich-mean time of high-noonmeridians that are also tagged with the geographic location of
the illuminated hemisphere-center meridian. The representative members of each colored longitude grouping is identified by its designated black dot monthly-
mean position. Geographically, the colored lines proceed westward from the international date line at 1-hourly intervals (15° of longitude). The heavy black line is the
daily-mean average over a full rotation of the Earth. The mid-month DSCOVR sub-satellite latitude is depicted at figure bottom. Bottom Left and Bottom Right are the
corresponding planetary albedo results for 2017 and 2018 obtained from GISS ModelE2 simulations running with prescribed current-climate sea surface temperatures,
and using in-line sampling of the GCM output data using SHS sampling in accord with the DSCOVR Ephemeris viewing geometry.
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into EPIC reflected SW fluxes is described by Su et al., 2018; Su
et al., 2020. UsingMODIS/CERES-based regression relationships,
the spectral radiances are first converted into broadband SW
radiances. They are then transformed into radiative fluxes using
the CERES angular distribution models. All these tasks are
performed at the pixel level, then integrated over the entire
sunlit hemisphere (as viewed from the Lagrangian L1 point) to
convert each EPIC image into a single climate-style data point for
the sunlit hemisphere-mean reflected SW flux. Without loss in
precision, these reflected SW fluxes are normalized relative to
CERES global annual-mean SW radiative flux (Loeb et al., 2018),
and divided by the Total Solar Irradiance (TSI) (Kopp and Lean,
2011) to obtain the planetary albedo.

For each day’s-worth of 13–22 images, the EPIC derived SW
fluxes are interpolated to their nearest Greenwich-Mean (GMT)
hour to align the data points in longitude. Thus, the 5,000 to 6000
EPIC images per year are transformed into 12 × 24 monthly-
mean tables of planetary albedo points, plotted in Figure 2
(Upper). The color-coded longitudes cover the full rotation of

the Earth in 1-h time-steps (24 h of GMT, and 15o steps in
longitude). The data are grouped into five broad longitude ranges
color-coded as follows: Pacific Ocean (dark blue), East-Asia
(green), Africa-Asia (magenta), Atlantic Ocean (light blue),
and North America (orange). Key meridians of the five
longitude ranges are further identified by their heavier solid
color and black dots that depict their monthly-mean value at
their mid-month position, which also include the sub-satellite
latitude listed at the bottom of the figure. The group members are
further identified by a different line-style. Each color-coded
meridian is identified by its Greenwich-Mean time (GMT) of
noon-time sun. Thus, the international Date Line is identified by
its 0 GMT. In addition to the GMT designation, each meridian is
also identified by a geographic reference to help identify its
relative location.

The key takeaway from Figure 2 Bottom panels is that, over
the East-Asia area (3 GMT, black-dot green), ModelE2
overestimates clouds during the NH summer season (since
clouds are the principal contributors to Earth’s planetary

FIGURE 3 |Hovmöller plots of the EPIC (Left) and ModelE2 (Right) planetary albedo for 2017 and 2018 for the same data presented in Figure 2. The Y-scale has
time running upward starting with January 2017 at the bottom through December 2018 at the top. The X-scale is longitude running from 0° E longitude at the left and 0°W
longitude at the right. The X-scale references the GMT of the noon-time Sum, starting at GMT = 0 at the Date Line at the center, proceeding westward toward the left as
the Earth rotates. The input data for the Hovmöller plots is precisely the same 12 × 24 tables of monthly-mean sunlit hemisphere averages for the 24 uniformly
spaced GMT for both EPIC and ModelE2, respectively. In the color bar, magenta identifies the highest planetary albedos, deep blue the lowest.
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albedo, e.g., Stephens et al., 2015). Meanwhile, the cloud
reflectivity over the continental Africa-Asia land areas (8
GMT, black-dot magenta) is strongly underestimated. By
comparison, the EPIC results in the Figure 2 Top panel show
planetary albedo to be highest over the Africa-Asia region, in
strong contrast to the ModelE2 longitudinal dependence.

A likely explanation for this striking model/data difference is
the use of a globally uniform relative humidity criteria for the
onset of cloud condensation in the ModelE2 cloud scheme, which
involves utilizing a critical (less than 100%) relative humidity
criteria for the statistical overlap of water vapor and temperature
probability distributions, becoming sufficient to achieve the
relative humidity threshold for cloud condensation over some
fraction of the grid box. Due to the broader water vapor and
temperature probability distributions that exist over land
compared to ocean, conditions are more favorable for cloud
formation over land compared to the ocean. Thus, using a
globally uniform cloud condensation onset will overestimate
clouds over the ocean and underestimate clouds over land.
Using land/ocean dependent relative humidity criteria to make
it more difficult to form clouds over ocean, and easier over land,
would lead to improved agreement with observations by reducing
the cloud radiative effect over the ocean while increasing the
cloud contribution to planetary albedo over land.

Other significant differences are the daily-mean of the seasonal
variability depicted by the heavy black line, which resembles the
general EPIC data variability, but has less than half of seasonal
amplitude of the EPIC planetary albedo, and the ModelE2
planetary albedo during NH summer months, which has little
resemblance to the EPIC planetary albedo. However, there is
some similarity in that ModelE2 planetary albedo exhibits similar
longitudinal ordering and slope during the winter months, from
January to March and also from October to December.

The Figure 2 “spaghetti-line” planetary albedo data is shown
in Figure 3 in Hovmöller format with the EPIC planetary albedo at
figure Left, and correspondingModelE2 results at figure Right. The
Hovmöller format has specific value for displaying space-time
variability, whereas the line format provides a more quantitative
comparison for the amplitude of the seasonal and longitudinal
variability. In the Hovmöller (1949) format, the Y-scale has time
increasing upward (with some implicit latitudinal perspective). The
X-scale depicts the longitudinal dependence (including the noon-
time GMT of EPIC image acquisition). To help locate GMT and
longitude points in their geographic perspective, world maps in 4o

x 5o GCM resolution are displayed in Figure 4.
Year 2017 has been identified as a La Niña year (Zhang et al.,

2019). Presumably related to this, there is the significantly greater
space-time variability evident in 2017 than in 2018. Most notable
is the sharp decrease in planetary albedo (Figure 3, Bottom Left)
over the Central Pacific region during February-March of 2017.

Also remarkable are the enigmatic oscillations (with a peak-to-
peak periodicity spanning ~ 30° in longitude) that appear over the
Eastern Pacific in February and November, and over the Indian
Ocean in April. In contrast, year 2018 appears to be a uniformly
quiescent year having apparently reverted back to ENSO-neutral
conditions. As for identifying the geographic epicenter and its
spatial extent of the features responsible, that is not within reach,
based just on the hemisphere-averaged longitudinal variability
information that is available. These features appear to be of
limited extent in size and duration in time. Yet their radiative
impact is clearly evident on the hemisphere-mean EPIC derived
planetary albedo. La Niña activity is identified by fluctuations in
sea surface temperature that then induce the atmospheric
response in cloud cover. It may be that the space-time
variability of the EPIC planetary albedo can serve as an
indicator of La Niña/ENSO activity.

FIGURE 4 | Hovmöller-style ratio plot of year 2017 divided by year 2018 of the EPIC (Left) and ModelE2 (Right) planetary albedo plotted in Figure 3. The Y-scale
has time running upward startingwith January at the bottom through December at the top. As in Figure 3, the X-scale is longitude running from 0° E longitude at the left to
0° W longitude at the right. GMT references the location of high-noon Sun. The world map is included for geographic reference.
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The 2017 April oscillations over what is likely the Indian
Ocean, are unique in that they are limited in their time duration
as well as in spatial extent. Like the February and October-
November oscillations in this area, they have peak-to-peak ~
30° extent in longitude, but have a time duration that is only about
a month. Their location in longitude extends basically from South
Africa to Australia. It is unclear whether these Indian Ocean
oscillations might be related to the La Niña phenomenon, or if
they are just simply a different member of the ubiquitous climate
system oscillations.

Interestingly, there are several longitudes that exhibit extended
periods of steady monotonic change in planetary albedo. One
such example is the 2017 (and 2018) Atlantic Ocean region,
represented by West Africa (13 GMT, black-dot light blue) in
Figure 2 Top, and in Figure 3 Left along the GMT = 13 longitude,
which has its season minimum planetary albedo in August that
keeps increasing steadily through December.

The Figure 3 Right Hovmöller comparison of ModelE2 results
to EPIC shows little resemblance, due largely to the overestimated
northern hemisphere (NH) summer cloudiness over the East-
Asia and Western Pacific, which appear as the isolated large
regions high albedo near left-center of the annual panels. Perhaps
the most disappointing is the absence in the ModelE2 results of
the strong decrease in planetary albedo over the Central Pacific in
February is the Figure 3 Bottom Left EPIC results. It is plausible
that this might be an artifact due to initialization issues of
switching on the prescribed current-climate SSTs for 2017 and
2018 from their climatological spin-up versions, and not allowing
sufficient time for the atmosphere and clouds to adjust to the

prescribed SSTs. Otherwise, there are only modest perceptible
differences between the ModelE2 results for the 2017 La Niña
year and 2018. There is little evidence of the persistent oscillations
that are so prominent in the EPIC results in Figure 3 Bottom Left.

Figure 4 is a ratio plot of the 2017 and 2018 Hovmöller maps
in Figure 3. With 2018 as the reference year, ratioing isolates the
La Niña atmospheric (and cloud) response by removing the large
seasonal climatological variability. Except for the still glaring
absence of the February La Niña signature in the ModelE2
results, there is otherwise substantial agreement in the
ModelE2 response to the 2017 La Niña SST changes that are
seen in the EPIC results, such as decreased planetary albedo
across the Central and Eastern Pacific and increased planetary
albedo over the East-Asia region.

Overall, ModelE2 does not reproduce the strong EPIC
February decrease in planetary albedo, or the sharp increase in
October, which appears to be caused by a shift in the seasonal
increase planetary albedo between 2017 and 2018. Also, assuming
2018 to be a ENSO-neutral year, there would appear to be a
possible La Niña precursor occurring over the Indian Ocean
during January 2017 with a strong decrease in the EPIC planetary
albedo.

The “spaghetti” line plots in Figure 2 and the Hovmöller
contour maps in Figure 3 are two very different ways to represent
and compare precisely the same data, in this case, the tabulated
data of longitudinally sliced EPIC planetary albedo and the
similarly sampled ModelE2 GCM output data. The data have
been strongly averaged, thus making small differences of a
percent or less to be meaningful. The Figure 2 line plots

FIGURE 5 | All-cloud cloudy sky fraction (Top Panel) from EPIC Composite analysis results for the year 2017 (Top Left) and 2018 (Top Right). (Bottom Panel):
All-cloud cloudy sky fraction from GISS ModelE2 SHS in-line sampling results for the year 2017 (Bottom Left) and 2018 (Bottom Right).
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provide the more quantitative representation of the differences in
the seasonal variability between neighboring longitudes or
longitude groups, showing quantitatively the GCM deficiencies
in longitudinal cloud distribution.

Clearly, the Figure 3 Hovmöller maps are best in displaying
the patterns of variability, showing convincingly the La Niña
signature in the EPIC planetary albedo data. And the Hovmöller
ratio plots of years 2017 and 2018 in Figure 4, by removing the
largest common variability, could readily identify the similarities
between the EPIC and ModelE2 planetary albedo results that
were not apparent from the Figure 2 or Figure 3 comparisons.
This same approach is applicable for examining the patterns of
variability of cloud properties to see how they contribute to the
planetary albedo.

EPIC HEMISPHERIC COMPOSITE DATA

Since clouds are the principal contributors to planetary albedo,
the next step is to access the changes in cloud properties and the

cloud distribution that produce the observed variability in
planetary albedo. For this purpose, the necessary cloud
property data are conveniently available in the form of the
EPIC Composite data.

In the process of generating the EPIC-based radiative SW
fluxes, Su et al. (2018) constructed the 5-km resolution EPIC
composite database, which includes detailed cloud properties
such as cloud fraction, cloud-top altitude, and cloud optical
depth, water/ice phase, and particle size, compiled from
multiple imagers in low earth orbit (LEO) and geostationary
(GEO) satellites, with the data selection tuned to closely match
the EPIC observations in time and viewing geometry. Monthly-
mean and sunlit hemisphere averages are thus available for
longitudinal slicing analyses that match those for the radiative
fluxes. With the EPIC composite data, it becomes possible to see
the actual causes that lead to the radiative climate symptoms.

The key component of this transformation is the 5-km
resolution global composite data product with its optimally
merged together cloud properties from Low Earth Orbit (LEO)
satellites, and from geostationary (GEO) satellites, based on cloud

FIGURE 6 | Hovmöller plots of the EPIC (Left) and ModelE2 (Right) cloudy sky fraction for 2017 and 2018. The Y-scale has time running upward starting with
January 2017 at the bottom through December 2018 at the top. The X-scale is longitude running from 0° E longitude at the left and 0°W longitude at the right. The X-scale
references the GMT of the noon-time Sum, starting at GMT = 0 at the Date Line at the center, proceeding westward to the left as the Earth rotates. In the color bar,
magenta identifies the highest cloud fractions, deep blue the lowest.
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property retrievals using a common set of retrieval algorithms
(Minnis et al., 2008; Minnis et al., 2011). The 5-km composite
data product is aggregated from LEO/GEO data for closeness in
time and viewing geometry to the EPIC observation time, then
convolved to the EPIC grid.

Ancillary data, such as surface type, snow/ice, skin
temperature, and precipitable water, are also included in the
EPIC composite data (Khlopenkov et al., 2017). CERES Edition4
angular distribution models (Su et al., 2015) are then used to
compute SW anisotropic factors for converting EPIC broadband
radiances into reflected SW fluxes, which are integrated over the
sunlit hemisphere to provide a basic calibration reference for
NISTAR measurements, and serve as reference for climate GCM
longitudinal slicing comparisons.

Figure 5 Top Panel shows the seasonal variability for the EPIC
derived all-cloud sky fraction for 2017 and 2018. The highest
cloud fractions are found over the Pacific Ocean (22 GM, black-
dot blue) and over the East-Asia region (3 GMT, black dot-
green), except for the large dip in September-October of 2018
when North America (18 GMT, orange) is surging to its top value
in October-November. The lowest cloud fractions are seen over
the Atlantic West Africa region (13 GMT, black-dot light blue).
We use the term “dayurnal” here to refer to the variability seen at
the Lissajous orbital vantage point during a full day’s rotation of
the Earth, and “dayurnal mean”, for the average over all 24
longitude views (heavy black line), which is a global dawn-to-dusk
diurnal average, given that each longitude view incorporates a
range of diurnal samples from the neighboring longitudes, but its

viewing locality is at the Lissajous orbit. This is to differentiate
this from the term “diurnal mean”, which already has an
established meaning of referring to a local 24-h average.
The saving grace for using this term, is that the dayurnal
mean is identically reproduced for both EPIC and GCM data
sampling.

The Figure 5 Bottom Panel depicts the seasonal variability of
the ModelE2 cloudy sky fraction for the years 2017 and 2018,
which corresponds to the EPIC all-cloud sky fraction that is
shown in the Figure 5 Top Panel. Here again, the one redeeming
feature of the ModelE2 all-cloud sky fraction is that ModelE2
tends to reproduce the overall longitudinal ordering of the EPIC
all-cloud sky fraction results, at least in the NH summer months.
For ModelE2 and EPIC, the highest cloud fractions occur over
East-Asia (3 GMT, black-dot green) and Pacific Ocean (23 GMT,
black-dot dark blue) regions, while the lowest occur over Atlantic
(13 GMT, black-dot light blue) and Africa-Asia (8 GMT, black-
dot magenta) regions. The North America (18 GMT, black-dot
orange) meridians are in between, exhibiting a biannual
variability with maxima occurring in April-May and in
October-November. For ModelE2, the dayurnal amplitude of
the seasonal cloud fraction amplitude is at maximum and also
at minimum during the NH summer months, with strong
constriction of the cloud fraction amplitude, during the NH
winter months. Both EPIC and ModelE2 show a small
increase in cloud fraction going from 2017 to 2018, with the
EPIC cloud fraction increasing by about 1.5%, and ModelE2 by
about 0.5%.

FIGURE 7 | Top Panel: All-cloud cloud-top altitude from EPIC Composite analysis results for the year 2017 (Top Left) and for the year 2018 (Top Right).Bottom
Panel: All-cloud cloud-top altitude (km) from GISS ModelE2 climate simulations for the year 2017 (Bottom Left) and 2018 (Bottom Right) sampled using the Sunlit
Hemisphere Sampling (SHS) simulator and employing the DSCOVR Ephemeris viewing geometry.
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Figure 6 displays the cloudy sky fraction data from Figure 5 in
Hovmöller format with the EPIC cloud fraction at Figure 6 Left,
and the ModelE2 results at Figure 6 Right. The Hovmöller results
basically echo the spaghetti line plot results in showing the
highest cloud fractions over the Pacific Ocean region with the
lowest over the Atlantic, including also much of Europe and
Africa and the eastern parts of North and South America.

In comparing the EPIC cloud fraction variability between the
year 2017 (La Niña) and 2018, there are no significant differences
in small-scale fluctuations between the 2 years. Except perhaps
for a couple of points in April 2017 that appear to be coincident
with similar isolated small-scale points occurring in April 2017 of
the EPIC planetary albedo fluctuations in Figure 3, the 2 years are
similarly quiescent. Given the totally different nature of these two
measurements, it is not necessarily surprising. The EPIC
planetary albedo is derived directly from a single set of
observed spectral radiances. On the other hand, cloud changes
involve more options. For example, with favorable meteorological
conditions for cloud condensation, clouds can increase vertically
in optical depth, rather than spreading out horizontally.
Moreover, for the EPIC cloudy sky fraction, thresholds are

involved in deciding whether a given pixel is declared to be
mostly clear, or mostly cloudy, and that for some threshold,
optically thin clouds might be missed altogether.

For ModelE2, cloud fraction is defined in a still different way.
Based on grid-box-mean meteorological conditions, a cloud
fraction is determined at each grid box. A random number is
then used to decide whether radiative calculations are to be
performed for either a totally clear or totally cloudy grid box.
Thus, as a computing time saving device, ModelE2 clouds are
treated as being fractional in time rather than being fractional in
space. Radiatively, for monthly-mean averages, it all averages out.
Perhaps it is remarkable that the EPIC and ModelE2 cloud
fractions agree as well as they do. As for the strong
constrictions in dayurnal amplitude of ModelE2 cloud-top
altitude during winter months, there appears to be no
explanation.

While changes in cloud-top altitude have only minimal impact
on the planetary albedo, they have a profound effect on the
outgoing LW radiation due to the direct temperature dependence
of thermal radiation that is emitted to space from the cloud-top
region. As a result, cloud-top altitude is an important climate

FIGURE 8 | Hovmöller plots of the EPIC (Left) all-cloud cloud-top altitude from EPIC Composite analysis results for 2017 and 2018, and ModelE2 (Right) from
GISS ModelE2 climate simulations for the years 2017 and 2018, for the corresponding line plots of cloud-top altitude in Figure 7.
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variable that is directly involved in defining the Earth’s radiative
energy balance, but on the thermal outgoing LW radiation side.
Thermal LW radiation is not currently included in the EPIC
Composite data collection, so comparing cloud altitude and its
LW radiative effects is beyond the scope of this model/data
comparison.

Nevertheless, cloud-top altitude is one of the key cloud
properties that are tabulated as part of the EPIC Composite
Data (Su et al., 2018). The cloud property information is retrieved
from multiple imagers in low Earth orbit (LEO) satellites that
include MODIS, VIIRS, and AVHRR, and also geostationary
(GEO) satellites such as GOES-13, GOES-15, METEOSAT-7,
METEOSAT-10, MTSAT-2, Himawari-8. Cloud properties were
deduced using a common set of algorithms based on the CERES
cloud detection and retrieval system (e.g., Minnis et al., 2008;
Minnis et al., 2011). Cloud properties from the LEO/GEO
imagers are merged together to provide a global composite
data product with 5-km resolution by using an aggregated
rating system that optimizes the space-time viewing geometry
characteristics to provide the best match with EPIC observations.
The global composite data are then remapped into the EPIC grid
so as not to degrade the EPIC Composite cloud fraction
information (Khlopenkov, et al., 2017).

The Figure 7 Top Panels display the seasonal and longitudinal
variability of the EPIC Composite cloud-top altitude.
Interestingly, both the highest and lowest cloud altitudes occur

in July, and more broadly, during the NH summer months for
both 2017 and 2018, when the dayurnal cloud-top amplitude has
its largest variability. The highest cloud-top altitudes are
experienced over the West China continental region (6 GMT,
dot-dash magenta), while simultaneously, the lowest cloud-top
altitudes occur over the North America region epitomized by the
Iowa (18 GMT, black-dot orange) meridian. The cloud-top
minima in the dayurnal amplitude are seen in April and
October in 2017, with a somewhat deeper minimum occurring
in October-November of 2018. The annual-mean cloud-top
altitude remains basically unchanged between 2017 and 2018
(registering a small 1.3% increase).

The Figure 7 Bottom Panel shows the seasonal and
longitudinal variability of the GISS ModelE2 cloud-top
altitude. There are some similarities in the overall shape of the
seasonal variability of the cloud-top altitude between the EPIC
and the ModelE2 results, in that the GCM also has a July centered
NH summer maximum, with a mirror minimum, in the cloud-
top dayurnal amplitude, but with a more extended (January to
May) spring minimum, and a shortened (December) winter
minimum. Moreover, there is substantial ramp-up in the
dayurnal-mean of the cloud-top altitude from January to
April, (heavy black line) followed by a steady deline. The same
behavior is seen in the EPIC dayurnal-mean (Top Panel), but
with a greatly reduced amplitude. However, the one big difference
between the EPIC and ModelE2 cloud-top altitude variability is

FIGURE 9 | Top Left: Ice cloud sky fraction from EPIC Composite analysis results for year 2017, and Top Right: ice cloud sky fraction for year 2018. Bottom
Panel Left: Water cloud sky fraction from EPIC Composite analysis results for year 2017, and Bottom Right: water cloud sky fraction for 2018.
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the difference in the longitudinal ordering. For EPIC, cloud-top
altitude maxima are centered over West China (6 GMT, dot-dash
magenta), whereas the ModelE2 cloud-top altitude maxima are
centered over East-Asia (3 GMT, black-dot green). Similarly, the
EPIC, cloud-top altitude minima are centered over North America
region epitomized by Iowa (18 GMT, black-dot orange), whereas
theModelE2 cloud-top altitudeminima are centeredmore over the
Atlantic Ocean region (13 GMT, black-dot light blue).

The apparent shift in longitude between the cloud-top altitude
location between the EPIC observational data and the ModelE2
climate simulation is made far more clearly evident in the
Hovmöller representation of the cloud-top altitude variability,
as demonstrated in Figure 8. The Hovmöller format shows both
the maxima and the minima to be longitudinally aligned, and that
his holds for both EPIC (Left) and ModelE2 (Right). For EPIC,
the ridge of cloud-top altitude maxima for 2017 and 2018 are
persistently located along the 6 GMT (90° E longitude) meridian
running through central Asia (WChina). Similarly, a broad valley
of cloud-top altitude minima for years 2017 and 2018 are
persistently located along the 17 GMT (−75° W longitude)
meridian that runs through New York of the North America

longitude group. Extremes in cloud-top maximum andminimum
altitudes both occur during the NH summer season centered
on July.

A similar pattern in the seasonal and longitudinal variability of
cloud-top altitude appears also to hold for ModelE2, as shown in
Figure 8 Right. The principal difference is a general eastward shift
by about 45° in longitude of the ridge of cloud-top maxima, and
an eastward shift by about 60° in longitude for the cloud-top
minima.

Another difference between EPIC and ModelE2 cloud-top
altitude variability is the more limited range of variability for the
ModelE2 cloud-top maximum altitudes, and a larger range of
variability for the cloud-top minimum altitudes, compared
to EPIC.

Perhaps the biggest difference, but also one of less significance,
is the large difference in the cloud-top altitude depicted in
Figure 7, which shows the mean cloud-top altitude for EPIC
to be about 4 km, while the average cloud-top altitude for
ModelE2 clouds is about 8 km. The reasons for this difference
arise from the limited ability of satellite remote sensing
measurements to detect optically thin clouds, and also the

FIGURE 10 | Left: Hovmöller format ice cloud sky fraction from EPIC Composite analysis results for the year 2018 (Upper Left) and 2017 (Lower Left). Right
Panel: Water cloud sky fraction from EPIC Composite analysis results for the year 2018 (Upper Right), and for year 2017 (Lower Right).
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retrieved, or inferred, cloud-top altitude refers to the optical
depth τ = 1.0 level. For ModelE2 clouds, cloud-top pressure is
known precisely for all of the model generated clouds, which
includes significant numbers of optically thin (τ < 0.1) high
altitude cirrus clouds (that automatically constitute the grid-
box cloud-top). Also, since the ModelE2 diagnostics assign the
cloud layer’s top edge as the cloud-top, this is setting the ModelE2
cloud top at the optical depth τ = 0 level, which further biases
higher the ModelE2 cloud-top results. Since all of the ModelE2
cloud optical depth information is available at the SHS diagnostic
data sampling aggregation, it should be possible to establish a
thin-cloud threshold, compute the optical depth τ = 1.0 level, and
re-define theModelE2 cloud-top altitude to more closely coincide
with the observational cloud-top data.

Also of interest, because the EPIC Composite LE/GEO cloud
products are retrieved separately for liquid water and ice clouds
(Minnis et al., 2021), the differences in the seasonal and
longitudinal variability for the ice cloud the water cloud
altitude can thereby be also examined separately, as done in
Figures 9, 10.

EPIC COMPOSITE: ICE AND WATER
CLOUDS

In addition to the all-cloud category, the EPIC Composite
database also separates clouds into ice cloud and water cloud

categories. The GISS ModelE2 also generates ice and water
clouds, with precise internal knowledge of the ice and water
cloud radiative properties and distribution. But due to
unbridgeable differences in definition, direct comparison of the
EPIC and ModelE2 ice and water cloud properties is not
warranted, as this could lead to false conclusions. The EPIC
Composite ice/water cloud differentiation is tied to the Minnis
et al. (2021) retrieval algorithms that are used in CERES and
MODIS retrievals, and this differentiation would be difficult to
reproduce from within the GCM output data. Accordingly, the
EPIC/ModelE2 cloud property comparisons have been limited
just to the more physically based all-cloud sky fraction and cloud
altitude.

Thus, it makes good sense to intercompare the EPIC
Composite ice cloud and water cloud properties against each
other, with the caveat that an increase in ice cloud fraction could
have come at the expense of a decrease in water cloud fraction,
and vice versa. The same algorithms have been applied uniformly
for years 2017 and 2018, so the relative changes should be
meaningful. Clearly, the La Niña event has significantly
disrupted the cloud distribution, so it is of interest to see how
the clouds have changed between 2017 and 2018, even if just from
the EPIC Composite data. Bender et al.

(2017) have demonstrated the existence of a convincingly
strong positive relationship between cloud albedo and cloud
fraction, i.e., that cloud albedo increases with increasing cloud
fraction, and that the increase in cloud albedo becomes

FIGURE 11 | Top Left: Ice cloud altitude from EPIC Composite analysis results for the year 2017, and Top Right: ice cloud altitude for the year 2018. Bottom
Panel Left: Water cloud altitude from EPIC Composite analysis results for the year 2017, and Bottom Right: water cloud altitude for 2018.
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increasingly greater as the cloud fraction approaches unity,
although this relationship does not have an explicit
dependence on cloud optical depth.

Figure 9 Top shows the seasonal variability of the EPIC ice
cloud fraction, with Figure 9 Bottom showing the
corresponding water cloud variability. Compared to the
roughly uniform all-cloud sky fraction in Figure 5 Top,
counter-acting changes are seen during January-March with
the ice cloud fraction increasing and the water cloud fraction
decreasing in both 2017 and 2018. Interestingly, the longitudinal
ordering of the ice cloud dayurnal variability exhibits similarity
to the ModelE2 all-cloud fraction longitudinal variability
(Figure 5 Bottom) with the East-Asia (3 GMT, black-dot
green) and Central Pacific (23 GMT, black-dot blue) regions
near the top, and the Atlantic region (13 GMT, black-dot light
blue) near the bottom. Also, there is some tendency for the
dayurnal range of the EPIC ice cloud fraction variability to
‘bulge’ in the NH summer months, like the ModelE2 results,
with both the maximum and minimum occurring in July.
Perhaps most notable is the strong constriction in the ice
cloud dayurnal amplitude in November 2018, which again
shows some similarity to the ModelE2 results.

A broad range of longitudes from the Date Line 0 GMT, blue
dot line) to India (7 GMT, long dash magenta line) appear near
the top of the ice cloud sky fraction in Figure 9 Top. It is of
interest that the East-Asia (3 GMT, black-dot green line) and
Central Pacific (23 GMT, black-dot blue) regions also exhibit
some of the sporadic small-amplitude 60-days oscillations during
January-March of 2017 and 2018, and from August to December
of 2017. Longer periods of 4-to-6-months duration, are also
evident in this longitude region. More specifically, the Date
Line longitude (0 GMT, blue dot line) appears to be aliasing
the changing land/ocean fraction, which is being sampled on 1-h
intervals as the Earth rotates (described in more detail in
Figure 15). Also prominent in Figure 9 Top is the long
period ice fraction variability over the West Africa region (13
GMT, black-dot light blue line), which exhibits the lowest cloud
fractions, and is interrupted by some low-amplitude shorter-
period 60–90-days oscillations from November 2017 to
April 2018.

On the other hand, for the water cloud sky fraction in Figure 9
Bottom, shows that for the most part, the North America region
Iowa (18GMT, black-dot orange line) exhibits the largest water
cloud sky fraction from 2017 through 2018, and that similarly the

FIGURE 12 | Left: Hovmöller format ice cloud altitude from EPIC Composite analysis results for the year 2018 (Upper Left) and 2017 (Lower Left).Right Panel:
Water cloud altitude from EPIC Composite analysis results for the year 2018 (Upper Right), and for year 2017 (Lower Right).
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Africa-Asia, East Iran region (8 GMT, black-dot magenta line)
displays the lowest water cloud sky fractions. Both of these
regions also exhibit a couple of the low-amplitude 60-days
oscillations from October 2017 to April 2018, with the Date
Line longitude (0 GMT, blue dot line) also popping up to the top
during this time period. Figure 9 Bottom shows a strong decrease
in the water cloud sky fraction centered on March in 2017 for
essentially all longitudes, broadening toward April in 2018. The
EPIC water cloud fraction accounts for ~ 2/3 of the all-cloud sky
fractions.

Figure 10 shows the seasonal and longitudinal variability of
the ice cloud (Left) and water cloud (Right) sky fraction expressed
in Hovmöller format. The Hovmöller plots show a clear

separation in longitude of the ice cloud and water cloud sky
fraction regions of maximum concentration, with the ice cloud
sky fraction favoring the longitudes spanning the Indian Ocean,
East-Asia, and Central Pacific Ocean, from roughly 45E to 135W.
The water cloud sky fraction dominates from the Eastern Pacific
(135W to the North and South America continent longitude
(45W). The maximum in ice cloud sky fraction occurs in March,
with March 2018 being considerably more intense than March
2017. Consistent with the counteractive nature of the ice/water
cloud phase determination, the ice cloud maxima coincide with
the prominent breaks in the column of the water cloud sky
fraction in March 2017 and again in March 2018. As noted in
Figure 9 Top, the ice cloud sky fraction increased by nearly 5%

FIGURE 13 | Hovmöller ratio contour plots of the percent change for year 2017 relative to reference year 2018 of the EPIC Composite cloud property data for:
Upper Left: the ice cloud sky fraction for years 2017/2018 from Figure 10 left; Upper Right: the water cloud sky fraction for 2017/2018 from Figure 10 right; Lower
Left: the ice cloud altitude (km) for years 2017/2018 from Figure 12 left; Lower Right: the water cloud altitude (km) for 2017/2018 from Figure 12 right.
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from 2017 to 2018, In contrast, Figure 9 Bottom shows essentially
no change in the annual mean of the water cloud sky fraction
from 2017 to 2018, though there are substantial changes in the
longitudinal distribution of the water cloud sky fraction. There is
the appearance of a parallel longitudinal column along the
Central Pacific Date Line (0 GMT) with less intensity but
greater seasonal variability than along the principal water
cloud longitudinal column along 90W (18 GMT). Also of note
is the relative minimum in the ice cloud longitudinal column
occurring in May of 2017 and 2018 when the DSCOVR
Spacecraft is at its northern-most position viewing the
maximum in land fraction. During December-January, when
the Spacecraft is viewing maximum ocean fraction (at 0
GMT), the water cloud sky fraction appears to have a local
maximum.

Figure 11 Top shows the seasonal variability in ice cloud
altitude for the years 2017 and 2018. There is an overall
smoothness and symmetry in the seasonal cloud-top altitude
change with a broad NH summer maximum occurring in July
and a small secondary SH summer maximum in January, with
remarkably little change between 2017 and 2018. The Africa-Asia
region, as epitomized by India (7 GMT, long-dash magenta) and
East Iran (8 GMT, black-dot magenta), has the highest ice cloud
altitude. This is followed by East-Asia (3 GMT, green), Pacific (22
GMT, blue), and Atlantic (13 GMT, light blue), with the North
America (18 GM, orange) exhibiting the lowest cloud-top
altitude. The same longitudinal order holds for 2018, but with
some distortion in the winter months.

Figure 11 Bottom shows the corresponding seasonal
variability of the water cloud-top altitude, which, in contrast
to the ice cloud altitude, exhibits more chaotic variability,
especially for year 2017, which has been identified as the La
Niña year. The water cloud altitude has a broad NH summer
maximum with a secondary SH summer maximum in January,

thus exhibiting what appears to be a biannual oscillation in global
cloud structure. Theminima in the water cloud-top altitude occur
in March-April and in October, which is the same as the ice cloud
seasonal pattern. In 2018, the water cloud summer maximum
narrows, and the minima become deeper and broader.

The longitudinal ordering of the water cloud-top maximum
has East-Asia region as represented by Cambodia (5 GMT, green)
and East China (4 GMT, dash green), at top, followed by
neighboring West China (6 GMT, dot-dash magenta) and
India (7 GMT, dash magenta), with the minima in water
cloud altitude occurring over the East Pacific region, as
represented by West Alaska (23 GMT, black-dot blue). The
raggedness in the 2017 water cloud altitude variability might
be indicative of potential La Niña related activity that is not
present in 2018, but the ice cloud shows no such change.

Figure 11 shows some traces of low-amplitude 60-days
oscillations in ice cloud altitude, at a number of longitudes
from October 2017 to April 2018, with many being 180° out
of phase with each other. Perhaps the most persistent are the low-
amplitude oscillations over the North America region (18 GM,
black-dot orange) beginning in April 2017 and continuing
through 2018. Figure 11 Bottom shows similar 60-days
oscillations at multiple longitudes, but with a somewhat larger
amplitude, the most prominent of those being over the longitude
range from New Zealand (1 GMT, solid blue) to India (7 GMT,
long dash magenta) from June to August of 2017. There are also
oscillations in the January-March time period that might be
related to the EPIC La Niña planetary albedo variability. In
any case, there are far more of the low-amplitude 60-days
oscillations in the 2017 water cloud altitude variability than in
non-La Niña 2018.

Nevertheless, representing the water cloud altitude variability
in Hovmöller format in Figure 12 does not significantly enhance
its discrimination capability to distinguish between the 2017 La

FIGURE 14 | Left: Hovmöller ratio plot of the percent change for year 2017 relative to reference year 2018 for the all-cloud sky fraction, combining the results of the
separate ice cloud and water cloud sky fractions in Figure 13, top left and top right, respectively. Right: All-cloud sky fraction, combining the results of the separate ice
cloud and water cloud altitude in Figure 13, bottom left and bottom right, respectively.
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Niña conditions and the 2018 non-La Niña conditions the same
way that the Hovmöller format could enhance the EPIC planetary
albedo in Figure 3 relative to Figure 2. The purported La Niña
discrimination in Figure 12 Bottom Right panel does exhibit
more variability in 2017 than in 2018, but that variability occurs
more along the time dimension than in longitude.

However, what does seem to be more unusual about
Figure 12, is the near-vertical alignment along longitude lines,
as well as also the strong seasonal alignment. The ice cloud
altitude in Figure 12 Left shows islands of secondary cloud
altitude maxima occurring in December-January along the 7-
to-8 GMT and the 22-to-23 GMT longitudes. December-January
is the time when the EPIC-view is focused most strongly on
Antarctica. The 7-to-8 GMT and the 22-to-23 GMT time periods

correspond to the longitudes of maximum and minimum
planetary albedo in Figure 2 Top, respectively. The seasonal
islands of the strong NH summer maxima in 2017 and 2018 both
exhibit a steep rise to maximum in May, and an equally steep
decline in August-September. There is a similarly steep
longitudinal gradient for these NH summer maxima the
extends from May on to September at their eastern edge at
120° W longitude, while tapering off more gradually at their
western edge, after spanning nearly the entire globe. Broad
regions of ice cloud minimum altitude extend from October to
April of the following year. They appear to be offset from the
longitude of ice cloud maxima by essentially 180°. The ice cloud
altitude variability shows little change between 2017 and 2018,
except for the increase in June over England (0 GMT).

FIGURE 15 | Upper Left: Line plot of the ModelE2 ocean fraction for the year 2017. Upper Right: Line plot of the ModelE2 ocean fraction for the year 2018.
Lower Left: Hovmöller contour map of the ModelE2 ocean fraction for year 2017. Lower Right: Hovmöller contour map of the ModelE2 ocean fraction for year 2017.
The seasonal change in ocean fraction is due to the DSCOVR Spacecraft Lissajous orbital motion as denoted by the Sub-Satellite latitude at figure bottom. The tiny
differences in the line and Hovmöller plots between years 2017 and 2018 arise from the slow orbital drift of the DSCOVR Spacecraft in its Lissajous orbit.
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On the other hand, it is the water cloud altitude (Figure 12
Right) that exhibits the more significant features that differentiate
the La Niña year 2017 from 2018. Most noticeable are the 60-days
(time dependent) oscillations that occur during March to August
of 2017 over a broad swath of longitudes reaching from the
Central Pacific to the Indian Ocean (0–9 GMT). These are the
same time dependent oscillations that were readily identifiable in
the line plot in Figure 11 Bottom. There appears to be some
degree of correlation of this time dependent variability of the
water cloud altitude with the water cloud sky fraction variability
in Figure 9 Bottom Left, and in Figure 10 Bottom Right, but not
with the EPIC planetary albedo variability in Figure 3 Bottom
Left. Also, the prominent February-March longitudinal
variability feature in the EPIC planetary albedo, is absent in
the water cloud altitude plot, but still coinciding the overall space-
time location of this feature.

There is the additional June-July longitudinal wave feature in
Figure 9 Bottom Right, appearing over the Eastern Pacific Ocean
with peak-to-peak variability (17–21 GMT) extending over
7,000 km. Similar variability in water cloud altitude also
appears in the year 2018 in March-April, also over the Eastern
Pacific Ocean region.

However, the most curious feature of the water cloud altitude
variability is the apparent longitudinal discontinuity at the 0
GMT Date Line, with the water cloud altitudes rising steeply to
the west, and decreasing steeply to the east. If this were really real,
it would require an explanation as to the underlying cause. It is
also possible that this demarcation might be a selection criteria
artifact in the EPIC Composite data matching process that
switches between the different LEO/GEO data sources to select
the closest match to the EPIC image time and viewing geometry.

The artificial-looking demarcation and longitudinal alignment
along the 0 GMT meridian that stands out prominently in
Figure 12 Right, is evident, a least to some extent, in previous
Hovmöller plots of EPIC data, such as the sharp longitudinal
gradient in the planetary albedo near the 0 GMTmeridian during
January-March of 2018 in Figure 3 Left, but is not reproduced in
the Hovmöller ratio plot in Figure 4 Left. This appears to be an
interpolation bias that arises from interpolating EPIC image data
points to a uniform GMT grid. Due to telemetry limitations, there
are only 13 EPIC images on some days, instead of the normal 22
images per day, which creates wider data gaps in the 0 GMT
vicinity that need to be bridged. This interpolation bias persists
from year to year and appears to be more pronounced for larger
gradients near 0 GMT.

The basic objective of the Hovmöller ratio plots is to isolate the
atmospheric and cloud property changes that take place between
the 2017 (La Niña) and 2018, by removing the common seasonal
and longitudinal variability due to the Lissajous orbital
perspective, as well as the surface contributions from
Antarctica and continental boundaries that undergo little
change. In the process, data artifacts common to both years
are also eliminated.

The Hovmöller ratio plots in Figure 13 show little evidence of
longitudinal demarcation for the EPIC Composite ice cloud and
water cloud sky fraction and cloud altitude results from Figures
10, 12. Figure 10, with cloud fraction uniformity near 0 GMT,

had little evidence of longitudinal artifacts from the start. The
presence of strong cloud fraction gradients and longitudinal
artifacts near 0 GMT in Figure 12, and their elimination by
the Hovmöller ratioing tends to confirm their nature as
interpolation biases.

The Hovmöller ratio plots for the individual EPIC Composite
ice cloud sky fraction and altitude (Figure 13 Left, Top and
Bottom), and the water cloud sky fraction and altitude (Figure 13
Right, Top and Bottom), are directly comparable to the Figure 3
EPIC planetary albedo Hovmöller ratio. These four individual
cloud components show significant variability and have only
several features that coincide with the EPIC planetary albedo
features. Moreover, they have but a few features that coincide
with each other, and show nothing that might resemble a La Niña
signature. Yet, acting together, they must reproduce the space-
time variability of the planetary albedo, demonstrating
convincingly that independent component comparisons are no
substitute for a wholistic quantity.

The Hovmöller ratio plot in Figure 14 Left is the 2017/2018
ratio of the all-cloud EPIC Composite sky fraction from Figure 6
Left, which is also the combined result of the individual ice cloud
and water cloud sky fraction components from Figure 13 Top.
The EPIC Composite database contains only the all-cloud and the
ice cloud components. Given that it is a binary choice for database
clouds to be either ice or water cloud, the water cloud variable is
defined as a separate entity by the difference between the all-cloud
and the ice cloud categories.

Interestingly, the all-cloud sky fraction ratio in Figure 14 Left
compares far more favorably with the EPIC planetary albedo ratio
(Figure 3 Left) than the ice cloud and water cloud sky fraction
ratios considered separately as in Figure 13 Top. The two most
prominent features of the EPIC planetary albedo ratio are the
strong February albedo decrease stretching from 180° W to 0° W
longitude, and the strong October increase in albedo that
stretches from 90° E to 135° W longitude. Both of these year-
2017 “La Niña” features are reproduced in the all-cloud sky
fraction ratio plot, especially the February strong decrease in
sky fraction, also stretching from 180° W to 0° W longitude. Since
cloud fraction correlates well with cloud albedo (Bender et al.,
2017), these changes in cloud fraction are consistent with the
space-time changes in the EPIC planetary albedo variability.
However, there is an additional “strong decrease in all-cloud
sky fraction” occurring in July from 135° W to 45° W longitude in
the all-cloud fraction ratio, which has no similar feature in the
EPIC planetary albedo ratio.

Similarly, the all-cloud altitude ratio in Figure 14 Right also
compares far better with the EPIC planetary albedo ratio pattern
of variability than the separate ice cloud and water cloud altitude
ratios shown in Figure 13 Bottom. The improved agreement is
not specifically in achieving a closer match-up for the principal
features, but rather in a more general alignment of the peripheral
pattern of variability surrounding a more or less quiescent Pacific
Ocean region during the April to September time period. Since
the cloud altitude change by itself has only minimal impact on the
planetary albedo, the actual improvements in agreement with the
planetary albedo variability patterns must originate from
radiative effects that arise from changes in the other
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accompanying cloud properties. The cloud altitude changes
would more directly affect the outgoing LW thermal radiation,
which may potentially have its own unique “La Niña” response
signature.

Despite the apparent agreement of the all-cloud sky fraction in
reproducing the principal February decrease in planetary albedo,
there is a potentially significant difference in that the prominent
30° period longitudinal oscillations in the EPIC planetary albedo
variability, which, except for the interval from 45° E to 180° E,
effectively span the entire globe, but which are not reproduced in
the all-cloud sky fraction variability. It may be that the reason for
this is due to differences in data resolution. The EPIC planetary
albedo, or rather the reflected solar SW radiance measurements at
the pixel level are unitary wholistic measurements that record and
tabulate the reflected radiances at a high digital resolution. Cloud
cover, on the other hand, is the result of a binary decision of clear
of cloudy, depending on some arbitrary threshold. There is no
way for the retrieval algorithm to know if at the sub-pixel level,
the entire pixel is filled with an optically thin cloud, or if it is only
a small fraction of the pixel that may contain an optically thick
cloud. Thus, it may be that for reflected solar SW radiation, as a
unitary wholistic measurement, tiny changes that contain the
global-scale oscillation signal can be reliably tabulated and
recorded across the entire sunlit hemisphere, whereas such
tiny changes that might be present in the different cloud
properties, never get a chance to be tabulated by getting wiped
out by the clear/cloudy threshold.

From the foregoing, it appears that it may be the unitary
wholistic nature of the EPIC radiance measurements that enable
the planetary albedo data to provide the best representation for
comparing the year-to-year space-time variability that may be
contained within the sunlit hemisphere EPIC measurements.
Such comparisons of year-to-year changes in the EPIC data
planetary albedo are being examined here to see if
characteristic differences can be identified between 2 years of
data, such as the 2017 La Niña year and 2018, which is
representative of more ENSO-neutral conditions. While cloud
radiative properties may be the fundamental building blocks of
the planetary albedo, cloud properties do not vary lockstep as
clouds change in the climate system. Thus, selection of a cloud
property to serve as an indicator in the year-to-year comparisons
does not lead to greater clarity in interpretating the comparison
results, but rather serves to magnify the diversity of the different
cloud property radiative effects. Knowing quantitatively how the
different cloud properties contribute toward the planetary albedo
is important in itself, but the planetary albedo is also robust as a
measure of the Earth’s global energy balance.

The changing DSCOVR-view Lissajous orbital perspective of
the EPIC data is a significant contributing factor to the seasonal
and longitudinal variability that is seen in the longitudinal slicing
comparisons of EPIC and ModelE2 data. Averaging data over the
Earth’s sunlit hemisphere averages out meteorological weather
noise as well as the latitudinal and longitudinal information. The
rotation of the Earth retrieves the longitudinal component of the
planetary scale variability via longitudinal slicing. Likewise, some
significant fraction of the latitude dependent information is
retained by the combined change in solar declination and the

Lissajous orbital motion of the DSCOVR Satellite as depicted by
the sub-satellite latitude at figure bottom (Figure 15 Top) that is
varying from its southern extreme position in January, to its
northern extreme in May, and then back to its southern extreme
in December.

The land/ocean fraction is another significant contributor to
the seasonal and longitudinal variability in the longitudinal
slicing comparisons of EPIC and ModelE2 data. Except for a
small seasonal change in sea ice, the ocean fraction is static in
time. Hereby, we identify and quantify the net effect that these
otherwise invariant contributors have on the line format and
Hovmöller contour map comparisons between the EPIC
observational, and the ModelE2 climate GCM results for
planetary albedo and cloud properties.

Figure 15 Top is the line plot of the (static) ocean fraction for
years 2017 and 2018. As to be expected, the Pacific Ocean region
(black-dot blue) corresponds to the largest ocean fraction, and the
Africa-Asia region (black-dot magenta) the smallest with the
Atlantic region (black-dot light blue) nearby. The East Asia
(green) and the North and South America regions (orange)
undergo significant seasonal variability, showing time
dependent oscillations of 4-to-6 months duration, in particular
during the July to November time frame. More importantly, the
dayurnal and seasonal variability of the ocean fraction does not
generate the higher frequency 60–90 days oscillations that are
abundantly present in the EPIC planetary albedo and cloud
property data.

Figure 15 Bottom shows the Hovmöller contour map of the
(static) ocean fraction for year 2017 (Left) and for 2018 (Right).
The objective of these plots is to show that while the seasonal
effects of the Lissajous orbital and solar declination motion are
significant, the effect of the year-to-year Lissajous orbital shift is
practically imperceptible. The minimum ocean fraction occurs in
May over Iraq (9 GMT). With world map superimposed, the time
dependent oscillations in the line plot are visible in the East Asia
region from May to September, as is the constriction in ocean
fraction near the 0 GMT Date Line. No longitudinal oscillations
are discernable.

DISCUSSION

The current model/data comparison study arose from a brute-
force effort to calibrate the NISTAR Band-B full-disk sunlit
hemisphere measurements. Fully calibrated; with the ability to
reliably convert near-backscattered radiances into SW fluxes,
NISTAR data would, on their own, be able to reproduce the
EPIC planetary albedo results in Figures 2, 3. To this end, Su et al.
(2018) converted the EPIC image 1024 × 1024 narrow-band,
backscattered radiances into the 12 × 24 tables of monthly-mean,
SW reflected hemisphere-mean fluxes for years 2017 and 2018,
that constitute the planetary albedo comparisons of this study.

Spectral radiances from 5388 EPIC images for 2017, and 5,351
for the year 2018 were processed and converted into the 12 × 24
(monthly-mean, GMT-hourly) tables of reflected SW fluxes. The
EPIC-viewable sunlit-hemisphere fractions generated annual-
means of 204.63 and 202.90 Wm−2, respectively, with ~ 1.0
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Wm−2 standard deviation. The EPIC Composite cloud properties
have similar data reliability out to the third decimal. Because of
Lissajous orbital motion, the EPIC-viewable fraction of the sunlit
disk varies from ~ 92 to ~ 97 percent of the full disk, introducing
some uncertainty as to the total full disk reflected radiation.
Accordingly, both the EPIC and the ModelE2 annual-mean
planetary albedo have been normalized to the 29.1% CERES
value (Loeb et al., 2018) to focus more on comparing the space-
time patterns of variability rather than interannual change.

Moreover, it is important to note that planetary albedo
contains both atmospheric and surface contributions. The
DSCOVR vantage point combined with the seasonal change in
the tilt of the Earth’s rotational access results in a time changing
contribution from the polar regions which maybe further
enhanced in the EPIC observations due to the backscatter
viewing geometry. Explicit treatment of the scattering
enhancement at near back-scattering angles introduces an
uncertainty in both the calculation of the shortwave flux from
the EPIC observations and the model. Thus, while the signature
of these surface contributions is apparent in the figures shown in
this paper, quantitative evaluation of these surface driven model/
observation differences requires additional research and is
beyond the scope of this investigation. To ensure that we are
not mixing this type of surface contribution into our analysis, we
examine the ratios two individual years since orbital and surface
contributions will be minimized allowing us to focus on the
atmospheric changes.

With quasi-chaotic meteorological weather-scale noise
averaged out, the EPIC and the similarly sampled ModeE2
data are uniquely positioned for a climate-style model/data
comparison with excellent space-time data sampling self-
consistency. EPIC image acquisition on the near-hourly basis
coincides closely with the climate GCM (GISS ModelE2) 1-h
radiation time-step radiation calculations that are performed
‘instantaneously’ for all GCM grid boxes.

The only real requirement on the part of the GCM in the sunlit
hemisphere averaging of output data, is to use Solar and
DSCOVR Satellite Ephemeris information to impose Lissajous
orbital viewing geometry and projected area weighting of the
individual grid box contributions to the sunlit hemisphere
average. All this ensures that the diurnal cycle is sampled the
same way by the GCM as by EPIC, with high noon sub-satellite
meridian, and sliding noon-to-dusk, and noon-to-dawn, diurnal
contributions from neighboring longitudes to east and to the
west, properly aggregated.

In this way, weather noise and the latitudinal and longitudinal
dependence in the sunlit hemisphere are averaged out.
Differences in spatial resolution between the EPIC and GCM
data are similarly side-stepped. Remaining in the data is the
seasonal and planetary scale variability. Longitudinal dependence
is made accessible by the rotation of the Earth. Some latitudinal
dependence is captured by the seasonal change in solar
declination and also as a result of the Lissajous orbital motion
of the DSCOVR Satellite.

The Figure 2 line plots are the first longitudinal slicing EPIC
and ModelE2 planetary albedo comparisons, showing the
seasonal change in dayurnal variability of the planetary albedo

in 1-hourly time-steps as the Earth rotates. The immediate take
away of this comparison is that while the overall envelope of
planetary albedo variability is comparable, the ModelE2 dayurnal
amplitude is too large during the northern hemisphere (NH)
summermonths and too small during the winter months, and it is
only during the winter months that the longitudinal ordering of
the dayurnal variability matches that of EPIC.

The biggest mismatch is that during the NH summer months,
ModelE2 significantly overestimates the planetary albedo, hence
clouds, over the ocean areas, and underestimates clouds over the
continental land areas. This was a problem stemming from the
use of a globally uniform relative humidity threshold in ModelE2
that the GISS GCMmodeling group had been aware of, and have
already implemented a rigorous physics-based cloud treatment
for the GISS ModelE3 version. The Figure 2 comparison makes
this a quantitative climate GCM performance diagnostic showing
the largest overestimate to be over the East-Asia region (3 GMT,
black-dot green line), while the EPIC data show t the maximum
NH summer planetary albedo to be occurring instead over the
continental Africa-Asia region (8 GMT, black-dot magenta line).

The model used in this study was the GISS coarse-grid coupled
atmosphere-ocean 4° x 5° ModelE2 version (Schmidt et al., 2014),
utilizing a mass-flux cumulus parameterization that is based on a
cloud base neutral buoyancy flux closure originally described by
Del Genio and Yao (1993), with stratiform clouds based on a
Sundqvist-type prognostic cloud water approach, with diagnostic
cloud fraction (Del Genio et al., 1996). Tuning is used to bring the
empirical parameterizations of physical processes in acceptable
agreement with observations (Schmidt et al., 2017). This involves
establishing a critical relative humidity criteria for the onset of
cloud condensation in a GCM grid box, based on the statistical
overlap of water vapor and temperature probability distributions
to achieve relative humidity conditions for cloud condensation.

Replotting the planetary albedo data in Hovmöller format in
Figure 3 Left produced an unexpected result by bringing out
detail in the EPIC planetary albedo variability that was not
apparent in the Figure 2 line plots. It turns out that there is
far more of the characteristic (monthly, and 30° longitude)
variability in planetary albedo in year 2017, compared to the
more quiescent appearance in 2018. Most notable it the strong
decrease in planetary albedo during February 2017 over the
Central Pacific Ocean longitudes.

This difference in planetary albedo variability between the
years 2017 and 2018 is further enhanced and isolated to
atmospheric changes by the 2017/2018 Hovmöller ratio plot in
Figure 4 Left, by canceling out the seasonal variability patterns
that are common to both years (e.g., the surface contribution
from Antarctica shown by the magenta areas in Dec/Jan evident
in the upper left of the two right panels of Figure 3). The sharp
February decrease in the EPIC planetary albedo stretches from
180° W to 0° W longitude, which exhibits superimposed (30°

extent) longitudinal oscillations. There is also a strong October
increase in the planetary albedo that stretches from 90° E to 135°

W longitude.
Year 2017 has been identified as a La Niña year (Zhang et al.,

2019), which is typically associated by the appearance of colder
sea surface temperatures (SSTs) in Central and Eastern Pacific,
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with strong winds blowing ripples of warmwater westward. Thus,
there is reason to associate the increased variability in the EPIC
planetary albedo occurring in the year 2017 relative to 2018 with
ongoing La Niña activity. Since clouds are principal contributors
to planetary albedo, it then becomes pertinent to investigate is
there are characteristic cloud changes that might be associated
with La Niña conditions. This is where the EPIC Composite
database of cloud properties generated in the Sue et al. (2018)
conversion of the EPIC spectral radiances into radiative SW
fluxes, provide the essential context of how the cloud radiative
properties might have changed between the 2017 La Niña year
and 2018.

Figure 5 Top shows a 1.5% increase in the EPIC all-cloud sky
fraction, with most of it occurring in March of 2018, and some in
December of 2018. Also, Figure 7 Top shows the corresponding
increase by 1.3% in the all-cloud cloud-top altitude. The EPIC
Composite database breaks down of the cloud properties into ice
and water cloud categories. Thus, Figure 9 shows the ice and
water cloud changes in cloud fraction to be a 4.8% increase for the
ice cloud fraction, and a 0.25% decrease for the water cloud
fraction in going from 2017 to 2018. Similarly, Figure 11 shows
the ice cloud altitude increasing by 0.7%, and the water cloud
altitude decreasing by 1.9% from 2017 to 2018.

Hovmöller contour plots of the EPIC cloud property
variability for years 2017 and 2018, along with the
corresponding ModelE2 cloud property variability, are shown
in Figure 6 and Figure 8 for the all-cloud sky fraction and the all-
cloud altitude, respectively. There is general agreement between
the EPIC and ModelE2 cloud fraction variability, although
impacted by the ModelE2 longitudinal land/ocean cloud
distribution differences relative to the EPIC data. However, the
all-cloud altitude comparison in Figure 8 shows an eastward shift
by ~ 45° in longitude of the longitudinally aligned all-cloud
altitude maximum and minimum all-cloud altitude ridges in
the ModelE2 data compared to EPIC. It is possible that this
might also be related to the ModelE2 land/ocean cloud
distribution problem.

However, the apparent shift by nearly 90° between the EPIC ice
cloud and water cloud longitudinal sky fraction distribution
maxims and minima locations in the Figure 10 Hovmöller
plots could well be real, since the cloud ice and water phase
separation in the EPIC Composite database is a binary
differentiation. On the other hand, the apparent longitudinal
demarcations in the Figure 12 Hovmöller plots along the 0 GMT
meridian for the ice and water cloud altitude, in both 2017 and
2018, appear to be interpolation artifacts arising from
interpolation between sparse EPIC data points in the 0 GMT
vicinity where wider data gaps exist due to telemetry limitations.
The fact that these longitudinal discontinuities are all eliminated
in the Figure 13 by the Hovmöller 2017/2018 ratio plots, which
cancel out any variability that is common to both years.

The Hovmöller ratio plots in Figure 13 for the ice and water
clouds properties and Figure 14 for the all-cloud cases, of year
2017 relative to 2018, are designed to extract changes in cloud
properties of the 2017 La Niña year relative to 2018 ENSO-
neutral conditions. These Hovmöller ratio plots, along with the
Figure 4 Left Hovmöller ratio plot of the EPIC planetary albedo,

describe the relationship of planetary albedo, and the La Niña
impact, with respect to variability changes in Earth’s global
energy balance, where the planetary albedo has a unitary
wholistic relationship to the global energy balance, and so
apparently does the La Niña impact. This makes the planetary
albedo an adequate representative of the La Niña impact, and thus
a convenient indicator of La Niña activity. Individually, cloud
properties are only partial contributors to the planetary albedo,
and thus can only account for a part of the La Niña impact on
planetary albedo, and in proportion to their contribution.

Thus, the all-cloud sky fraction Hovmöller ratio in Figure 14
Left shows remarkable similarity to the EPIC Hovmöller ratio in
Figure 4 Left, in agreement with the Bender et al. (2017) results
that show a close relationship between cloud fraction and cloud
albedo. The all-cloud altitude Hovmöller ratio in Figure 14 Right
also shows some similarity to the EPIC Hovmöller ratio results,
even though the cloud altitude, by itself, makes no significant
contribution to the planetary albedo. The cloud altitude is
however a principal contributor to the outgoing LW thermal
radiation. Hence, the reason for the similarity of cloud altitude
Hovmöller ratio to the planetary albedo variability must be
implicit though its LW thermal impacts, which are not
addressed in this study.

On the other hand, the Hovmöller ratio plots in Figure 13
show little resemblance to the EPIC Hovmöller ratio in Figure 4
Left, thus confirming their role as minor independent
contributors to the EPIC planetary albedo, or as indicators of
La Niña activity. Still, like the planetary albedo, they continue to
have their unique role as observational constraints in climate
GCM diagnostic comparisons. But even in this role, the
contributing constituents are not equal. Having precise self-
consistent space-time sampling is not enough. There must also
exist a close agreement in the physical definition of the climate
variables that are being compared in the longitudinal slicing
comparisons between the observational retrieval results and
their corresponding climate GCM equivalents.

Cloud fraction and cloud-top altitude are undoubtedly the
most robust of the cloud properties, as has also been corroborated
by the intercomparison of the principal satellite and ground-
based cloud datasets using comprehensive spectral analysis
techniques (Li et al., 2015). Yet even for these cloud
properties, there are substantial issues regarding the self-
consistency of the operational definition of these quantities
between observational limitations and climate GCM
representations. For example, in observational retrievals,
arbitrary thresholds are involved in deciding whether a given
pixel might be mostly clear or cloudy, or if some optically thin
atmospheric layer is really a cloud, or an aerosol.

Thus, the EPIC/ModelE2 cloud fraction and cloud altitude
comparisons are only partially successful due to threshold and
physical definition differences that still persist in the
comparisons. The large difference in cloud-top altitude in
Figure 7, where the ModelE2 mean cloud altitude is ~ 7 km,
compared to ~4 km for the EPIC results, is one such example. The
cloud-top altitude in satellite retrievals is typically determined by
the pressure level where the cloud optical depth is unity. In
ModelE2, the pressure level of the top-most cloud is known
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precisely. But that top-most cloud is often an optically thin cirrus
cloud that might not even be recognized as a cloud in satellite
retrievals. Knowing whether the cloud altitude is being defined
relative to sea level, or to the surface topography is another source
of uncertainty.

The cloud water/ice phase is another important cloud property
in tracking the dynamically active storm regions that are typically
accompanied by the presence of ice clouds. However, the ice
cloud identification, by means of cloud-top temperature, or other
means, refers only to the cloud-top region, with no information
available on the rest of the cloud structure. Thus, whatever is
inferred at the top-cloud level, is what is used to separate the all-
cloud sky fraction into its ice cloud and water cloud components.
Differentiating clouds from aerosol also impacts the cloud
fraction definition.

In ModelE2, differentiating between clouds and aerosols is no
problem. However, as for the ModelE2 cloud fraction, clear and
cloudy grid-boxes are accurately tabulated. But, ModelE2 uses a
fractional-in-time vs fractional-in-space cloud radiative fraction
definition that go back to the early days of GCM development
(Hansen et al., 1983) whereby (to save computing time) grid-box
level fractional clouds are interpreted as being fractional-in-time
with a random number selection deciding when to perform
radiative calculations (with 100% cloud cover). On a monthly-
mean basis, the fractional-in-time approach achieves the same
effective cloud fraction as the fractional-in-space approach, but at
a significantly reduced computing cost.

The cloud optical depth and cloud particle size are the more
difficult cloud properties to determine by remote sensing. Optical
depths for ice clouds in particular are difficult to retrieve from
remote sensing radiance measurements. The radiative transfer
calculations are tractable only for plane-parallel geometry and for
homogenous clouds, thus requiring numerous approximations
and assumptions. Also, ice clouds come in many shapes and sizes
that range from rosettes to columns to oriented flat plates.

The cloud properties from EPIC cloud composite data are
compiled from multiple GEO and LEO imagers (Minnis et al.,
2008, Minnis et al., 2021), and are dominated by GEO
contributions because they are most closely matched to the
EPIC image time especially within 60°S-60°N. Thus, the cloud
properties within EPIC cloud composite data are subject to
changes in GEO imagers that occur from year-to-year, as in
early 2018, when Meteosat-10 switched to Meteosat-11, and
GOES-13 switched to GOES-16. Since these changes in GEO
imagers also involve retrieval algorithms, some of the changes in
cloud properties between 2017 and 2018 could be due to changes
in GEO imagers and algorithms.

The EPIC Composite cloud optical depths and particle sizes
show suspiciously large discontinuous decreases between 2017 and
2018. Also, the physical definition of the cloud optical depths and
particle sizes between the EPIC Composite cloud data andModelE2
results differ significantly. Accordingly, we have not included these
cloud properties in the EPIC/ModelE2 comparisons.

We have examined this type of problem previously by using
empirical orthogonal function spectral analysis techniques (e.g.,
Li et al., 2015 for cloud properties; and Li et al., 2014a, Li et al.,
2014b for aerosol space-time variability), which are specifically

designed to quantitatively establish correlations, and to identify
and quantify data artifacts in global datasets that may arise from
calibration and algorithm changes. The Li et al. (2015) study
verified that cloud fraction and cloud-top altitude variability was
robust among the different cloud property determinations, but
that the cloud optical depth and cloud particle size
determinations were problematic. Such spectral analysis
techniques should also be applied to the EPIC composite
cloud property data, especially since they are all independently
retrieved, to identify possible data artifacts.

Also relevant to the 2017 La Niña is the finding by Loeb et al.
(2021) of a decrease in the Earth’s absorbed solar radiation by
about 0.8 Wm−2 going from 2017 to 2018 (which translates to a
global-mean planetary albedo increase by about 0.23% in going
from 2017 to 2018). Loeb et al. attribute most of the global
decrease in absorbed solar radiation to clouds, noting that the
Niño 3.4 SST index was decreasing in 2017, and increasing during
2018. The EPIC Composite all-cloud sky fraction increase by
1.5% is fully consistent with an increase in planetary albedo. The
increase in all-cloud altitude by 1.3 % would have no significant
impact on the planetary albedo. But the possible decrease in the
cloud optical depth, if true, would imply a planetary albedo
contribution in the downward direction.

On the climate GCM side of the ledger, a basic closure exists
naturally since the GCM planetary albedo automatically includes
the radiative contributions from all contributors from the ground
on up. Moreover, the GCM explicit radiation modeling capability
would make attribution calculations possible, which would make
the model/data comparisons a two-way street. But there toomany
missing pieces of information from the observation side to make
reliable closure calculations a reality.

For successful longitudinal slicing comparison, the key factors
that assure self-consistent space-time sampling are to replicate the
viewing geometry of the DSCOVR/EPIC imaging of the Earth’s
sunlit hemisphere in the GCM output data sampling, and to align
the timing of the model/data comparison for the same identical
GMT longitudinal sequencing. Also, the closer the match between
the model and data of the physical definition of the variable that is
being compared, the more effective the comparison. But there is
also a more subtle factor, and that is a numerical detail in how the
integration over the sunlit hemisphere is performed. As a case in
point, there is a large difference in planetary albedo between EPIC
and ModelE2 during December-January when the DSCOVR view
is turned most strongly toward the Antarctic ice cap. Both Figures
2, 3 show the ModelE2 albedo in this region to be significantly
lower than that of EPIC. Does this mean that the surface albedo of
Antarctica in ModelE2 is much too low, or is EPIC overstating the
Antarctic contribution? The Hovmöller ratio plot in Figure 4 does
not show any interannual variability, suggesting either a surface
contribution, or artifact in the model, or data processing, common
to both years, that cancels out in the Hovmöller ratio.

The most plausible explanation is some mismatch in the sunlit
hemisphere integration. Once the EPIC image pixels and GCM
grid boxes corresponding to the DSCOVR-view geometry are
determined, how specifically the integration over the viewable
area is performed is not a sensitive issue, as long as it is the
same for both EPIC and ModelE2. This may not be the case and

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 2 | Article 78852521

Carlson et al. Unique Observational Constraints From EPIC

292

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


could be further investigated by comparing the EPIC sunlit
hemisphere-mean to the NISTAR full-disk measurements, since
NISTAR sees the sunlit hemisphere as a projected area. Still further,
there is also a small correction to the viewable fraction of the sunlit
hemisphere due to the changing Earth-Satellite distance because of
the radial component of the Lissajous orbital motion. Being beyond
the scope of this investigation, these details will be examined in
future studies of EPIC and NISTAR data comparisons.

LOOKING AT DATA: WHAT IS THERE
TO SEE?

Different views of data stem from different capabilities and point
to different objectives to extract information that may be
submerged. The relatively coarse (4° x 5°) resolution planetary
albedo and cloud cover maps of the GISS ModelE2 in Figure 1,
and of the corresponding observational data, illustrate the
qualitative nature of these comparisons. Nevertheless, they
demonstrate the fact that climate GCMs, like the real world,
operate in quasi-chaotic fashion. Not shown are the 1024 × 1024
higher resolution full-disk EPIC images of the sunlit hemisphere
of the Earth, which are all readily available on the internet at
https://epic.gsfc.nasa.gov.

No two EPIC images are alike. They show the evolving quasi-
chaotic nature of the climate system. Figure 1 Bottom addresses
the energy balance of the climate system in response to the
seasonal changes in solar radiative forcing, but only in a
global-mean sense. This is where the unique DSCOVR
Mission viewing perspective makes significant improvement in
model/data comparison possible.

For Figures 2, 3, the input data are identical, i.e., the same 12 ×
24 monthly-mean tables of the longitudinally sliced, climate-
quality planetary albedo with the weather noise averaged out.
The plotted results look very different, but are complementary.
They show different aspects of the climate system variability with
optimized focus directed to isolating these different aspects.

The important feature in the Figure 2 line plots is the
quantitative nature of comparison for the seasonal dependence
of the dayurnal amplitude variability. In Figure 2, there are
24 color-coded curves, one for each hour of GMT, or every
15° of longitude (far beyond the canonical line limit that can be
counted on the fingers of one hand). These longitude curves are
grouped into five contiguous regions, with individual liens further
differentiated by their line structure, and tagged by a geographic
location in addition to their GMT tag. The results show that the
highest planetary albedos occur over the Western China to Egypt
(6–10 GMT, magenta) region during NH summer months, while
the GISS ModelE2 has the highest planetary albedos occurring
over the East Asia and Western Pacific (2–5 GMT, green) region,
implying unequivocally that MoelE2 overestimates clouds over
the ocean areas, while underestimating clouds over the
continental land areas.

The Figure 5 EPIC cloud fraction line plot shows low
amplitude oscillations for virtually the entire year of 2017 to
February 2018 over the Central Pacific (23 GMT, black-dot blue
line), and perhaps also over the Indian Ocean (8 GMT, black-dot

magenta line). Also noticeable are the October 2017 to October
2018 cloud fraction oscillations over the North America
longitudes (18 GMT, black-dot orange line). The EPIC cloud
altitude plot in Figure 7 also exhibits low amplitude oscillations
from roughly October 2017 to June 2018 at nearly all of the
longitudes. Most prominent are the December 2017 to April 2018
oscillations over Japan (3 GMT, black-dot green line) and West
Africa (13 GMT, black-dot light blue line) that are virtually 180°

out of phase.
This is where the Hovmöller (1949) contour maps

demonstrate their worth. They are designed to display and
study the principal patterns of the climate system variability
by averaging out the latitudinal dimension over its range, and
plotting the results as contour maps with time running downward
along the Y-axis, and with the X-axis displaying the longitudinal
dependence. The EPIC data also get averaged over the
longitudinal dimension in the sunlit hemisphere averaging
(which eliminates the weather noise). But the rotation of the
Earth preserves the longitudinal dependence of the large intra-
seasonal changes that occur in the climate system. By accounting
explicitly for the longitudinal location of the same 12 × 24 data
points used in the Figure 2 line plots, a remarkably different
picture emerges in the Figure 3 Hovmöller contour maps for the
2017 and 2018 planetary albedo variability. There is now a much
more structured difference in the EPIC seasonal variability of
planetary albedo that clearly differentiates the 2017 La Niña year
from the more quiescent variability that is the characteristic norm
for 2018.

The Hovmöller ratio plots in Figure 4 cancel out the basic
seasonal climatological variability to further isolate the La Niña
signature. This clearly identifies February over the Central Pacific
(21–24 GMT), and October over the Western Pacific Ocean (0–5
GMT), as the months exhibiting the largest change in planetary
albedo based on the EPIC data.

The EPIC data are unique in several important ways. First, the
EPIC measurements from the DSCOVRmission vantage point at
the Lagrangian L1 point provide a clear view of the Earth’s sunlit
hemisphere, including a full view of the daytime diurnal cycle of
cloud changes across the entire sunlit hemisphere. Second, the
EPIC backscattered spectral radiance measurements are highly
leveraged against other more specialized satellite data sources.
The internal information content of the EPIC spectral radiances
is not sufficient to deduce full-spectrum radiative fluxes and cloud
properties from just the internal information, but it has been
more than sufficient to successfully select and incorporate the
ancillary satellite data to generate a physically more complete
EPIC data product. As a result, it makes sense to analyze together
the EPIC planetary albedo and the EPIC composite cloud
products since they are intimately related, though not on a
closure basis, as would be the case for the MoelE2 counterparts.

SOME FUTURE CONSIDERATIONS

It has been known since the early days of satellite measurements
that, on an annual basis, the reflected solar SW radiation from the
Northern and Southern hemispheres is nearly identical despite

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 2 | Article 78852522

Carlson et al. Unique Observational Constraints From EPIC

293

https://epic.gsfc.nasa.gov
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


the large difference in the hemispheric land-ocean distribution
(Vonder Haar and Suomi, 1971). Given the major differences in
land-ocean surface albedo, this implies significant compensation
by the climate system in order to achieve the hemispheric
symmetry in reflected solar SW radiation. This SH-NH
hemispheric conundrum has been further analyzed and
quantified (e.g., Voigt et al., 2013, Voigt et al., 2014; Stephens
et al., 2015). The Bender et al. (2017) analysis, based on 13 years
of CERES and MODIS data, finds differences in tropical,
subtropical, and midlatitude cloud fraction, as well as cloud
albedo distributions that exhibit zonal dependence.

As amply demonstrated, the longitudinal slicing of the EPIC
cloud fraction and planetary albedo data retains the longitudinal
and intra-seasonal variability. Integration over the sunlit
hemisphere to suppress the weather noise, has also averaged
out latitudinal information. However, much of that latitudinal
information can be retained by piecewise integration over the
sunlit hemisphere, setting up, as a minimum, longitudinal slicing
over the southern and northern hemispheres, and preferably,
with even higher zonal resolution.

The sunlit hemisphere data sampling could also be conducted
separately over specified land and ocean regions for a more
precise characterization of the differing cloud property and
radiative flux correlations over land and ocean areas noted by
Stephens et al. (2015). With such coordinated data sampling
between EPIC and the GCM, the self-consistent space-time
sampling will provide a more quantitative assessment of cloud
interactions in the climate system.

As another significant topic, ice clouds tend to have a bi-
modal distribution in optical depth, given that they are
associated both with the dynamic meteorological activity, and
also with fair-weather conditions. This typically involves large
optical depths in the former case, and small optical depths in the
latter. Since all-cloud optical depths are available at the EPIC
Composite data level, separating the ice clouds into their small
optical depth (τ < 1.0) fair-weather cirrus categories, and large
(τ > 1.0) optical depths characteristic of storm systems, should
be feasible. Such considerations are equally applicable for
separating ice cloud optical depth categories in the climate
GCM output data.

From the GCM perspective, virtually all of the climate
diagnostic variables are available for sunlit hemisphere
sampling. The sunlit hemisphere averaging and longitudinal
slicing offer a unique and quantitative way to compare directly
the space-time variability of climate system variables with their
observational counterparts on regional and planetary spatial-
scales, as well as intra-seasonal and inter-annual time scales.

Longitudinal data slicing provides a convenient platform with
a uniform perspective for a broad range of climate GCM
performance assessments, including model numerics. Would
ModelE2, using a higher horizontal resolution of 1° x 1°, fare
better than the current 5° x 4° version? Or the GISS ModelE2.2
version, with more than double the vertical resolution, that is
optimized for middle atmosphere simulations (Rind et al., 2020)?
For the rectangular grid, polar grid-boxes become smaller than
those along the equator, with undesirable dynamic consequences.
As a potential remedy, there is also the GISS icosahedral grid

(Russell et al., 2018), which utilizes equal-sized triangular grid-
boxes. Basically, the SHS DSCOVR-view sampling can be
implemented in any climate GCM setting to accumulate a
year’s worth of longitudinal slicing data.

CONCLUSIONS

This paper describes a new model/data comparison technique
that uses sunlit hemisphere averaging to average out the
weather-scale noise, and longitudinal slicing by the rotation
of the Earth, to conduct self-consistent space-time sampling of
observational and model-generated data. For observational data
this comparison technique uses EPIC images of the sunlit
hemisphere of the Earth collected by the DSCOVER Mission
spacecraft from its Lissajous orbit around the Lagrangian L1
point. The climate GCM comparison data are similarly
compiled, using identical space-time sampling, based on
DSCOVR-view viewing geometry, to aggregate GCM
diagnostic output data over the Earth’s sunlit hemisphere for
the longitudinal slicing comparison. The standard line plots and
Hovmöller contour maps bring out the different aspects of
variability that are present in the same hemisphere averaged
input data.

Comparison of the seasonal and dayurnal variability of Earth’s
planetary albedo derived from EPICmeasurements with the GISS
ModelE2 generated planetary albedo shows unequivocally that
the GCM results are significantly overestimating cloudiness over
ocean areas, while underestimating clouds over the continental
land areas. The longitudinal slicing comparison also shows that
the overall seasonal dayurnal amplitude of the daily-mean
planetary albedo of ModelE2 is less than half of the EPIC
planetary albedo, but that during the northern hemisphere
winter months, the GCM does reproduce the longitudinal
ordering and the seasonal slope of the EPIC planetary albedo
variability.

With the weather-scale noise averaged out, seasonal line plots
and Hovmöller contour and ratio maps of the EPIC longitudinal
slicing data for the years 2017 and 2018 appear to detect
60–90 days Madden-Julian-type (MJO) oscillations within the
planetary albedo variability patterns. The most notable in the
2017/2018 Hovmöller ratio map is the stand-alone feature of a
sharp decrease in planetary albedo that appears in February-
March 2017 over Central Pacific longitudes, exhibiting
longitudinal oscillations that are 30° in extent, spanning ~
3,000 km peak-to-peak, in strong support of identifying 2017
as an active La Niña year.

EPIC planetary albedo data, augmented by the EPIC
Composite database, form a solid foundation for a unique type
of model/data comparison. Sunlit hemisphere-averaging removes
weather-scale noise, allowing model/data comparisons to target
planetary-scale variability. Currently, the EPIC Composite
database contains cloud property information for cloud
fraction, altitude, optical depth, and particle size, as well as
water/ice phase, which can be compared to climate GCM
equivalents in longitudinal slicing comparisons with self-
consistent space-time and diurnal sampling.
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In the current configuration, the longitudinal slicing is applied
to data that have been averaged over the entire sunlit hemisphere.
Aside from averaging out the weather-scale noise, the
hemispheric averaging also averages out the latitude and
longitude dependent information. The longitudinal slicing
approach is able to retrieve not only the longitudinal
dependence of climate system variability, but it also has the
flexibility to accommodate conducting the sunlit hemisphere
averaging with specified latitudinal resolution to retain
separately the seasonal variability information over the
northern and southern hemispheres.

Furthermore, the sunlit hemisphere sampling is also flexible
enough to sample data separately over continental land and
ocean regions, enabling self-consistent space-time
characterization of global-scale cloud properties separately
over land and ocean regions. Including these improvements,
as well as adding additional climate system variables to
compare, will greatly enhance the utility of the longitudinal
slicing approach as a new model/data comparison tool for
climate system analysis.
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Reduction of Spectral Radiance
Reflectance During the Annular Solar
Eclipse of 21 June 2020 Observed by
EPIC
Guoyong Wen1,2*, Alexander Marshak1, Jay Herman1,3 and Dong Wu1

1NASA Goddard Space Flight Center, Greenbelt, MD, United States, 2Goddard Earth Sciences Technology Research, Morgan
State University, Baltimore, MD, United States, 3Joint Center for Earth Systems Technology, University of Maryland Baltimore
County, Baltimore, MD, United States

The annular solar eclipse on 21 June 2020 passed over desert areas (parts of Central and
Eastern Africa, the southern Arabian Peninsula), partly cloudy regions (parts of South Asia
and the Himalayas), and the mostly cloudy region in East Asia. Moving around the Earth-
Sun Lagrange point 1 (L1), the Earth Polychromatic Imaging Camera (EPIC) instrument on
the Deep Space Climate Observatory (DSCOVR) spacecraft captured three sets of images
of the sunlit Earth during the eclipse, allowing us to study the impact of the solar eclipse on
reflected solar radiation when the underlying surface and/or cloudy conditions in the
Moon’s shadow are quite different. We analyzed EPIC images acquired during the 21 June
2020 and 21 August 2017 eclipses. We found that (1) EPIC-observed average spectral as
well as spectrally averaged reflectance reductions of the entire sunlit Earth during the 21
June 2020 solar eclipse are distinctly different from those during the total solar eclipse of 21
August 2017; (2) the reduction of spectral reflectance depends strongly on underlying
reflector properties, including the brightness, the area coverage of each reflector in the
penumbra and the average distance to the center of the Moon’s shadow.

Keywords: eclipse, DSCOVR/EPIC, solar radiation, cloud, surface

INTRODUCTION

A rare but spectacular event in the Sun-Earth-Moon system, a solar eclipse occurs when the Moon
moves between the Sun and Earth, casting a shadow on Earth and resulting in the reduction of the
incident solar irradiance at the top-of-atmosphere (TOA). The Moon’s shadow consists of two parts:
umbra and penumbra. The umbra is the Moon’s dark inner shadow, from where total solar eclipse is
visible; the penumbra is the Moon’s faint outer shadow, from where partial solar eclipses are visible.
Typically, the umbra is 100–160 km wide, while the penumbra diameter can be greater than
6,400 km. Thus, a solar eclipse has a strong impact on local solar radiation budget, particularly in and
near umbra regions, and significant impact on global average solar radiation budget.

Over the past several decades, researchers have studied the impact of an eclipse on surface solar
radiation from ground-based radiometer observations and radiative transfer simulations. Several
ground-based radiation experiments and modeling activities have been carried out to understand
radiation in solar eclipse conditions in the past. Sharp et al. (1971) reported that the sky light may be
considered as attenuated sunlight up to at least 99.8% obscuration and the effect of multiple
scattering from outside the umbral region dominates the sky brightness close to and during totality
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(e.g., Mikhalev et al., 1999; Zerefos et al., 2000). Shaw (1978)
developed a model to compute sky radiance during a total solar
eclipse by including first- and second-order scattering processes
that would compute the diffused light scattered into the umbra.
Koepke et al. (2001) studied surface spectral variation of the solar
radiation during an eclipse, and Emde and Mayer (2007)
performed a full 3D radiative transfer simulation of surface
spectral solar radiance and irradiance change for cloudless
atmosphere during a total eclipse on 29 March 2006,
providing a benchmark for studying radiative transfer under
solar eclipse conditions.

During the recent total eclipse on 21 August 2017, Bernhard
and Petkov (2019) made surface spectral solar irradiance
observations and performed 3D radiative transfer simulations;
Ockenfuβ et al. (2020) further used 3D radiative transfer
simulations for understanding the impact of surface spectral
albedo, ozone vertical distribution and surrounding mountains
on surface spectral irradiance observed by Bernhard and Petkov
(2019); Wen et al. (2020) used ground-based pyranometer
observations to estimate the impact of solar eclipse on surface
broadband irradiance reduction; Calamas et al. (2018) studied the
impact of the eclipse on surface irradiance and ambient
temperature; and Eshelman et al. (2020) studied impact of
total solar eclipse on all-sky polarization images. Gedzelman
(2020) showed that the sunlit tops of cloud layers and arctic
sea ice near the umbra appeared salmon-brown when viewed
from airplanes or satellite during the 21 August 2017 as well as 2
July 2019 eclipse. Sarid et al. (2021) demonstrated the radiance
reduction observed by Terra MODIS for several eclipse events.
Madhavan and Venkat Ratnam (2021) studied the impact of a
solar eclipse on surface radiation and photovoltaic energy.

One major impact of a solar eclipse is the reduction of the
TOA input solar radiation, resulting in global and local reduction
in incident and reflected solar radiation. Although the
distribution of incoming solar radiation can be calculated with
high accuracy, the global reduction of reflected solar radiation
remained unknown until the 2015 launch of the Deep Space
Climate Observatory (DSCOVR) satellite. For the first time,
Herman et al. (2018a) used observations from the Earth
Polychromatic Imaging Camera (EPIC) instrument to estimate
the average reflectance reduction of the sunlit Earth disk. Flying
onboard the DSCOVR satellite located near the Earth-Sun
Lagrange point 1 (L1), about 1.5 million kilometers from the
Earth and with a spacecraft-Earth-Sun angle varying from 2° to
12° (Marshak et al., 2018; Marshak et al., 2021), the EPIC
instrument views the entire sunlit side of the Earth including
the shadow of the Moon during a solar eclipse. Herman et al.
(2018a) showed that the day-to-day variability of the disk average
reflectance from EPIC image at similar UTC times is very small.
Thus, the EPIC images taken at a similar UTC time from the day
before or after can be used as a reference to estimate the eclipse-
induced disk reflectance reduction.

Evidence shows that the brighter the atmosphere-surface
under the Moon’s shadow, the larger the solar eclipse impact
on the reflected solar radiation. Since the TOA reflectance
depends on wavelength and underlying surface type and cloud
amount, it is necessary to study the eclipse induced reflectance

when the Moon’s shadow is over different atmosphere-surface
conditions.

In this study, we use three sets of EPIC images acquired during
the 21 June 2020 annular eclipse when the center of the Moon’s
shadow was in the Arabian Peninsula, Himalayas, and Southwest
China to quantify and understand the impact of the eclipse on the
average reflectance reduction over the sunlit disk. We further
compare the reflectance reductions during the 2020 eclipse with
two sets of EPIC images acquired during the 2017 Great
American eclipse over Casper, Wyoming and Columbia,
Missouri where the surface reflective properties and cloud
fraction differ significantly. In Section 2, we describe the EPIC
data and methodology used in this study. The results are
presented in Section 3 followed by the summary in Section 4.

DATA AND METHODS

We use EPIC observations to estimate the reduction of spectral
solar irradiances during solar eclipses. EPIC is a 10-channel
spectroradiometer onboard the DSCOVR spacecraft flying in a
Lissajous orbit around the L1 point, where the combined
gravitational pull of the Sun and Earth equals the centripetal
force required for the spacecraft to move with them. The
DSCOVR orbit has a period of 6 months, resulting in a
spacecraft-Earth-Sun angle varying from 2° to 12°. This allows
EPIC to view the Moon’s shadow in the sunlit disk of the Earth
under eclipse conditions. EPIC consists of a 30-cm aperture
Cassegrain telescope with a 0.62° field of view (FOV)
encompassing the Earth that has a nominal size of 0.5° at the
L1 point. EPIC provides 10 narrowband spectral images of the
entire sunlit side of Earth using a 2048 × 2048 pixel charge-
coupled device (CCD) detector every 65 min (in the Northern
Hemisphere summer) to 111 min (in the Northern Hemisphere
winter). The wavelengths range from ultraviolet (UV), to visible,
to near infrared (NIR). The sampling size on the Earth is
nominally ~8 × 8 km2 at the center of the image with an
effective spatial resolution of 12 × 12 km2 for the 443 nm
channel when EPIC’s point spread function is considered. To
reduce the downlink transmission time, the images for all
wavelengths, except 443 nm, have been reduced to 1,024 ×
1,024 pixels. A more detailed description of EPIC is given in
Herman et al. (2018b) and Marshak et al. (2018).

In this study, we use EPIC level 1B (L1B) version 3 data
distributed by the Atmospheric Science Data Center of NASA
Langley Research Center (https://eosweb.larc.nasa.gov). The L1B
digital counts multiplied by the after-launch wavelength
dependent calibration coefficient (Geogdzhayev and Marshak,
2018; Herman et al., 2018b; Doelling et al., 2019; Geogdzhaev
et al., 2021) yield TOA reflectance. While the EPIC images are
geolocation processed (Blank et al., 2021), the L1B algorithm
produces images in which all wavelengths are regridded to the
same common grid, i.e., every pixel has the same geolocation
(latitude and longitude) for all 10 wavelength channels.

Three sets of images were acquired by EPIC on 21 June 2020
when the center of the Moon’s shadow eclipse was in the Arabian
Peninsula, Himalayas, and East Asia (Southwest of China). The
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surface and/or cloudy conditions in the Moon’s shadow are quite
different. The Arabian Peninsula is a vast desert wilderness in
Western Asia; the Himalayas are a mountain range in South and
East Asia; and most of the surface in Southwest China is covered
by vegetation. Most of the Arabian Peninsula was cloud free; the
Himalayas were mostly; and Southwest China was mostly cloudy.
Two sets of images were taken by EPIC during the 2017 eclipse
when the totality was in Casper, Wyoming and Columbia,
Missouri. The surrounding areas of the Casper site are mostly
covered by grasslands; while the surrounding areas of the
Columbia site are mostly covered by croplands. EPIC images
during the 21 June 2020 and 21 August 2017 solar eclipses are
presented in Figure 1. Information about EPIC images acquired
during the two eclipses are described in Table 1. In this study, we
analyze images at five nonabsorbing wavelengths at 388, 443, 551,
680, and 780 nm.

To understand the average reflectance reduction over the sunlit
diskwe need to quantify the contribution of different reflectors to the

average reflectance reduction. Thus, we need to recover the image
under hypothetical non-eclipse conditions from the image acquired
during the eclipse. Initially, one needs to know the true input spectral
solar irradiance for each EPIC image pixel when the part of the solar
disk is covered by the Moon.

FIGURE 1 | Three EPIC images taken during 21 June 2020 solar eclipse when the center of the Moon’s shadow was in (A) Arabian Peninsula, (B) Himalayas, and
(C) Southwest China. Two EPIC images taken during 21 August 2017 when the center of the Moon’s shadow was in (D) Casper, Wyoming and (E) Columbia, Missouri.

TABLE 1 | Eclipse measurement time and location of the center of the Moon’s
shadow of five sets of EPIC images.

YY/MM/DD UTC Latitude Longitude

Casper, WY 2017/08/21 17:44:50 42.8666°N 106.3131°W
Columbia, MO 2017/08/21 17:54:36 38.9517°N 92.3341°W
Arabian Peninsula 2020/06/21 05:26:27 20.5115°N 53.7671°E
Himalayas 2020/06/21 06:31:54 30.0267°N 76.9467°E
Southwest China 2020/06/21 07:37:22 29.7300°N 101.1630°E

FIGURE 2 | Limb darkening function based on Neckel (2005).
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We know the brightness of the Sun’s disk decreases from its
center to its edge, i.e., limb darkening. Here, we use the limb
darkening function from Neckel (2005) based on McMath Solar
Telescope and the large vertical spectrograph observations at the
National Solar Observatory on Kitt Peak (Neckel and Labs, 1994)
to compute the normalized solar irradiance relative to the
irradiance at the center of the solar disk as a function of the
radius of the Sun (Figure 2). Then, we follow Koepke et al. (2001)
to compute the brightness of the Sun as a function of apparent
Moon-Sun distance X, where X = 0 when the centers of the Moon
and the Sun coincide, X � 1 when the Moon first contacts the
Sun, X � −1 when the disk of the Moon leaves the Sun again. On
the reference plane passing through the center of the Moon’s
shadow on Earth and perpendicular to the incident sunlight at a
given time, the distance between a point to the center of the
Moon’s shadow (upper scale of Figure 3) is linearly related to X as
demonstrated by Emde and Mayer (2007). Thus, one can
calculate the normalized solar irradiance during an eclipse,
defined as the TOA spectral solar irradiance for solar disk
covered by the Moon normalized by the irradiance of the
uncovered solar disk, as a function of the Sun-Moon distance
(Koepke et al., 2001) or a function of the distance from the center
of the Moon’s shadow on the reference plane (Figure 3). The
reference plane almost coincides with the EPIC image plane that
is perpendicular to Earth-spacecraft direction since the DSCOVR
spacecraft is slightly off the Sun-Moon-Earth line during an
eclipse (about 3° for the 21 June 2020 and 7.7o for the 21
August 2017).

Note the difference between the two normalized irradiances in
Figure 3, due to different eclipse magnitudes of the two eclipses.
Although the apparent sizes of the Sun and Moon as viewed from
Earth are both about 0.5°, both vary because the Earth-Moon and
Earth-Sun distances vary. The angular diameter of the Moon is
about 3.1% larger than that of the Sun during the 21 August 2017
total eclipse, while the angular diameter of the Moon is about

0.6% smaller than that of the Sun during the 21 June 2020 annular
eclipse. Thus, the normalized irradiances are greater than zero
when the Sun and Moon coincide with apparent Sun-Moon
distance of zero for the 2020 eclipse.

The distance between a pixel to the center of the Moon’s
shadow can be estimated in an EPIC image. First, we need to
estimate the pixel size in EPIC images. These are projections of
the sunlit face of the Earth onto the focal plane of the 2048 × 2048
CCD array. With a 20-km altitude of atmosphere at the edge of
the Earth, the Earth’s disk diameter in EPIC images is 12,782 km.
The pixel size of an EPIC image is estimated by dividing the disk
diameter by number of pixels across the diameter in the image.
Second, the center of theMoon’s shadow changes a little from one
image to another because the images are taken at slightly different
times. We use the locations (latitude and longitude) of the center
of Moon’s shadow at specific times as the first estimates (Table 1).
Then, we search the images around the estimated locations to find
the minimum value of reflectance to locate the center of the
Moon’s shadow for each image. With both pixel size and the
center of the Moon’s shadow available, the distance between a
pixel in the penumbra and the center of the Moon’s shadow can
be easily calculated. The distance is further multiplied by cosine of
Sun-Earth-Vehicle (SEV) angle (Vehicle refers here to the
DSCOVR spacecraft) to obtain the corresponding distance in
the reference plane from which we calculate the normalized solar
irradiance (Figure 3) for estimating the reflectance of the pixel
under non-eclipse conditions as explained in the following
paragraph. The SEV angle for each EPIC image is available at
the DSCOVR/EPIC website (https://epic.gsfc.nasa.gov).

Within the Moon’s shadow, the digital counts multiplied by
the calibration coefficient yields apparent reflectance (Re,λ, e
stands for eclipse and λ for wavelength)

Re,λ(i, j) � πIλ(i, j)

I0,λ
, (1a)

FIGURE 3 | (A) Normalized solar irradiance as a function of apparent Sun-Moon distance in lower X-axis and the distance to the center of the Moon’s shadow in
upper X-axis on the Earth for the 21 June 2020 eclipse; (B) similar to (A) but for the 21 August 2017 eclipse. The insets show details of the irradiance variation near the
center of the eclipse.
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where Iλ(i, j) is the reflected radiance of pixel (i, j), I0,λ is the
incident spectral solar irradiance at wavelength λ for normal
conditions (or uncovered solar disk). For the same TOA reflected
radiance Iλ(i, j), the true reflectance (Rne,λ, ne stands for non-
eclipse) is

Rne,λ(i, j) � πIλ(i, j)

I0, λ′ (i, j), (1b)

where I’0,λ(i, j) is the incident spectral solar irradiance when the
solar disk is partially covered by the Moon. Thus, the reflectance
for a hypothetical non-eclipse condition can be recovered using
the relationship

Rne,λ(i, j) ≈
Re,λ(i, j)

Inorm,λ(i, j)
(1c)

and

Inorm,λ(i, j) ≈
I0, λ′ (i, j)

I0,λ
(1d)

where Inorm,λ(i, j) is the normalized irradiance (Figure 3) for
pixel (i, j) in an EPIC image. Koepke et al. (2001) used this
method to compute photolysis frequencies while Trees et al.

(2021) applied it to estimate UV absorbing aerosol index for
hypothetical non-eclipse conditions.

Examples of the original and recovered images for the 2020
eclipse in the Arabian Peninsula and the 2017 eclipse in Casper,
Wyoming are presented in Figures 4, 5, respectively. Inorm,λ is
very small near the center of the Moon’s shadow and Inorm,λ � 0
for pixels in the totality. The radiation in this area is strongly
influenced by the 3D radiative effects (Emde and Mayer, 2007).
The reflectance cannot be calculated using the simple relationship
of Eq.1c. Here, we neglect the area within a radius of ~170 km
from the center of the shadow for both eclipse and corresponding
non-eclipse images in computing eclipse-induced reflectance
reduction. Since the area neglected is ~0.3% of the total area
penumbra of ~3,000 km in radius (see Figure 3), neglecting this
small area would introduce a negligible error, slightly
underestimating the disk-averaged reflectance reduction. Using
the normalized TOA solar irradiance, typical disk-averaged
spectral reflectance, and reflectance for different reflector types
for the center of the Moon’s shadow, we found that the errors in
reflectance reduction due to neglecting the small area are very
small, depending on underlying reflector conditions of the area.
For wavelengths from 388 to 780 nm, the error in the reflectance
reduction estimate ranges from −0.5% to −0.1% for clear ocean;

FIGURE 4 | (A) EPIC image at 443 nm acquired during the 21 June 2020 eclipse when the center of the Moon’s shadow was in Arabian Peninsula; (B) the
recovered image for hypothetical non-eclipse conditions for image in (A); (C) similar to (A) but for 780 nm; (D) similar to (B) but for 780 nm. The white circles in (B) and (D)
are the center of the Moon’s shadow with a radius of about 170 km.
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−0.6% to −0.8% for clear land; −0.5% to −1.6% for clear
vegetation; −1.5% to −1.6% for cloudy ocean; −1.5% to −1.8%
for cloudy land; and −1.5 to −2.0% for cloudy vegetation.

From its center, the Moon’s shadow can extend large distances
(~3,000 km in radius). For that scale, both surface albedo and
cloud cover can vary significantly. Thus, to understand the impact
of a solar eclipse on the disk average reflectance, one needs to
quantify the reflectance reduction from different reflector types.
With the recovered image for non-eclipse conditions, we further
apply Earth Reflector Type Index (ERTI) developed by Song et al.
(2018) for classifying EPIC pixels into four dominant reflector
types: clear ocean, clear land, clear green vegetation, and cloud.
This method was used to study the blue and near-IR global
spectral reflectance relationship as well as the response of global
average reflectance to the change in cloud cover from EPIC
observations (Wen et al., 2019). We do not separate clouds
over land from clouds over ocean, though there are some
differences in spectral reflectance between the two types of
cloud. On average, cloud is the brightest of all wavelengths
among the four dominant reflectors. Thus, dividing the image
into four reflector types is sufficient for this study.

An important point is that the ERTI is sensitive to the presence
of green leaves in a pixel and attributes the pixel to vegetation if
the leaf area index (LAI) is larger than ~0.5 (Song et al., 2018).
The area of green leaves can exhibit strong seasonal variation

FIGURE 5 | Similar to Figure 4 but for the 21 August 2017 solar eclipse when the center of the Moon’s shadow was in Casper, Wyoming.

FIGURE 6 | TOA spectral reflectance simulated using SBDART
(Ricchiazzi et al., 1998) for clear and cloudy atmospheric conditions over
ocean, land, and vegetation. The cloud optical depth is 10, and solar zenith
angle is 30°. The vertical dashed lines indicate the EPIC wavelengths.

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 7773146

Wen et al. Solar Eclipse From EPIC Observations

302

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


from its maximum to a very low value (Samanta et al., 2012);
therefore, one should distinguish between vegetated land
according to a land cover classification map and actual
presence of green leaves in the scene. For example, the ERTI
classifies savannas in the southern part of Africa as vegetated land
during wet season (mean LAI~2.4 inMarch), and it attributes this
land cover type as bare land during dry season (LAI can drop to
~0.4 in August). We emphasize that the clear vegetation refers to
cloud-free green vegetation, clear land includes dry vegetation
and bare soil. In this study, we do not distinguish clouds over
different surface types since the wavelength dependence of
reflectance of cloud over ocean is similar to that over land
(Figure 6). Though the reflectance from clouds over green
vegetation has a very different wavelength-dependent
signature, the coverage of green vegetation is quite small, less
than 5% coverage of any EPIC images (Wen et al., 2019).

RESULTS

Recovering EPIC images for non-eclipse conditions is critical for
understanding the reduction of spectral reflectance during a solar
eclipse. Figures 4, 5 present original and recovered images for the
blue-band at 443 nm and the near-IR band at 780 nm for the
Arabian Peninsula and Casper, Wyoming during the 2020 and
2017 solar eclipses, respectively. Since both land surface and
ocean are dark at 443 nm, the blue-band image can be used to
examine the recovered cloud structure. For the Arabian Peninsula
case, the clouds that were not visible in the eclipse image
(Sudanian savanna to the west of the center of the Moon’s
shadow) or less bright (to the east and southeast of the center
of the Moon’s shadow) (Figure 4A) become visible and evidently
brighter after the correction (Figure 4B). Comparing the
recovered non-eclipse image with the RGB composite image
(Figure 1A), we can see that the non-eclipse image has indeed
recovered cloud features and enhanced the cloud visibility.

Since land surfaces are bright at 780 nm, the non-eclipse image
can be used to examine the recovery of land surface as well as
clouds. Under eclipse conditions, the entire Arabian Peninsula
and the Sahara Desert in North Africa and part of West Asia were
under the Moon’s shadow, thereby dark or even invisible in
780 nm image (Figure 4C). After the corrections, the Arabian
Peninsula is clearly recovered, the Sahara Desert in North Africa
and West Asia are recovered, and the coastlines and water bodies
next to land (e.g., the Red Sea, the Persian Gulf, the Gulf of Oman,
the Arabian Sea, and the Indian Ocean) are clearly visible in the
non-eclipse image (Figure 4D). Similar to the blue-band, cloud
structure in the near-IR image has been recovered or enhanced.
Again, one can compare the non-eclipse image with the RGB
composite image (Figure 1A) to see the recovery of land.

The original eclipse and non-eclipse images during the 2017
solar eclipse over Casper, Wyoming show the recovery of clouds
and land after the corrections (Figure 5). It is interesting to see
the cloud deck off the coast of California and the clouds in North
America are much brighter in the non-eclipse images at both 443
and 780 nm bands (Figures 5B,D) compared to the eclipse
images (Figures 5A,C). Clouds to the east of Casper that not

clearly visible in the eclipse image are evidently recovered after
the correction. In addition to clouds, the land of all North
America is brighter at 780 nm in the corrected image
compared to the original image.

With both eclipse and non-eclipse images, we estimate the
eclipse-induced global reflectance reduction. The global average
reflectance can be expressed as a sum of reflectance from each
reflector component. Assuming there are N pixels and N1, N2, N3,
. . . pixels for type 1, 2, 3, . . . reflector component (N � ∑

i
Ni) in

the whole EPIC image, then the global average reflectance can be
expressed as

〈R〉 � 1
N

[∑
N1

i�1R1(i) +∑
N2

i�1R2(i) +∑
N3

i�1R3(i) + . . . ] (2a)

where Rj(i) is the reflectance of reflector type j at pixel i (the
wavelength dependence is omitted for simplicity). The global
reflectance reduction is the difference between the reflectance for
non-eclipse 〈Rne〉 and eclipse conditions 〈Re〉

ΔR � 〈Rne〉 − 〈Re〉 � ∑
j
ΔRj, (2b)

where ΔRj is the reflectance reduction from jth reflector. We
consider pixels in the Moon’s shadow only because there is no
reflectance reduction outside of the shadow. For jth reflector with
nj pixels in the Moon’s shadow in an EPIC image (nj <Nj), the
reflectance reduction is

ΔRj � 1
N
∑

nj

i�1(Rne,j(i) − Re,j(i)). (2c)
or

ΔRj � 1
N
∑

nj

i�1(1 − Inorm,j(i))Rne,j(i) (2d)
or

ΔRj � ηj
∑

nj
i�1Rne,j(i)

nj
� ηj �Rne,j (2e)

where ηj � nj
N (1 − �Inorm,j) and �Inorm,j is the mean value of the

normalized solar irradiance for all jth reflector pixels. Thus, the
reduction from jth reflector depends on three competing factors,
i.e. the average reflectance (�Rne,j), the number of pixels (nj) in the

Moon’s shadow or the ratio (njN), and average normalized solar
irradiance (�Inorm,j) of jth reflector in the Moon’s shadow.
Radiative transfer model-simulated TOA reflectances for clear
and cloudy atmospheric conditions over different surface types
are presented in Figure 6 for interpreting observed reflectance
reduction.

The average reflectance (�Rne,j) determines the brightness of
the reflector. The brighter the reflector, the larger the
associated reduction. The more pixels in the Moon’s
shadow, the larger the ratio nj

N, the larger the reduction.
�Inorm,j is a measure of the average radial distance of the
pixels to the center of the Moon’s shadow. Near the center
of the Moon’s shadow, �Inorm,j is small and 1 − �Inorm,j is large,
resulting in large reflectance reduction; conversely, far from
the center of the Moon’s shadow, �Inorm,j approaches 1 and ηj
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approaches 0, resulting in small reflectance reduction. Thus,
the reflectance reduction from jth reflector is proportional to
the average reflectance of the reflector within the Moon’s
shadow. However, the associated reflectance reduction (ΔRj)
can be very small if the number of pixels is nominal or the
pixels are near the edges of the Moon’s shadow (�Inorm,j

approaches 1) even if the reflector is very bright. We call ηj
the contribution factor that accounts for the effects of both
number of pixels in the Moon’s shadow and average distance of
pixels to the center of the Moon’s shadow for jth reflector.

Figure 7 shows the disk average spectral reflectance reduction
and associated contribution from different reflector types when
the center of the 21 June 2020 solar eclipse was in the Arabian
Peninsula, the Himalayas, and Southwest China, respectively. For
the Arabian Peninsula case (Figure 7A), the total disk reflectance
reduction decreases from 388 to 551 nm followed by an increase
to 780 nm. This feature is explained by the contribution from
each reflector type. The land makes the largest contribution to the
total reflectance reduction, followed by cloud and then ocean.
Green vegetation makes little contribution to the disk average
reflectance reduction.

For the Himalayas case (Figure 7B), there is a small
decrease in the average reflectance reduction from 388 to
551 nm followed by a larger increase in the reduction from
551 to 780 nm compared to the Arabian Peninsula case. Here,
clouds make the largest contribution, about two thirds, to the
disk average reflectance reduction. Land is the second largest
contributor, and, though it is small, clear ocean contributes
significantly at shorter wavelengths, and the associated
reduction decreases rather quickly with wavelength. Again,
green vegetation makes a minimal contribution to the average
reflectance reduction.

For the Southwest China case (Figure 7C), the total reduction
decreases with wavelength from 388 to 551 nm followed by a small
decrease from 551 to 680 nm and a large increase from 680 to
780 nm. It is evident that clouds contribute the most, more than
70%, of the total reflectance reduction because a large area near the
center of the Moon’s shadow is cloudy. Clear land contribution
makes the second largest contribution to the total reflectance
reduction since the clear land is less reflective than cloud over

land and the clear land pixels being farther from the center of the
Moon’s shadow contribute to the reflectance reduction. Clear
ocean makes a significant contribution to the reflectance
reduction. In all three 2020 eclipse cases, the contributions from
green vegetation are small. The contribution from different
reflector types explains the global reflectance reduction for three
cases of EPIC-observed global reflectance reductions.

To interpret the reduction from each reflector, we present
�Rne,j, 1 − �Inorm,j, and

nj
N (see Eq.2e) for each reflector in Figure 8.

First, we examine the average reflectance of each reflector for the
three cases from 2020. It is clear that the reflectance reduction for
each reflector (Figure 7) is proportional to the average reflectance
in the Moon’s shadow (Figures 8a1–a3). The spectral
dependence of EPIC-observed average spectral reflectances are
similar to the model simulations (Figure 6). For all three cases, on
average, cloud is the brightest reflector followed by land.
Additionally, green vegetation compared to ocean is darker in
UV and blue channels at 388 and 443 nm, similar in visible
channels at 551 and 680 nm, and much brighter at near-IR
channel at 780 nm. The observed reflectance has large
variability for clouds and less variable for clear land, clear
ocean, and green vegetations reflectors. The average cloud
reflectances for the Himalayas and Southwest China cases are
larger than the Arabian Peninsula case: clouds for the Himalayas
and Southwest China cases are mostly over land compared to a
large fraction of clouds over the Indian Ocean for the Arabian
Peninsula case, and, on average, optical depth of water cloud over
land is significantly thicker than clouds over ocean while ice
clouds over land and ocean have similar optical depth (King et al.,
2013). In addition, land is brighter than ocean, especially at near-
IR wavelength, resulting in a larger TOA reflectance for the same
cloud optical depth. The average reflectance of land, ocean, and
green vegetation has a similar wavelength dependence feature for
three cases.

Now, we examine 1 − �Inorm,j (Figures 8b1–b3), and nj
N

(Figures 8c1–c3). We found that both 1 − �Inorm,j and nj
N

slightly depend on wavelength. In fact, nj
N for each reflector

would be the same for all 10-wavelength images if they were
taken concurrently. In reality, each of the 10-wavelength set of

FIGURE 7 | Disk average reflectance reduction with contributions from different reflector types for the 2020 solar eclipse when the center of the Moon’s shadow
was in (A) Arabian Peninsula, (B) Himalayas, (C) Southwest China.
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EPIC images is obtained at slightly different times and theMoon’s
shadow moves a little during the time intervals, resulting in a
slightly different Moon’s shadow and nj

N from one wavelength
image to another. For randomly distributed reflector pixels in a
complete circular Moon’s shadow on the reference plane, we
found that the average normalized solar irradiance (�Inorm,j) is
almost independent of wavelength for the five EPIC wavelengths
concerned. For the areas close to the umbra, the normalized
irradiance for longer wavelength is larger than that for shorter
wavelength; farther from the umbra, the normalized irradiance
for longer wavelength is smaller than that for shorter wavelength
(Figure 4); and, averaging over the whole penumbra yields
similar �Inorm,j for each wavelength. In reality, the pixel for a
given reflector is not randomly distributed in the penumbra,
resulting in a slight wavelength dependence in �Inorm,j.

For the Arabian Peninsula case, the factor of (Figure 8b1) is the
largest for land followed by ocean, cloud, and green vegetation,
respectively. The average normalized solar irradiance is about 0.69,
0.77, 0.81, and 0.92 for land, ocean, cloud, and green vegetation,
respectively. Since the normalized solar irradiance monotonically

increases with the distance from the center of the Moon’s shadow
(see Figure 4), the smaller normalized solar irradiance corresponds
to a closer distance from a reflector to the center of the Moon’s
shadow. Thus, on average, land pixels, including desert and bare soil,
are closest to the center of the Moon’s shadow followed by ocean,
cloud, and green vegetation. In addition to the average solar
irradiance, the number of pixels determines the collective
contribution from each individual reflector type. Figure 8c1
shows that the ratio (njN) is about 0.09, 0.09, 0.06, and 0.001 for
land, cloud, ocean, and green vegetation, respectively. Multiplying
1 − �Inorm,j by nj

N yields the contribution factor. As a result, the
contribution factor (ηj) is the largest for land (~0.027) followed
by cloud (~0.017), ocean (~0.015), and green vegetation (~0.0001).
Therefore, the reflectance reduction of each reflector can be
explained by the average reflectance, the average distance to the
center ofMoon’s shadow plus the area coverage of the reflector in the
Moon’s shadow.

Indeed, from Figure 1, one could visualize the area size of each
reflector and the average distance to the center of the Moon’s
shadow for the 21 June 2020 eclipse. For the Arabian Peninsula

FIGURE 8 | (a1–a3) the average reflectance; (b1–b3) 1 −�Inorm,j ; (c1–c3)
nj
N (the ratio of number of pixels in the Moon’s shadow to total number of pixels in the EPIC

image) for each reflector j in the penumbra for the three cases during the 2020 solar eclipse.
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case, the Arabian Desert in the Arabian Peninsula, the Sahara
Desert in Northern Africa, and the Ogaden Desert in Eastern
Africa occupy the largest areas close to the center of the Moon’s
shadow. The Red Sea, the Persian Gulf, the Gulf of Oman, and the
Arabian Sea are close to the center of the Moon’s shadow;
however, those areas are much smaller than the deserts. The
clear area of the Indian Ocean is large, but farther from the center
of the Moon’s shadow. As a result, the average radial distance for
land pixels to the center of the Moon’s shadow is smaller (smaller
�Inorm,j or larger 1 − �Inorm,j) than clear ocean. Although some
clouds are close to the center of the Moon’s shadow in the
Sudanian savanna, the Gulf of Oman, and the Arabian Sea,
more clouds are farther away over the Indian Ocean, India,
Southwest China, and Europe, resulting in a larger average
radial distance for cloudy pixels to the center of the Moon’s
shadow (larger �Inorm,j or smaller 1 − �Inorm,j) compared to clear
land and clear ocean. The fractional coverage of green vegetation
is small and contributes a little to the disk average reflectance
(Wen et al., 2019). In this case, a small area of green vegetation
coverage in Europe is visible and the green vegetation region is
farther away from the center of the Moon’s shadow with
negligible area compared to land, ocean, and cloud (Figure 8c1).

For the Himalayas case (Figures 8b2,c2), the similar values of
the factor 1 − �Inorm,j (~0.23) and

nj
N (~0.12) for land and cloud,

indicates similar average distance to the center of the Moon’s
shadow and area coverage of the two reflectors, which can be seen
in Figure 1. To the east and southeast of the center of the Moon’s
shadow, it is mostly cloudy; to the west and northwest of the
center of Moon’s shadow, it is mostly clear, resulting in similar
average radial distance and area in the penumbra. The green
vegetation in Europe and clear oceans (the Indian Ocean and the
Pacific Ocean) are rather far away compared to land and cloud
reflectors, resulting in a smaller and similar value of 1 − �Inorm,j

(~0.1) for both green vegetation and clear ocean. The area of
green vegetation is evidently smaller than clear ocean; and nj

N is
~0.006 and ~0.05 for green vegetation and ocean, respectively.
The contribution factor (ηj) is ~0.028 for both land and cloud,
~0.005 for ocean, and ~0.0006 for green vegetation, respectively.
Again, the reflectance reduction of each reflector can be explained
as the result of the brightness, the average distance from the
center of Moon’s shadow, and the area coverage of the reflector in
the Moon’s shadow.

For the Southwest China case (Figures 8b3, c3), the factor 1 −
�Inorm,j is the largest for green vegetation followed by cloud, land,
and ocean, respectively; njN is the largest for cloud followed by land,
ocean, and green vegetation respectively. The largest factor
(1 − �Inorm,j) of about 0.3 is for vegetation, which is mainly
associated with green vegetation pixels in Mainland Southeast
Asia or Indochinese Peninsula, including Cambodia, Laos,
Myanmar, Vietnam, and China’s Hainan Island. On average,
those green vegetation pixels are much closer to the center of
the Moon’s shadow compared to cloud, land, and ocean although
the area coverage of green vegetation is smallest with nj

N about 0.004
more than one order smaller than other reflectors. The second
largest factor (1 − �Inorm,j) of about 0.25 is for cloud, mainly due to
large bright clouds to the east and north and broken clouds to the
south and west of the umbra (see Figure 1). In fact, the area

coverage of cloud with nj
N about 0.14 is the largest among the four

reflectors. The third largest factor (1 − �Inorm,j) of about 0.22 is for
land. The area coverage with nj

N about 0.08 ranks second. On
average, clear ocean pixels are farthest among all four reflectors and
fractional coverage with nj

N about 0.06 smaller than that for clouds.
The contribution factor (ηj) is ~0.035 for cloud, 0.018 for land,

~0.008 for ocean, and ~0.001 for green vegetation, respectively.
Thus, clouds contribute the most to the average reflectance
reduction followed by land and ocean. With the larger
contribution factor for green vegetation compared to both the
Arabian Peninsula and Himalayas cases, the reflectance reduction
from green vegetation is noticeable (Figure 7C), particularly for
the near-IR wavelength at 780 nm, at which green vegetation is
extremely reflective (see Figure 6, Figure 8a3).

It is important to note that the reflectance reduction for
Arabian Peninsula case is significantly smaller compared to
the Himalayas and Southwest China cases, mainly because
part of the Moon’s shadow falls outside of the Earth’s disk.
The Moon’s shadow covers about 24% of the whole Earth
disk, but a significant portion of the shadow falls outside of
the Earth’s disk, compared to ~28–30% for Himalayas and
Southwest China cases (Table 2).

For the two cases of the 2017 eclipse (Figure 9), the average
reflectance reductions are similar except for a decrease from 551
to 680 nm and a larger increase from 680 to 780 nm in reflectance
reduction for the Columbia, Missouri case compared to the
Casper, Wyoming case. Clouds contribute about 60 and 50%
to the global spectral reflectance reduction, depending on
wavelength, for the Casper and Columbia case, respectively.
Clear land contributes about 30% to the global spectral
reflectance reduction depending on wavelength for both cases.
Clear ocean contribution for the Columbia case is larger than that
for the Casper case since most clear ocean area is in the Atlantic
Ocean to the east of the totality of the two eclipses (Figure 1).
With the clear Atlantic Ocean areas are closer to Columbia than
Casper, the contribution from clear ocean to the total reflectance
reduction for the Columbia case is larger than Casper. Green
vegetation makes a similar contribution to the reflectance for the
two cases and a significant contribution to the disk reflectance
reduction for the 2017 eclipse compared to the 2020 eclipse.

As demonstrated in the 2020 eclipse, the reduction of spectral
reflectance of each reflector for the 2017 eclipse is proportional to
the average spectral reflectance in the Moon’s shadow (Figures
10a1,a2). The proportionality factor, or the contribution factor, is
the product of 1 − �Inorm,j and

nj
N for each reflector. 1 − �Inorm,j is

largest (~0.55) for green vegetation followed by land (~0.45) for
both the Casper and Columbia cases, because of relatively small
average pixel to the center of shadow distance compared to ocean
and cloud (Figures 10b1,b2). For cloud, 1 − �Inorm,j is ~0.22 and
~0.18 for the Casper and Columbia case, respectively, because the
major stratocumulus cloud system off the California coast is
closer to Casper, Wyoming than Columbia, Missouri. For ocean,
1 − �Inorm,j is smaller for the Casper case (~0.12) than that for the
Columbia case (~0.18); the major body of water, the Atlantic
Ocean, is relatively closer to Columbia than Casper. This is
consistent with the larger ocean coverage for the Columbia
case than the Casper case (Figures 10c1,c2), i.e., nj

N for ocean
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is ~0.007 for the Columbia case compared to ~0.005 for the
Casper case. nj

N for cloud (~0.15), land (~0.05) and green
vegetation (~0.02) is similar for the Casper and Columbia
case, respectively. One can determine the contribution factor

for each reflector for the two cases. For the Casper case, ηj is
~0.029 for cloud, 0.025 for land, ~0.011 for green vegetation, and
~0.007 for ocean, respectively. For the Columbia case, ηj is ~0.024
for cloud and land, ~0.012 for green vegetation and ocean,

TABLE 2 | The average fraction of area covered by different reflectors in the whole EPIC image (nj/N) and associated standard deviation for selected five wavelengths.

Casper Columbia Arabian pen Himalayas SW China

Ocean 0.053 (2.e-3) 0.065 (3.e-3) 0.061 (6.e-4) 0.051 (1.e-3) 0.061 (3.e-4)
Land 0.056 (4.e-4) 0.056 (1.e-4) 0.090 (2.e-3) 0.119 (2.e-4) 0.081 (1.e-3)
Cloud 0.137 (1.e-3) 0.145 (1.e-3) 0.089 (2.e-3) 0.123 (1.e-3) 0.136 (1.e-3)
Vege 0.020 (5.e-5) 0.022 (4.e-5) 0.001 (9.e-5) 0.006 (4.e-5) 0.004 (5.e-5)
Total 0.267 0.289 0.241 0.299 0.282

FIGURE 9 | Similar to Figure 7 but the two cases during the 2017 solar eclipse.

FIGURE 10 | Similar to Figure 8 but for the two cases during the 2017 solar eclipse.
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respectively. By combining the average reflectance and associated
contribution factor, one obtains the average reflectance reduction.

The relative spectral reflectance reductions (defined as the
difference between non-eclipse and eclipse reflectance divided
by the eclipse reflectance) and associated components from
different reflectors are presented in Figure 11 and Figure 12
for the 2020 and 2017 eclipse cases, respectively. For the
Arabian Peninsula case, the average percent reflectance
reduction increases with wavelength with an average of
~5.5%. The wavelength dependence of the percent reduction
is mainly due to the increase of the reflectance from land
compensated to some extent by the decrease of the reduction
from clear ocean. For the Himalayas case, the average percent
global reflectance reduction increases with wavelength with an
average of ~9%. The wavelength dependence of the percent
reduction is due to the increase of the reduction with
wavelength from cloud and clear land. Green vegetation
contributes little to the average relative reflectance
reduction for both the Arabian Peninsula and Himalayas
cases. For the Southwest China case, the reflectance

reduction increases from 388 to 551 nm followed by a slight
decrease from 551 to 680 nm and small increase to 780 nm.
The wavelength dependence of the relative reduction can be
explained by the contribution from each individual reflector.
The total average reduction of ~9.5%, where cloud contributes
over 7%, clear land contributes about 2%, and clear ocean
contributes significantly at shorter wavelengths (~1% at
388 nm) and decreases toward longer wavelengths. The
contribution from green vegetation is visible particularly at
780 nm wavelength.

For the 2017 eclipse, the wavelength dependence of the
average reflectance reduction for the Casper case is similar to
that for the Columbia case and can be explained by the
contribution from each reflector (Figure 12). Similar to the
absolute reductions, for the Casper case, cloud makes the
larger contributions compared to the Columbia case; land
makes similar percent reduction for the two cases; ocean and
green vegetation contributes slightly more percentage reductions
for the Columbia case compared to the Casper case. The total
average reduction is ~9% for both cases.

FIGURE 11 | Relative global average reflectance reduction with contributions from different reflector types for 2020 eclipse when the center of the Moon’s shadow
was in (A) Arabian Peninsula, (B) Himalayas, (C) Southwest China.

FIGURE 12 | Relative disk average reflectance reduction with contributions from different reflector types for 2017 eclipse when the center of the Moon’s shadow
was in (A) Casper, Wyoming, (B) Columbia, Missouri.
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The contribution from each reflector type to the disk and
spectrally averaged percent reflectance reduction is
summarized in Figure 13. For 2020 solar eclipse over
Arabian Peninsula, clear land (mostly desert) makes the
largest contribution to the reduction, followed by clouds
and clear ocean. For both the Himalayas and Southwest
China cases, clouds contribute the most to the reduction,
followed by clear land and clear ocean. Green vegetation
makes little contribution to the reflectance reduction. For
2017 solar eclipse, clouds make the largest contribution to
the total reduction, followed by clear land, clear ocean, and
green vegetation.

SUMMARY AND DISCUSSION

We have analysed EPIC images to quantify and understand
eclipse-induced disk spectral reflectance reduction. Radiative
transfer calculations showed that different reflector types of
the Earth have different spectral reflectance that affects the
amount of eclipse radiances at TOA. The global reflectance
reduction is the sum of the contribution from different
reflectors. We showed that the reduction from each reflector is
proportional to the average reflectance, the area coverage in the
penumbra, and the average distance from the center of the
Moon’s shadow.

Using calculated reduced brightness during eclipses, we
recovered the EPIC images under hypothetical non-eclipse
conditions from eclipse images. We further classified
dominant reflector types based on the recovered non-eclipse
images. We found that the average spectral reflectance
reductions for the three cases during the 2020 eclipse differ
significantly from each other and two cases during 2017
eclipse. The differences were explained by the difference in
the brightness of underlying reflectors, the associated radial
distances to the center of the Moon’s shadow as well as the area
coverages in the Moon’s shadow.

We also quantified the percentage reductions. For the 2020
eclipse, the spectrally averaged relative reflectance reduction is
~5.5%, ~9%, and ~9.5% for the Arabian Desert, Himalayas,
Southwest China case, respectively, compared to ~9% for the
two cases for 2017 eclipse. The reflectance reductions from
different reflectors were used to interpret the disk average
spectral reflectance reduction.

Note that the global reflectance reduction for the Arabian
Peninsula case is about 5%, significantly smaller than the other
cases. This difference is mainly due to a large portion of the
Moon’s shadow being outside of the Earth. Another factor is that
desert is almost cloud-free and bright clouds farther away from
the center of the Moon’s shadow do not contribute effectively to
the average reflectance reduction compared to the other cases.
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