Neuronal processing and physiology rely on a delicate interplay between glutamatergic excitatory neurons and GABAergic inhibitory interneurons in a spatially, temporally and cell-type specific manner. Understanding these processes is complicated further by the large diversity characterizing the cerebral ...
Neuronal processing and physiology rely on a delicate interplay between glutamatergic excitatory neurons and GABAergic inhibitory interneurons in a spatially, temporally and cell-type specific manner. Understanding these processes is complicated further by the large diversity characterizing the cerebral cortex. Although recent advances have significantly improved our knowledge of its neuronal types, the identity and the roles of several subpopulations of GABAergic interneurons remain elusive. Presumably, because of their apparent paucity, their diversity, the highly labile nature of nitric oxide (NO) as well as its pleiotropic actions, the functional importance of NO-producing GABAergic interneurons is particularly enigmatic. This Research Topic will cover the different aspects of cortical NO interneurons, from their diversity, embryonic origins to their functions in the cortical circuit and physiology.
1. Diversity and areal distribution
2. Embryonic origins
3. Inputs and outputs: intracortical and subcortical afferences, cellular targets
4. NO detection: amperometry and NO imaging
5. Physiological roles: synaptic plasticity, sleep, blood flow control
Important Note:
All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.