About this Research Topic
The aim of this Research Topic is to provide a forum for state-of-the-art research integrating computational and empirical approaches to study the neural mechanisms underlying visual object perception as it is observed behaviorally in humans as well as other animals, including nonhuman primates and rodents. We welcome contributions addressing computational mechanisms underlying object perception related - but not limited - to key questions such as:
• What is the nature of neural object representations (e.g., the degree of invariance, sparseness) and how do these representations change across different processing stages?
• How are object features (e.g., Tanaka, 1996) computationally integrated into coherent object representations?
• How do object representations in the ventral visual system allow invariant recognition without losing specificity to distinguish between similar exemplars?
• How are object representations read-out by higher-order areas (e.g., hippocampus and prefrontal cortex), and how do current task instructions (e.g., between- versus within-category discrimination) or past experiences influence this read-out?
• How are object perception mechanisms shaped by experience and development?
• How can we optimally compare computer vision models to empirically-derived neural models based on human or animal object perception?
Pre-submission inquiries can be sent to Judith Peters ( j.peters@maastrichtuniversity.nl).
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.