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Multi-layer neural network modeling mechanisms of invariant object-recognition in the  visual ventral 
stream and corresponding activations projected on an inflated cortical sheet (bottom view). Screenshot 
of Neurolator (BrainInnovation, Maastricht, The Netherlands), a neural network simulation software 
package in which simulated activity can be projected to the same anatomical “brain space” as empirically 
acquired neuroimaging data, thereby allowing direct quantitive, spatiotemporal comparisons. 
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The articles in this Research Topic provide a state-of-the-art overview of the current progress in 
integrating computational and empirical research on visual object recognition. Developments 
in this exciting multidisciplinary field have recently gained momentum: High performance 
computing enabled breakthroughs in computer vision and computational neuroscience. In 
parallel, innovative machine learning applications have recently become available for datamin-
ing the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense 
multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical 
datasets for direct model testing could aid the development of a comprehensive brain model. 
We hope that this Research Topic contributes to these encouraging advances and inspires future 
research avenues in computational and empirical neuroscience.
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The Editorial on the Research Topic

Integrating Computational and Neural Findings in Visual Object Perception

Recognizing objects despite infinite variations in their appearance is a highly challenging
computational task the visual system performs in a remarkably fast, accurate, and robust fashion.
The complexity of the underlying mechanisms is reflected in the large proportion of cortical real-
estate dedicated to visual processing, as well as in the difficulties encountered when trying to build
models whose performance matches human proficiency.

The articles in this Research Topic provide an overview of recent advances in our understanding
of the neural mechanisms underlying visual object perception, focusing on integrative approaches
which encompass both computational and empirical work. Given the vast expanse of topics covered
in the discipline of computational visual neuroscience, it is impossible to provide a comprehensive
overview of the field’s status-quo. Instead, the presented papers highlight interesting extensions to
existing models and novel insights into computational principles and their neural underpinnings.
Contributions could be coarsely subdivided into three different sections: Two papers focused on
implementing biologically-valid learning rules and heuristics in well-established neural models
of the visual pathway (i.e., “VisNet” and “HMAX”) to improve flexible object recognition. Three
other studies investigated the role of sparseness, selectivity, and correlation in optimizing neural
coding of object features. Finally, another set of contributions focused on integrating computational
vision models and human brain responses to gain more insights in the computational mechanisms
underlying neural object representations.

EXTENDING INVARIANT RECOGNITION CAPABILITIES OF

EXISTING MODELS

A key challenge our visual system faces is a trade-off between discrimination and generalization. It
should be able to discriminate an encountered object from a myriad of possible alternatives. Yet,
it has to generalize across different instances of the same object, or, in other words, be invariant
to so-called “identity-preserving transformations” (DiCarlo et al., 2012). Two contributions in this
Research Topic propose updates to influential computational models to more adequately deal with
the latter invariance constraint.

Rolls and Webb, introduce an extension of the Ventral Visual Stream (VVS) model “VisNet”
(Rolls, 2012) by incorporating a bottom-up driven saliency-detection mechanism to locate items
of interest in natural scenes. By adding this functionality, their model mimics the “divide-and-
conquer” strategy applied by the primate visual system: the dorsal stream uses stimulus saliency to
guide saccades, which then allows the VVS to successively process a set of relatively small fixated
regions (instead of having to deal with a complex visual scene in its entirety), thereby reducing the
computational requirements to achieve invariant object recognition. The presented results show
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that VisNet could reliably locate and identify a number
of objects in cluttered scenes, portraying both view and
translation invariance, even though training encompassed only
four viewpoints and a limited range of positions per object. These
findings further corroborate the notion that learning rules based
on temporal continuity (i.e., exploiting the increased likelihood
that consecutive retinal images belong to the same object despite
slight changes in its appearance) can successfully guide the
development of invariant object representations.

Likewise, Parker and Serre show that another prominent
model, namely HMAX (Riesenhuber and Poggio, 1999), can
be extended to learn invariant recognition across 3D-rotations
(while previous instantiations were limited to 2D changes in
position and scale) based on unsupervised training on short
object transformation sequences. The extended model exhibited
greater sensitivity to so-called “Non-Accidental Properties”
(akin to infero-temporal cortical responses) and concomitantly
demonstrated greater tolerance to object transformations in its
input.

EFFICIENT NEURAL CODING STRATEGIES

The selectivity and sparseness observed in neural firing elicited
by visual stimulation are generally considered hallmarks of an
efficient coding scheme: since a given neuron only responds to
a limited set of inputs, and conversely any input only triggers
activity in a relatively small fraction of the neural population,
redundancy is minimized. In their contribution, Xiong et al.
show that both selectivity and sparseness (which need not be
correlated) can simultaneously arise as properties of modeled
V1 receptive fields by reinforcing diversity (i.e., minimizing
similarity by mimicking neural inhibition) during the training of
a restricted Boltzmannmachine (a type of network routinely used
in “deep learning” approaches LeCun et al., 2015).

Interestingly, the findings presented by Hung et al. actually
point to a role of correlated neural activity in efficient
visual recognition as opposed to the proposedly beneficial
de-correlation that tuning selectivity might offer. Based on
dense neurophysiological recordings in monkey infero-temporal
cortex, the authors show that correlation strength and tuning
selectivity are only weakly related and that the observed
correlated activity is mainly driven by neurons in IT output
layers that convey generalizable object information, which
is behaviorally relevant as it predicts human visual search
performance (see below). Relatedly, Gladilin and Eils discuss the
behavioral and neural importance of (phase) correlation in visual
input.

LINKING COMPUTATIONAL MODELS TO

HUMAN BRAIN RESPONSES

Human neuropsychological and neuroimaging studies have
consistently identified brain regions involved in object
recognition. Nevertheless, our current understanding of
ongoing computations and feature representations within these
areas is rather limited.

One way forward to unravel the identified regions’ inner
workings is to compare the similarity across neural response

patterns elicited by a given stimulus set to the similarity in
output of a range of computer-vision models (with different
feature extractions) when presented with the same stimulus set.
Using this exploratory strategy, Aminoff et al. demonstrate that
fMRI activation-patterns within scene-selective brain regions,
such as the parahippocampal (PPA) and occipital place area
(OPA), correlated most strongly with computer-vision models
incorporating semantic features. In comparison, correlations
were lower for models representing low-level features and for
behavioral similarity scores. Conversely, the activation-pattern
observed in the retrosplenial complex (RSC) was more in line
with one of the low-level models and did correlate with subjective
similarity ratings. Although encouraging, the results also clearly
indicated that the overall correspondence between empirical and
modeled responses was weak, suggesting that we still lack a clear
grasp on cortical feature representation. One such feature, visual
texture, is further explored in the contribution by Liu et al. using
behavioral methods and modeling.

Another approach to gain insights into VVS feature
representations is employed by Lescroart et al. They compared
how well three encoding models, based on different scene-
defining feature classes, could voxel-wise predict neural
representations in scene-selective brain regions. The encoding
models mapped a diverse set of natural images to three
qualitatively different feature spaces: 2D-features related to
Fourier-power, the subjective 3D—distance to salient objects
in the scene, and a more abstract, semantic scene description
(“object-categorization”). In line with Aminoff et al. the object-
category model provided a better prediction of PPA and OPA
activity compared to the other two encoding models which did
not include semantic features. In addition, RSC activity was
more accurately predicted by the object-category model than the
Fourier-power model, but the object-category model and the 3D-
distance model performed equally well. Although, results of both
studies suggest a different feature representation for scenes in
RSC compared to PPA and OPA, it should be noted that feature
representations in all areas are more complex than captured by
the applied computer-vision and encoding models. Response
variance explained by the models was largely shared in the fMRI
data of Lescroart et al. To which extent this reflects an actual
combined representation of the model’s different feature classes,
or alternatively the high correlation between these feature spaces
in natural images, could be further explored by follow-up studies
using stimulus sets with reduced feature covariance (yet covering
enough variance for real-world generalization). Furthermore,
such studies might attempt to establish new encoding models
based on feature spaces inspired by feature representations in
high-level computer-vision models (e.g., Aminoff et al.) or deep
neural nets (e.g., Güçlü and Van Gerven, 2015).

However, even the most optimal feature representations based
on such approaches currently miss an important ingredient that
might be essential for our fast and efficient object recognition:
feature representations in the brain are dynamically influenced
by task demands. We actively engage in a dynamical world,
intentionally searching for and interacting with objects, rather
than passively observing static sceneries. Several aforementioned
contributions highlight specific aspects of such active perception,
andmore aspects can be distinguished. For example, to selectively
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process objects of interest over distracting information, we can
use (c)overt spatial attention to constrain computations (see
Rolls and Webb), but also non-spatial attention contributes
to an efficient read-out of neural representations by altering
the corresponding feature space. In particular, during visual
search for objects in a movie, fronto-parietal and occipito-
temporal activations become tuned toward the attended object-
category, expanding representations of this and semantically
related categories, at the cost of unattended categories (Çukur
et al., 2013). Likewise, the work by Hung et al. revealed
that proximity in a neurally defined feature space (based on
monkey IT data) predicts human visual search efficiency: targets
were more easily identified when subjects were previously
adapted to surrounding distractors containing contrastive
features represented in neighboring cortical columns. This relates
to neural simulations in the contribution of Borji and Itti,
suggesting that feature similarity between target and distractors
affects whether attention modulates (combinations of) neural
gain, shifts in tunings, or sharpening of tunings, to allow for the
most informative representations of important stimulus features.
Moreover, the employed attentional mechanisms were influenced
by task requirements (e.g., object discrimination vs. search),
providing a further demonstration of the adaptive nature of
feature representations optimized for fast and efficient read-
out by higher-level areas. Adding such cognitive top-down
influences that warp feature spaces according to salience and
relevance, employing vision models with recurrent connections,
and defining specific encoding models for each processing
stage remains challenging, yet appears necessary for a profound
understanding of object representations in the primate brain.

CONCLUDING REMARKS

Combining computational and empirical efforts to reveal the
neural mechanisms underlying visual object recognition has
recently gained momentum. There has been a vast increase in
studies employing encoding models to understand how input,
transformed to an abstract feature space, predicts measured
neural activity. The variety of models under investigation
has expanded, ranging from low-level visual descriptors to
models that incorporate high-level semantic features. Moreover,

advances in high performance computing made it possible to
move beyond predefined sets of features, to feature spaces learned
from huge and diverse sets of natural world images using
deep-learning techniques. Comparing different feature spaces
to neural activity can be performed for each measure unit
separately (e.g., for each fMRI voxel, see Lescroart et al.) or
features can be compared to activation patterns in pre-localized
brain regions using similarity estimates (e.g., Aminoff et al.).
Recently, Khaligh-Razavi et al. (2014) showed that integrating
both approaches, by reweighting and remixing model features
via voxel-wise modeling, can lead to higher similarity between
models and neural responses in object-selective visual cortex.
Direct integration by projecting (population receptive field) voxel
models and measured fMRI data in the same brain space might
further facilitate comparisons by enabling the use of identical

data analysis and visualization techniques for both modeled and
measured data (Peters et al., 2012).

The advent of ultra-high field fMRI imaging, large-scale
electrocorticographic grids, and dense electrode arrays will
provide increasingly rich datasets to study neural activity-
patterns with unprecedented detail, yet with sufficient coverage
to track reformatting of feature representations from low- to
mid- to high-level areas along the VVS. By capitalizing on these
increasing opportunities to integrate advanced computer-vision
models and large-scale, high-resolution neural datasets, future
research can rely on an ever-expanding data mining toolbox to
probe neural feature and object representations to uncover the
underlying neural “vocabularies.”
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Searching for and recognizing objects in complex natural scenes is implemented by
multiple saccades until the eyes reach within the reduced receptive field sizes of inferior
temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual
streams both contribute to this. Saliency detection in the dorsal visual system including
area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential
objects within several degrees. Visual information at the fixated location subtending
approximately 9◦ corresponding to the receptive fields of IT neurons is then passed
through a four layer hierarchical model of the ventral cortical visual system, VisNet. We
show that VisNet can be trained using a synaptic modification rule with a short-term
memory trace of recent neuronal activity to capture both the required view and translation
invariances to allow in the model approximately 90% correct object recognition for 4
objects shown in any view across a range of 135◦ anywhere in a scene. The model was
able to generalize correctly within the four trained views and the 25 trained translations.
This approach analyses the principles by which complementary computations in the dorsal
and ventral visual cortical streams enable objects to be located and recognized in complex
natural scenes.

Keywords: object recognition, invariance, saliency, inferior temporal visual cortex, trace learning rule, VisNet

1. INTRODUCTION
One of the major problems that is solved by the visual system in
the cerebral cortex is the building of a representation of visual
information that allows object and face recognition to occur rel-
atively independently of size, contrast, spatial frequency, position
on the retina, angle of view, lighting, etc. These invariant rep-
resentations of objects, provided by the inferior temporal visual
cortex (Rolls, 2008, 2012), are extremely important for the oper-
ation of many other systems in the brain, for if there is an
invariant representation, it is possible to learn on a single trial
about reward/punishment associations of the object, the place
where that object is located, and whether the object has been
seen recently, and then to correctly generalize to other views etc.
of the same object (Rolls, 2008, 2014). Here we consider how
the cerebral cortex solves the major computational task of view-
invariant recognition of objects in complex natural scenes, still a
major challenge for computer vision approaches, as described in
the Discussion.

One mechanism that the brain uses to simplify the task of rec-
ognizing objects in complex natural scenes is that the receptive
fields of inferior temporal cortex neurons change from approxi-
mately 70◦ in diameter when tested under classical neurophysiol-
ogy conditions with a single stimulus on a blank screen to as little
as a radius of 8◦ (for a 5◦ stimulus) when tested in a complex nat-
ural scene (Rolls et al., 2003; Aggelopoulos and Rolls, 2005) (with

consistent findings described by Sheinberg and Logothetis, 2001).
This greatly simplifies the task for the object recognition system,
for instead of dealing with the whole scene as in traditional com-
puter vision approaches, the brain processes just a small fixated
region of a complex natural scene at any one time, and then the
eyes are moved to another part of the screen. During visual search
for an object in a complex natural scene, the primate visual sys-
tem, with its high resolution fovea, therefore keeps moving the
eyes until they fall within approximately 8◦ of the target, and then
inferior temporal cortex neurons respond to the target object, and
an action can be initiated toward the target, for example to obtain
a reward (Rolls et al., 2003). The inferior temporal cortex neu-
rons then respond to the object being fixated with view, size, and
rotation invariance (Rolls, 2012), and also need some translation
invariance, for the eyes may not be fixating the center of the object
when the inferior temporal cortex neurons respond (Rolls et al.,
2003).

The questions then arise of how the eyes are guided in a
complex natural scene to fixate close to what may be an object;
and how close the fixation is to the center of typical objects for
this determines how much translation invariance needs to be
built into the ventral visual system. It turns out that the dor-
sal visual system (Ungerleider and Mishkin, 1982; Ungerleider
and Haxby, 1994) implements bottom-up saliency mechanisms
by guiding saccades to salient stimuli, using properties of the
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stimulus such as high contrast, color, and visual motion (Miller
and Buschman, 2013). (Bottom-up refers to inputs reaching the
visual system from the retina). One particular region, the lateral
intraparietal cortex (LIP), which is an area in the dorsal visual
system, seems to contain saliency maps sensitive to strong sen-
sory inputs (Arcizet et al., 2011). Highly salient, briefly flashed,
stimuli capture both behavior and the response of LIP neurons
(Bisley and Goldberg, 2003, 2006; Goldberg et al., 2006). Inputs
reach LIP via dorsal visual stream areas including area MT, and
via V4 in the ventral stream (Soltani and Koch, 2010; Miller
and Buschman, 2013). Although top-down attention using biased
competition can facilitate the operation of attentional mecha-
nisms, and is a subject of great interest (Desimone and Duncan,
1995; Rolls and Deco, 2002; Deco and Rolls, 2005a; Miller and
Buschman, 2013), top-down object-based attention makes only
a small contribution to visual search for an object in a complex
natural unstructured scene (such as leaves on a tree), increas-
ing the receptive field size from a radius of approximately 7.8
to approximately 9.6◦ (Rolls et al., 2003), and is not considered
further here. Indeed, in these investigations, multiple saccades
were required round the scene to find a target object (Rolls et al.,
2003).

In the research described here we investigate computationally
how a bottom-up saliency mechanism in the dorsal visual stream
reaching for example area LIP could operate in conjunction
with invariant object recognition performed by the ventral visual
stream reaching the inferior temporal visual cortex to provide for
invariant object recognition in natural scenes. The hypothesis is
that the dorsal visual stream, in conjunction with structures such
as the superior colliculus (Knudsen, 2011), uses saliency to guide
saccadic eye movements to salient stimuli in large parts of the
visual field, and that once a stimulus has been fixated, the ventral
visual stream performs invariant object recognition on the region
being fixated. The dorsal visual stream in this process knows little
about invariant object recognition, so cannot identify objects in
natural scenes. Similarly, the ventral visual stream cannot perform
the whole process, for it cannot efficiently find possible objects in
a large natural scene, because its receptive fields are only approxi-
mately 9◦ in radius in complex natural scenes. It is how the dorsal
and ventral streams work together to implement invariant object
recognition in natural scenes that we investigate here. By investi-
gating this computationally, we are able to test whether the dorsal
visual stream can find objects with sufficient accuracy to enable
the ventral visual stream to perform the invariant object recogni-
tion. The issue here is that the ventral visual stream has in practice
some translation invariance in natural scenes, but this is limited
to approximately 9◦ (Rolls et al., 2003; Aggelopoulos and Rolls,
2005). The computational reason why the ventral visual stream
does not compute translation invariant representations over the
whole visual field as well as view, size and rotation invariance,
is that the computation is too complex. Indeed, it is a problem
that has not been fully solved in computer vision systems when
they try to perform invariant object recognition over a large nat-
ural scene. The brain takes a different approach, of simplifying the
problem by fixating on one part of the scene at a time, and solving
the somewhat easier problem of invariant representations within
a region of approximately 9◦.

For this scenario to operate, the ventral visual stream needs
then to implement view invariant recognition, but to combine
it with some translation invariance, as the fixation position pro-
duced by bottom up saliency will not be at the center of an
object, and indeed may be considerably displaced from the center
of an object. In the model of invariant visual object recogni-
tion that we have developed, VisNet, which models the hierarchy
of visual areas in the ventral visual stream by using competi-
tive learning to develop feature conjunctions supplemented by
a temporal trace or by spatial continuity or both, all previous
investigations have explored either view or translation invari-
ance learning, but not both (Rolls, 2012). Combining translation
and view invariance learning is a considerable challenge, for the
number of transforms becomes the product of the numbers of
each transform type, and it is not known how VisNet (or any
other biologically plausible approach to invariant object recog-
nition) will perform with the large number, and with the two
types of transform combined. Indeed, an important part of the
research described here was to investigate how well architectures
of the VisNet type generalize between both trained locations
and trained views. This is important for setting the numbers
of different views and translations of each object that must be
trained.

The specific goals of the research and simulations described
here were as follows. (1) To demonstrate with a biologically plau-
sible model of the ventral visual system how it could operate
to implement view invariant object/person identity recognition
with a generic model of the dorsal visual system that produced
fixations on parts of scenes that were salient. How would the
combined cortical visual areas operate with the dorsal visual
system not encoding object identity but only saliency; and the
ventral visual system being unable to find objects efficiently in
large natural scenes, but able to perform view invariant object
recognition once fixation was close to an object? (2) How closely
and effectively would a simple, generic, bottom-up saliency sys-
tem modeling part of the functions of the dorsal visual system
find objects in a complex scene, and how accurately would the
center of the object be fixated? The accuracy with which the
center of the object is fixated is crucial to understand, for this
defines how much translation invariance must be incorporated
into the ventral visual system for the whole system to work.
(3) Can VisNet be trained for both view and translation invari-
ance? This has not been attempted previously with VisNet, and
for that matter view invariant object recognition is not a prop-
erty of most computer vision models (see Discussion). (4) If
VisNet can be trained on both view and translation invariant
object identification, can it be trained with sufficient translation
invariance to cover the visual angle needed given the inaccu-
racies of the saliency-based fixation mechanism in finding the
center of an object, and yet be trained with sufficient views to
provide for view-invariant object identification? (5) How well
does VisNet generalize from trained views to untrained views of
an object? This is important, for it influences how much train-
ing of different views is required, which could have an impact
on the capacity of the system, that is on the number of objects
or people that it can correctly identify with the required trans-
lation invariance. (6) How well does VisNet perform in object
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identification when the objects appear in natural scenes with fix-
ation not necessarily at the trained location, and when views
intermediate to those at which VisNet has been trained are pre-
sented? That is, how well under the natural scene conditions
can VisNet ignore the background and identify a trained object
despite it being presented in a view and position that were not
trained?

2. METHODS
2.1. SALIENCY
We chose a bottom up saliency algorithm that is one of the stan-
dard ones that has been developed, which adopts the Itti and Koch
(2000) approach to visual saliency, and implements it by graph-
based visual saliency (GBVS) algorithms (Harel et al., 2006a,b).
This system performs well, that is similarly to humans, in many
bottom-up saliency tasks. The particular algorithm used for the
bottom-up saliency was not crucial to the present research, so
we chose a generically representative algorithm1. We used static
images, so motion was not used to detect saliency. Of course in
the human brain, and in a computer application, performance
could be made better than described here by using many different
cues that can influence saliency, including also color which was
disabled in the current algorithm, as VisNet works with grayscale
images to help ensure that object shape is being processed, and
not a simple feature such as color (Rolls, 2012).

2.2. ARCHITECTURE OF THE VENTRAL VISUAL STREAM MODEL, VisNet
The architecture of VisNet has been described previously (Rolls,
2008, 2012), and is summarized briefly next, with a full descrip-
tion provided in the Appendix. Extensions important for the
present research included training in both view and translation
invariance, together with careful specification of the learning rate
during the presentation of each transform, as there were typically
100 or more transforms of every object to be learned.

1GBVS was used with its default parameters, except as follows: channels =
CIO; gaborangles 0, 30, 60, 90, 120, 150; onCenterBias = 1; levels 2 3;
sigma_frac_act = 0.35; sigma_frac_norm = 0.26.

Fundamental elements of Rolls’ 1992 theory for how cor-
tical networks might implement invariant object recognition
are described in detail elsewhere (Rolls, 2008, 2012). They
provide the basis for the design of VisNet, which can be
summarized as:

• A series of competitive networks, organized in hierarchical lay-
ers, exhibiting mutual inhibition over a short range within each
layer. These networks allow combinations of features or inputs
occurring in a given spatial arrangement to be learned by neu-
rons using competitive learning (Rolls, 2008), ensuring that
higher order spatial properties of the input stimuli are repre-
sented in the network. In VisNet, layer 1 corresponds to V2,
layer 2 to V4, layer 3 to posterior inferior temporal visual cor-
tex, and layer 4 to anterior inferior temporal cortex. Layer one
is preceded by a simulation of the Gabor-like receptive fields
of V1 neurons produced by each image presented to VisNet
(Rolls, 2012).

• A convergent series of connections from a localized popula-
tion of neurons in the preceding layer to each neuron of the
following layer, thus allowing the receptive field size of neu-
rons to increase through the visual processing areas or layers,
as illustrated in Figure 1.

• A modified associative (Hebb-like) learning rule incorpo-
rating a temporal trace of each neuron’s previous activity,
which, it has been shown (Földiák, 1991; Rolls, 1992; Wallis
et al., 1993; Wallis and Rolls, 1997; Rolls and Milward,
2000; Rolls, 2012), enables the neurons to learn transform
invariances.

The learning rates for each of the four layers were 0.05, 0.03, 0.005,
and 0.005, as these rates were shown to produce convergence
of the synaptic weights after 15–50 training epochs. 50 training
epochs were run.

The developments to VisNet that facilitated this principled
approach to the learning rate, combined view and translation
invariance learning, etc, and the parameters used, are described
in the Appendix.

FIGURE 1 | Convergence in the visual system. Right: As it occurs in
the brain. V1, visual cortex area V1; TEO, posterior inferior temporal
cortex; TE, inferior temporal cortex (IT). Left: As implemented in

VisNet. Convergence through the network is designed to provide
fourth layer neurons with information from across the entire input
retina.
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2.3. INFORMATION MEASURES OF PERFORMANCE
The performance of VisNet was measured by Shannon
information-theoretic measures that are essentially identical
to those used to quantify the specificity and selectiveness of the
representations provided by neurons in the brain (Rolls and
Milward, 2000; Rolls and Treves, 2011; Rolls, 2012). A single
cell information measure indicated how much information was
conveyed by a single neuron about the most effective stimulus.
A multiple cell information measure indicated how much infor-
mation about every stimulus was conveyed by small populations
of neurons, and was used to ensure that all stimuli had some
neurons conveying information about them. Details are provided
in the Appendix.

2.4. TRAINING
VisNet was trained on four views spaced 45◦ apart of each of the
4 objects as illustrated in Figure 2. The images of each object
were generated from a 3D model using Blender (The Blender
Foundation, www.blender.org) so that lighting could be carefully
controlled. Each grayscale image of an object was 256 × 256 pix-
els, with the intensity scaled to be in the range 0–255, and the
background approximately 127. The object images were pasted
into a 512 × 512 gray image to prevent wrap-around effects,
prior to the spatial frequency filtering to produce neurons with
Gabor-like receptive fields in an emulation of V1 neurons that
provided the input to the first layer of VisNet (see Appendix). [We
have previously shown that the training need not be on a blank
background, provided that the background is not constant across

transforms and objects, as will be the case in the natural world
(Stringer et al., 2007; Stringer and Rolls, 2008)]

Each training image was trained in 25 locations set out in a
5 ×5 rectangular grid with these locations separated by 8 pix-
els in the training image. To provide an indication of the range
of this translation invariance training, the grid extended between
the centers of the headlights in the front view of the jeep shown
in Figure 2. This resulted in 100 transforms of each object to be
learned. To enable VisNet to learn invariant representations with
the trace synaptic learning rule, all the transforms of one object
were shown in a random permuted sequence, the trace was reset,
and the procedure was repeated with each of the other objects.
50 training epochs were run, as this was sufficient to produce
gradual convergence of the synaptic weights over 15–50 epochs,
as described in the Appendix.

2.5. TESTING INVARIANT OBJECT RECOGNITION IN NATURAL SCENES
Eight of the 12 test scenes are illustrated in Figure 3A. Each scene
had each of the objects in one of the four poses. The aim of
the combined visual processing was for the dorsal visual stream
to detect the salient regions in these 12 scenes, and then for
the salient regions to be passed to VisNet to perform the view
(and translation) invariant object recognition for every object
in the scene. VisNet had been trained on the 4 objects in each
of the 4 views, but not on the background scenes, and it was
part of the task of VisNet to identify each of the four objects in
every scene without being affected by the background clutter of
each scene (Stringer and Rolls, 2000). The objects used in this

FIGURE 2 | Training images: 4 views of each of 4 objects. Each image was 256 × 256 pixels.
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FIGURE 3 | (A) Eight of the 12 test scenes. Each scene has 4 objects,
each in one of its four views. (B) The bottom up saliency map generated
by the GBVS code for one of the scenes. The highest levels in the

saliency map are red, and the lowest blue. (C) Rectangles (384 × 384
pixels) placed around each peak in the scene for which the bottom-up
saliency map is illustrated in (B).

investigation were common types of object with which the human
visual system performs good view invariant identification, people
and vehicles. Two people and two vehicles were chosen to provide
evidence on how the system might operate with typical stimuli for
which view-invariant identification is necessary and is performed
by the human visual system.

3. RESULTS
3.1. THE OPERATION OF THE SALIENCY PROCESSING
The bottom up saliency map generated by the GBVS code (acting
as a surrogate for the dorsal visual system) for one of the scenes is
illustrated in Figure 3B. The saliency map has of course no indi-
cation of which peak is a trained object, nor of which object it
might be.

The saliency maps generated by GBVS correspond closely to
the saccades and resulting fixations of humans (Itti and Koch,
2000; Harel et al., 2006a,b). We therefore extracted images from
the scene that were at the center of each peak of the saliency map.
A weighted centroid was used, as implemented in MATLAB. Each
extracted image centered on a peak in the saliency map was 384 ×
384 pixels (not the originally trained 256 × 256 size of a training
image), because sometimes a saliency peak was not well centered
on an object, and we wished to be sure that the whole object

was in the image presented to VisNet. Figure 3C shows rectan-
gles produced in this way round the 6 most salient regions in
the test scene for which the saliency map is shown in Figure 3B.
Four of the saliency peaks and therefore the rectangles contained
trained objects, and two extracted images just salient parts of the
background scene in which the trained objects appeared.

The extracted (“foveated”) images of the objects to be pre-
sented to VisNet based on saliency are not always well-centered
in the 384 × 384 extracted image, and this is clear for one of the
objects, the man, as shown in Figure 3C.

To provide evidence on the degree of translation invariance
that would be required of VisNet given that the center of each
image was not always at the peak of the saliency map, so that the
extracted image would be offset from a central trained location,
the offsets of the saliency peaks from the center of each object
image are shown in Figure 4. While it is clear that the majority of
the offsets of the saliency peak from the center of the object were
in the range 0–32 pixels, some were beyond this. For this reason,
we do not necessarily expect that VisNet, trained on a grid with
an offset up to 32 would achieve 100% correct object recognition.
The evidence shown in Figure 4 does provide though the useful
indication that training to allow for offsets up to 64 for a 256 ×
256 image might improve performance.
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FIGURE 4 | Distribution of the offsets of the saliency peaks from the

center of each object. The data were obtained for 48 images (different
views of the different objects) presented in 3 backgrounds. An example of
one of the backgrounds containing one view of each of four objects is
illustrated in Figure 3C.

3.2. TESTS OF VisNet ON VIEW AND TRANSLATION INVARIANCE
Although VisNet had been trained on a 25-location grid with size
64 × 64 with spacing of 16 pixels, and with 4 different views of
each object, we did not know how well VisNet would perform on
this task as this has never been tested before, nor whether perfor-
mance would generalize to intermediate locations in the 64 × 64
grid, given that there were only 25 training locations spaced 16
pixels apart. An analysis is shown in Figure 5A which covers the
4096 locations in the 64 × 64 grid. This indicates that the per-
formance (on the view invariant object recognition) peaks at the
trained locations (0, 16, and 32 in this Figure), but also that there
is reasonable performance at intermediate locations between the
training locations. (The chance performance with 4 objects is
25% correct.) This is an important new result, which adds to
previous evidence that smaller versions of VisNet with 32 × 32
neurons in each of 4 layers can generalize reasonably across inter-
mediate untrained locations in scenes with blank backgrounds
(Wallis and Rolls, 1997). The performance was measured with
a pattern associator trained on layer 4 of VisNet, with four out-
put neurons (one for each object), and the 25 most selective cells
for each object identified using the single cell information mea-
sure (see Appendix). The best cells were quite selective for one
of the objects, and quite invariant in their response over the 100
transforms (4 views and 25 locations), as illustrated in Figure 5B.

3.3. TESTS OF THE WHOLE SALIENCY PLUS VIEW INVARIANCE
SYSTEM

With 48 images extracted from the the 12 test scenes (8 illustrated
in Figure 3A), performance was 90% correct (43 correct/48),
where chance with the four objects is 25% (Fisher test p �
0.0001).

It is important that this good performance on this identifica-
tion task was found when the images extracted for presentation

FIGURE 5 | (A) The performance on the view invariant object recognition
tested with images at the 15 trained locations on the 64 × 64 training grid,
and at intermediate locations. The ordinate shows the distance from the
central line in the training grid, and trained locations thus correspond to
offsets of 0, 16, and 32. The mean and standard deviation are shown for
each data point. The standard deviation was measured by performing the
training ten times each with a different random seed to generate the
connectivity of VisNet. Performance decreases beyond an offset of 32,
because there was no translation invariant training beyond this. (B) A
neuron in layer 4 of VisNet that responded to almost all transforms of one
object (4), and to no transform of any other object (1–3). There were 25
location transforms on a grid of size 64 with a spacing of 16, and 4 views of
each object at each location. The stimulus-specific information or surprise
was 2 bits, as there were 4 objects.

to VisNet had background parts of the scene included (e.g.,
Figure 3C). These background features did not produce large
decreases in the performance of VisNet, given that VisNet had
been trained on the objects but not on the backgrounds (Stringer
and Rolls, 2000). This is important for the processes of invari-
ant visual object identification in novel complex natural scenes
described here. Further, if there was a low amplitude saliency peak
containing only part of the background scene and not an object,
then VisNet did not respond to this as a trained object. When
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FIGURE 6 | Performance of VisNet at views intermediate to the trained

views of 270, 315, 0, and 45 ◦, which are indicated by T. Performance
was tested at 6 intermediate views between each trained view, and then
for illustrative purposes the results for the 6 intermediate views were
averaged using adjacent views. Each data point shown is the average of 12
observations. The chance level of performance, 25%, is indicated.

errors were made by VisNet on the object identification, the con-
fusions were as frequent between the classes of people and vehicle
as within these classes.

3.4. TESTS OF VIEW PLUS TRANSLATION INVARIANCE AT
INTERMEDIATE VIEWS

The training images had four views of each object separated by
45◦ as illustrated in Figure 2. To assess whether these views were
sufficiently close to allow for generalization between the trained
views, we tested VisNet with 6 intermediate views (presented
on plain backgrounds) between each trained view. As shown in
Figure 6, performance is reasonable at the untrained intermedi-
ate views. The important implication is that VisNet does not need
to be trained on a large set of closely spaced views, and this helps
the rapid learning of new objects, and also may help to increase
the capacity of VisNet, as only few views of each new object need
to be learned.

4. DISCUSSION
By combining in a simulation the operation of the dorsal and
ventral visual systems in the identification of objects in complex
natural scenes, we believe that important progress has been made,
in a biologically inspired approach not attempted in other includ-
ing computer-based approaches. The models simulated show how
the brain may solve this major computational problem by moving
the eyes to fixate close to objects in a natural scene using bottom-
up saliency implemented in the dorsal visual system, and then
performs objects recognition successively for each of the fixated
regions using the ventral visual system. The research described
here emphasizes that because the eyes do not locate the center of
objects based on saliency, then translation invariance as well as
view, size etc invariance needs to be implemented in the ventral

visual system. We show how a model of invariant object recogni-
tion in the ventral visual system, VisNet, can perform the required
combination of translation and view invariant recognition, and
moreover can generalize between views of objects that are 45◦
apart during training, and can also generalize to intermediate
locations when trained in a coarse training grid with the spacing
between trained locations equivalent to 1–3◦.

We emphasize that the model is closely linked to neurophysio-
logical research on visual object recognition in natural scenes, and
explicitly models how the system could operate computationally
to achieve the degree of translation invariance shown in complex
natural scenes by inferior temporal cortex neurons (Rolls et al.,
2003; Aggelopoulos and Rolls, 2005) as well as the view invari-
ance that is combined with this (Hasselmo et al., 1989; Booth
and Rolls, 1998). Moreover, the deformation or pose invariance
that can be shown by inferior temporal cortex neurons is also
a property that can be learned by this functional architectural
computational model of object recognition in the ventral visual
system, VisNet (Webb and Rolls, 2014).

We note that in the underlying neurophysiological experi-
ments, the objects were small and were presented in an unstruc-
tured scene, which was the leaves of trees (Rolls et al., 2003). In
this type of scene, objects can only be found by repeated sac-
cades round the scene until the eyes become sufficiently close
for the object to fall within the inferior temporal visual cor-
tex neuronal receptive fields which become dynamically reduced
to a few degrees in such scenes (Rolls et al., 2003). The recep-
tive fields of inferior temporal cortex neurons are thus small,
a few degrees, in complex natural scenes (Rolls et al., 2003;
Aggelopoulos and Rolls, 2005). In previous research, sometimes
large receptive fields have been reported (Gross et al., 1969),
and sometimes small, a few degrees (Op de Beeck and Vogels,
2000; DiCarlo and Maunsell, 2003). We showed that an impor-
tant factor in the receptive field size is the background. If the
receptive fields are measured as in traditional visual neurophysi-
ology against a blank background, then the receptive fields can be
as large as 70◦, whereas in a complex cluttered natural scene the
receptive fields can be as small as a few degrees (Rolls et al., 2003).
Moreover, we went on to show that the underlying dynamical
mechanism for receptive field size adjustment is probably com-
petition between neurons operating with neurons that have more
input from objects close to the fovea (Trappenberg et al., 2002). If
objects can be recognized by humans rapidly without the need for
multiple fixations round the scene (Thorpe, 2009), then one has
to assume that the scene has properties including probably some
structure or contrast or color or other low-level feature (Crouzet
and Thorpe, 2011), that enables the object to pop out using lower-
level processing that does not engage the invariant representations
provided by inferior temporal cortex neurons (Rolls, 2012).

The operation of VisNet coupled with the saliency model
of the dorsal visual system described here for the identifica-
tion of multiple objects at different positions in a natural scene
with view invariance is now compared with that of other sys-
tems and approaches. First, VisNet provides a theory and model
of how object identification with view (Stringer and Rolls,
2002), size (Wallis and Rolls, 1997), isomorphic rotation, trans-
lation (Stringer and Rolls, 2000; Perry et al., 2010), contrast,
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illumination (Rolls and Stringer, 2006), and spatial frequency
invariance is performed in the cerebral cortex (Rolls, 2012). The
approach is addressing fundamental issues about how the cerebral
cortex functions. VisNet models four stages of visual processing
beyond V1, and simulates V1; it uses local, biologically plausible,
synaptic learning rules; it produces neurons in its layer 4 that are
comparable to neurons recorded in the inferior temporal visual
cortex (IT) (Rolls and Treves, 2011; Rolls, 2012) in terms of their
receptive fields and how they are influenced by multiple items in a
scene and by top-down attention (Trappenberg et al., 2002; Rolls
et al., 2003); in terms of the neuronal tuning to different objects
(though VisNet has somewhat more binary neurons that IT neu-
rons) (Rolls, 2008, 2012; Rolls and Treves, 2011); and in terms of
size, view, translation, spatial frequency, and contrast invariance
(Rolls, 2012). We know of no other biologically plausible model
that performs view invariant as well as other types of transform
invariant object identification, and that can do this with multiple
different objects in complex natural scenes, as demonstrated here.

We provide now (following a suggestion) an account of how
VisNet is able to solve the type of invariant object recognition
problem described here when an image is presented to it, with
more detailed accounts available elsewhere (Wallis and Rolls,
1997; Rolls, 2008, 2012). VisNet is a 4-layer network with feed-
forward convergence from stage to stage that enables the small
receptive fields present in its V1-like Gabor filter inputs of approx-
imately 1◦ to increase in size so that by the fourth layer a single
neuron can potentially receive input from all parts of the input
space (Figure 1). The feedforward connections between layers are
trained by competitive learning, which is an unsupervised form of
learning (Rolls, 2008), that allows neurons to learn to respond to
feature combinations. As one proceeds up though the hierarchy,
the feature combinations become combinations of feature com-
binations (see Rolls, 2008 Figure 4.20 and Elliffe et al., 2002).
Local lateral inhibition within each layer allows each local area
within a layer to respond to and learn whatever is present in that
local region independently of how much information and con-
trast there may be in other parts of a layer, and this, together with
the non-linear activation function of the neurons, enables a sparse
distributed representation to be produced. In the sparse dis-
tributed representation, a small proportion of neurons is active at
a high rate for the input being presented, and most of the neurons
are close to their spontaneous rate, and this makes the neurons of
VisNet (Rolls, 2008, 2012) very similar to those recorded in the
visual system (Rolls, 2008; Rolls and Treves, 2011). A key prop-
erty of VisNet is the way that it learns whatever can be learned at
every stage of the network that is invariant as an image transforms
in the natural world, using the temporal trace learning rule. This
learning rule enables the firing from the preceding few items to
be maintained, and given the temporal statistics of visual inputs,
these inputs are likely to be from the same object. (Typically pri-
mates including humans look at one object for a short period
during which it may transform by translation, size, isomorphic
rotation, and/or view, and all these types of transform can there-
fore be learned by VisNet.) Effectively, VisNet uses as a teacher
the temporal and spatial continuity of objects as they transform
in the world to learn invariant representations. (An interesting
example is that representations of individual people or objects

invariant with respect to pose (e.g., standing, sitting, walking)
can be learned by VisNet, or representations of pose invariant
with respect to the individual person or object can be learned
by VisNet depending on the order in which the identical images
are presented during training Webb and Rolls, 2014.) Indeed,
we developed these hypotheses (Rolls, 1992, 1995, 2012; Wallis
et al., 1993) into a model of the ventral visual system that can
account for translation, size, view, lighting, and rotation invari-
ance (Wallis and Rolls, 1997; Rolls and Milward, 2000; Stringer
and Rolls, 2000, 2002, 2008; Rolls and Stringer, 2001, 2006, 2007;
Elliffe et al., 2002; Perry et al., 2006, 2010; Stringer et al., 2006,
2007; Rolls, 2008, 2012). Consistent with the hypothesis, we have
demonstrated these types of invariance (and spatial frequency
invariance) in the responses of neurons in the macaque inferior
temporal visual cortex (Rolls et al., 1985, 1987, 2003; Rolls and
Baylis, 1986; Hasselmo et al., 1989; Tovee et al., 1994; Booth and
Rolls, 1998). Moreover, we have tested the hypothesis by plac-
ing small 3D objects in the macaque’s home environment, and
showing that in the absence of any specific rewards being deliv-
ered, this type of visual experience in which objects can be seen
from different views as they transform continuously in time to
reveal different views leads to single neurons in the inferior tem-
poral visual cortex that respond to individual objects from any
one of several different views, demonstrating the development
of view-invariance learning (Booth and Rolls, 1998). (In control
experiments, view invariant representations were not found for
objects that had not been viewed in this way.) The learning shown
by neurons in the inferior temporal visual cortex can take just a
small number of trials (Rolls et al., 1989). The finding that tempo-
ral contiguity in the absence of reward is sufficient to lead to view
invariant object representations in the inferior temporal visual
cortex has been confirmed (Li and DiCarlo, 2008, 2010, 2012).
The importance of temporal continuity in learning invariant rep-
resentations has also been demonstrated in human psychophysics
experiments (Perry et al., 2006; Wallis, 2013). Some other sim-
ulation models are also adopting the use of temporal continuity
as a guiding principle for developing invariant representations by
learning (Wiskott and Sejnowski, 2002; Wiskott, 2003; Wyss et al.,
2006; Franzius et al., 2007), and the temporal trace learning prin-
ciple has also been applied recently (Isik et al., 2012) to HMAX
(Riesenhuber and Poggio, 2000; Serre et al., 2007c).

We now compare this VisNet approach to invariant object
recognition to some other approaches that seek to be biologically
plausible. One such approach is HMAX (Riesenhuber and Poggio,
2000; Serre et al., 2007a,b,c; Mutch and Lowe, 2008), which is a
hierarchical feedforward network with alternating simple cell-like
(S) and complex cell-like (C) layers. The simple cell-like layers
respond to a similarity function of the firing rates of the input
neuron to the synaptic weights of the receiving neuron (used as
an alternative to the more usual dot product), and the complex
cells to the maximum input that they receive from a particular
class of simple cell in the preceding layer. The classes of simple
cell are set to respond maximally to a random patch of a training
image (by presenting the image, and setting the synaptic weights
of the S cells to be the firing rates of the cells from it receives), and
are propagated laterally, that is there are exact copies through-
out a layer, which is of course a non-local operation and not
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biologically plausible. The hierarchy receives inputs from Gabor-
like filters (which is like VisNet). The result of this in HMAX is
that in the hierarchy there is no learning of invariant representa-
tions of objects; and that the output firing in the final C layer (for
example the second C layer in a four-layer S1-C1-S2-C2 hierar-
chy) is high for almost all neurons to most stimuli, with almost
no invariance represented in the output layer of the hierarchy, in
that two different views of the same object may be as different
as a view of another object, measured using the responses of a
single neuron or of all the neurons (Robinson and Rolls, 2014).
The neurons in the output C layer are thus quite unlike those in
VisNet or in the inferior temporal cortex, where there is a sparse
distributed representation, and where single cells convey much
information in their firing rates, and populations of single cells
convey much information that can be decoded by biologically
plausible dot product decoding such as might be performed by
a pattern association network in the areas that receive from the
inferior temporal visual cortex, such as the orbitofrontal cortex
and amygdala (Rolls, 2008, 2012; Rolls and Treves, 2011). HMAX
therefore must resort to a very powerful classification algorithm,
in practice typically a Support Vector Machine (SVM), which is
not biologically plausible, to learn to classify all the outputs of
the final layer that are produced by the different transforms of
one object to be of the same object, and different to those of
other objects. Thus HMAX does not learn invariant representa-
tions by its output layer of the S–C hierarchy, but instead uses a
SVM to perform the classification that the SVM is taught. This is
completely unlike the output of VisNet and of inferior temporal
cortex neuron firing, which by responding very similarly in terms
of firing rate to the different transforms of an object show that the
invariance has been learned in the hierarchy (Rolls, 2008, 2012).
Another way that the output of HMAX may be assessed is by the
use of View-Tuned Units (VTUs), each of which is set to respond
to one view of a class or object by setting its synaptic weights from
each C unit to the value of the firing of the C unit to one view
or exemplar of the object or class (Serre et al., 2007b). Because
there is little invariance in the C units, many different VTUs are
needed, with one for each training view or exemplar. Because the
VTUs are different to each other for the different views of the
same object or class, a further stage of training is then needed
to classify the VTUs into object classes, and the type of learning is
least squares error minimization (Serre et al., 2007b), equivalent
to a delta-rule one-layer perceptron which again is not biologi-
cally plausible for neocortex (Rolls, 2008). Thus HMAX does not
generate invariant representations in its S–C hierarchy, and in the
VTU approach uses two layers of learning after the S–C hierarchy,
the second involving least squares learning, to produce classifica-
tion. This is unlike VisNet, which learns invariant representations
in its hierarchy, and produces view invariant neurons (similar to
those for faces (Hasselmo et al., 1989) and objects (Booth and
Rolls, 1998) in the inferior temporal visual cortex) that can be
read by a biologically plausible pattern associator (Rolls, 2008,
2012).

Another difference of HMAX from VisNet is in the way that
VisNet is trained, which is a fundamental aspect of the VisNet
approach. HMAX has traditionally been tested with benchmark-
ing databases such as the CalTech-101 and CalTech-256 (Griffin

et al., 2007) in which sets of images from different categories are to
be classified. The Caltech-256 dataset is comprised of 256 object
classes made up of images that have many aspect ratios, sizes and
differ quite significantly in quality (having being manually col-
lated from web searches). The objects within the images show
significant intra-class variation and have a variety of poses, illu-
mination, scale and occlusion as expected from natural images.
A network is supposed to classify these correctly into classes such
as hats and bears (Rolls, 2012; Robinson and Rolls, 2014). The
problem is that examples of each class of object transforming
continuously though different positions on the retina, size, iso-
morphic rotation, and view are not provided to help the system
learn about how a given type of object transforms in the world.
The system just has to try to classify based on a set of often quite
different exemplars that are not transforms of each other. Thus a
system trained in this way is greatly hindered in generating trans-
form invariant representations by the end of the hierarchy, and
such a system has to rely on a powerful classifier such as a SVM
to perform a classification that is not based on transform invari-
ance learned in the hierarchical network. In contrast, VisNet is
provided during training with systematic transforms of objects of
the type that would be seen as objects transform in the world, and
has a well-posed basis for learning invariant representations. It is
important that with VisNet, the early layers may learn what types
of transform can be produced in small parts of the visual field by
different classes of object, so that when a new class of object is
introduced, rapid learning in the last layer and generalization to
untrained views can occur without the need for further training
of the early layers (Stringer and Rolls, 2002).

Some other approaches to biologically plausible invariant
object recognition are being developed with hierarchies that may
be allowed unsupervised learning (Pinto et al., 2009; DiCarlo
et al., 2012; Yamins et al., 2014). For example, a hierarchical
network has been trained with unsupervised learning, and with
many transforms of each object to help the system to learn invari-
ant representations in an analogous way to that in which VisNet
is trained, but the details of the network architecture are selected
by finding parameter values for the specification of the network
structure that produce good results on a benchmark classification
task (Pinto et al., 2009). However, formally these are convolu-
tional networks, so that the neuronal filters for one local region
are replicated over the whole of visual space, which is computa-
tionally efficient but biologically implausible. Further, a general
linear model is used to decode the firing in the output level of the
model to assess performance, so it is not clear whether the firing
rate representations of objects in the output layer of the model
are very similar to that of the inferior temporal visual cortex. In
contrast, with VisNet (Rolls and Milward, 2000; Rolls, 2012) the
information measurement procedures that we use (Rolls et al.,
1997a,b) are the same as those used to measure the representa-
tion that is present in the inferior temporal visual cortex (Tovee
et al., 1993; Rolls and Tovee, 1995; Tovee and Rolls, 1995; Abbott
et al., 1996; Baddeley et al., 1997; Rolls et al., 1997a,b, 2004, 2006;
Panzeri et al., 1999; Treves et al., 1999; Franco et al., 2004, 2007;
Aggelopoulos et al., 2005; Rolls and Treves, 2011).

We turn next to compare the operation of VisNet, as a
model of cerebral cortical mechanisms involved in view-invariant
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object identification, with artificial, computer vision, approaches
to object identification. However, we do emphasize that our
aim in the present research is to investigate how the cerebral
cortex operates in vision, not how computer vision attempts
to solve similar problems. Within computer vision, we note
that many approaches start with using independent compo-
nent analysis (ICA) (Kanan, 2013), sparse coding (Kanan and
Cottrell, 2010), and other mathematical approaches (Larochelle
and Hinton, 2010) to derive what may be suitable “feature ana-
lyzers,” which are frequently compared to the responses of V1
neurons. Computer vision approaches to object identification
then may take combinations of these feature analyzers, and per-
form statistical analyses using computer-based algorithms that are
not biologically plausible such as Restricted Boltzmann Machines
(RBMs) on these primitives to statistically discriminate differ-
ent objects (Larochelle and Hinton, 2010). Such a system does
not learn view invariant object recognition, for the different
views of an object may have completely different statistics of the
visual primitives, yet are the different views of the same object.
(Examples might include frontal and profile views of faces, which
are well tolerated for individual recognition by some inferior tem-
poral cortex neurons (Hasselmo et al., 1989); very different views
of 3D object which are identified correctly as the same object
by IT neurons after visual experience with the objects to allow
for view-invariant learning (Booth and Rolls, 1998); and many
man-made tools and objects which may appear quite different
in 2D image properties from different views.) Part of the diffi-
culty of computer vision lay in attempts to parse a whole scene
at one time (Marr, 1982). However, the biological approach is
to place the fovea on one part of a scene, perform image anal-
ysis/object identification there, and then move the eyes to fixate
a different location in a scene (Trappenberg et al., 2002; Rolls
et al., 2003). This is a divide-and-conquer strategy used by the
real visual system, to simplify the computational problem into
smaller parts performed successively, to simplify the representa-
tion of multiple objects in a scene, and to facilitate passing the
coordinates of a target object for action by using the coordi-
nates of the object being fixated (Ballard, 1990; Rolls and Deco,
2002; Rolls et al., 2003; Aggelopoulos and Rolls, 2005; Rolls, 2008,
2012). This approach has now been adopted by some computer
vision approaches (Denil et al., 2012).

Important issues are raised for future research.
First, how well does this approach scale up? At present there

are 128 × 128 neurons in each of 4 layers of VisNet, that is 65,536
neurons. This is small compared to the number of neurons in the
ventral visual stream, which number tens of millions of neurons
(Rolls, 2008). If this is indeed a good model of the processing in
the ventral visual system, as we hypothesize and on which VisNet
is based (Rolls, 2012), then the system should scale up appropri-
ately, that is, probably linearly. There are a number of different
aspects that need to scale up. One is the number of objects that
can be trained. A second is the number of views that can be
trained. A third is the number of locations in which the system
is trained, both because saliency mechanisms are not as accurate
as the range of 32 pixels from the fovea over which we trained here
(Figure 4), and because it may be advantageous to train at inter-
mediate locations (Figure 5). We propose to scale up VisNet by

16 times, from 128 × 128 neurons per layer to 512 × 512 neurons
per layer, and to simultaneously address all these issues.

Second, we have used a generically sound and well-known
approach to bottom-up saliency, an approach developed by Koch,
Itti, Harel and colleagues (Itti and Koch, 2000; Harel et al.,
2006a,b). However, it is possible to tune saliency algorithms so
that they are more likely to detect objects of certain classes, such
as faces or cars. This may greatly increase the capability of the
approach described here, and we plan to test how much improve-
ment in performance for the detection and then identification
of certain classes of objects can be obtained by incorporating
more specialized saliency algorithms. Many saliency approaches
and algorithms that are of interest for future research are avail-
able (Bruce and Tsotsos, 2006; Achanta et al., 2008; Zhang et al.,
2008; Kootstra et al., 2010; Goferman et al., 2012; Riche et al.,
2012; Jia et al., 2013; Li et al., 2013). For example, contextual
information may be useful, such as the fact that sofas are not
usually found in the sky, and that people are usually tall, skinny
objects on the ground (though see Webb and Rolls, 2014), and
contextual guidance models have been combined with bottom-up
saliency models (Oliva and Torralba, 2006; Torralba et al., 2006;
Ehinger et al., 2009; Kanan et al., 2009). We emphasize that in
the system described here, only one fixation is assumed for each
object in a scene, consistent with the fact that single neurons in
the inferior temporal visual cortex provide sufficient informa-
tion for object and face identification during a single fixation and
in only 20–50 ms of neuronal firing, as shown by information
theoretic analyses of neuronal activity and by backward masking
(Rolls et al., 1994; Rolls and Tovee, 1994; Tovee and Rolls, 1995).
[More detailed information may become available with repeated
fixations on different parts of an object, and this has been inves-
tigated in computer vision (Barrington et al., 2008; Kanan and
Cottrell, 2010; Larochelle and Hinton, 2010).]

Third, we have not utilized top-down attention in the develop-
ments described here. Top-down attention, whereby an object or
set of objects is held active in a short term memory which biases
the competitive networks in VisNet, can in principle improve per-
formance considerably (Rolls and Deco, 2002; Deco and Rolls,
2005b; Rolls, 2008). Indeed, we have developed and successfully
tested a reduced version of VisNet in which top-down atten-
tion does facilitate processing (Deco and Rolls, 2004), and this
approach has also been used in computer vision (Walther et al.,
2002). Another type of top-down effect is that task requirements
can influence fixations in a scene (Hayhoe and Ballard, 2005).
We plan in future to incorporate top-down attention into the
full, current, version of VisNet, to investigate how this is likely
to improve performance, especially for certain selected classes of
object.

Fourth, it will be useful to investigate in future the incorpora-
tion of more powerful synaptic learning rules when training with
the large number of transforms needed when learning invari-
ance for both view and translation transforms of objects. With
VisNet, we have so far used an associative (Hebbian) synaptic
modification rule (with a trace of previous firing in the postsy-
naptic term), for biological plausibility (Rolls, 2012). However,
to explore further the potential of the overall architecture of
VisNet, it will be of interest to investigate how much performance
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improves when error correction of the post-synaptic firing with
respect to the trace of previous neuronal activity is incorporated
to implement gradient descent. Gradient descent (Einhauser
et al., 2005; Wyss et al., 2006) or optimized slow learning (Wiskott
and Sejnowski, 2002; Wiskott, 2003) have been found useful with
different architectures.

Fifth, if a strong saliency peak occurs due to something in the
background scene that is close to an object, or due to another
trained object, how will the system respond? We suggest that the
general answer is that the asymmetry that is present in the recep-
tive fields of inferior temporal cortex neurons in cluttered scenes
(Aggelopoulos and Rolls, 2005) that is related to the asymmetries
caused by the sparse probabilistic forward connections of each
neuron (Rolls et al., 2008) and that enables two instances of the
same object close together to be correctly identified in terms of
both object and position (Rolls et al., 2008) provides the solution,
but it will be of interest to investigate this in detail.

Part of the value of the research described here is that it tests,
and investigates the operation of, a theory of how view invariant
object identification could be implemented by the cerebral cortex.
Some predictions of the simulations are (1) that learning will need
to be part of the process involved in view-invariant object iden-
tification, as the views of an object can be very different; (2) that
for at least views of people, a few well-spaced views (we used 45◦)
should suffice; (3) that translation invariance in complex unstruc-
tured crowded scenes may need to be over just a few degrees, for
fixation guided by bottom-up saliency has precision of that order
at least for the types of object considered here, and repeated sac-
cades are necessary to reach sufficiently close to an object in a
large scene for the invariance available to be able to operate in
object identification (Rolls et al., 2003; Aggelopoulos and Rolls,
2005); and (4) that just a single fixation of each object will in gen-
eral suffice for object/person identification, because of the speed
of cortical processing (Rolls and Treves, 2011; Rolls, 2012).

ACKNOWLEDGMENTS
The authors acknowledge with thanks the use of the GBVS
software (Harel et al., 2006a,b) (http://www.vision.caltech.edu/
~harel/share/gbvs.php). The images shown in Figure 2 were cre-
ated with Blender from models available at www.blendswap.com,
and acknowledged as follows: truck—Opel Blitz by orokrhus; jeep
by Jay-Artist; woman by Gerardus. The man was generated using
MakeHuman available at www.makehuman.org.

REFERENCES
Abbott, L. F., Rolls, E. T., and Tovee, M. J. (1996). Representational capacity of face

coding in monkeys. Cereb. Cortex 6, 498–505. doi: 10.1093/cercor/6.3.498
Achanta, R., Estrada, F., Wils, P., and Süsstrunk, S. (2008). Salient region detec-

tion and segmentation. Comput. Vis. Syst. 5008, 66–75. doi: 10.1007/978-3-540-
79547-6_7

Aggelopoulos, N. C., Franco, L., and Rolls, E. T. (2005). Object perception in
natural scenes: encoding by inferior temporal cortex simultaneously recorded
neurons. J. Neurophysiol. 93, 1342–1357. doi: 10.1152/jn.00553.2004

Aggelopoulos, N. C., and Rolls, E. T. (2005). Natural scene perception: inferior tem-
poral cortex neurons encode the positions of different objects in the scene. Eur.
J. Neurosci. 22, 2903–2916. doi: 10.1111/j.1460-9568.2005.04487.x

Arcizet, F., Mirpour, K., and Bisley, J. W. (2011). A pure salience response in poste-
rior parietal cortex. Cereb. Cortex 21, 2498–2506. doi: 10.1093/cercor/bhr035

Baddeley, R. J., Abbott, L. F., Booth, M. J. A., Sengpiel, F., Freeman, T., Wakeman,
E. A., et al. (1997). Responses of neurons in primary and inferior temporal visual

cortices to natural scenes. Proc. R. Soc. B 264, 1775–1783. doi: 10.1098/rspb.
1997.0246

Ballard, D. H. (1990). “Animate vision uses object-centred reference frames,” in
Advanced Neural Computers, ed R. Eckmiller (North-Holland, Amsterdam:
Elsevier), 229–236.

Barrington, L., Marks, T. K., Hsiao, J. H., and Cottrell, G. W. (2008). NIMBLE: a
kernel density model of saccade-based visual memory. J. Vis. 8:17. doi: 10.1167/
8.14.17

Baylis, G. C., Rolls, E. T., and Leonard, C. M. (1985). Selectivity between faces in
the responses of a population of neurons in the cortex in the superior tempo-
ral sulcus of the monkey. Brain Res. 342, 91–102. doi: 10.1016/0006-8993(85)
91356-3

Bisley, J. W., and Goldberg, M. E. (2003). Neuronal activity in the lateral intrapari-
etal area and spatial attention. Science 299, 81–86. doi: 10.1126/science.1077395

Bisley, J. W., and Goldberg, M. E. (2006). Neural correlates of attention and dis-
tractibility in the lateral intraparietal area. J. Neurophysiol. 95, 1696–1717. doi:
10.1152/jn.00848.2005

Booth, M. C. A., and Rolls, E. T. (1998). View-invariant representations of famil-
iar objects by neurons in the inferior temporal visual cortex. Cereb. Cortex 8,
510–523. doi: 10.1093/cercor/8.6.510

Bruce, N. D. B., and Tsotsos, J. K. (2006). “Saliency based on information maxi-
mization,” in Advances in Neural Information Processing Systems 18: Proceedings
of the 2005 Conference, Vol. 18 (Cambridge, MA: MIT Press), 155.

Buhmann, J., Lange, J., von der Malsburg, C., Vorbrüggen, J. C., and Würtz, R. P.
(1991). “Object recognition in the dynamic link architecture: parallel imple-
mentation of a transputer network,” in Neural Networks for Signal Processing, ed
B. Kosko (Englewood Cliffs, NJ: Prentice Hall), 121–159.

Crouzet, S. M., and Thorpe, S. J. (2011). Low-level cues and ultra-fast face
detection. Front. Psychol. 2:342. doi: 10.3389/fpsyg.2011.00342

Daugman, J. (1988). Complete discrete 2D-Gabor transforms by neural networks
for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process.
36, 1169–1179. doi: 10.1109/29.1644

Deco, G., and Rolls, E. T. (2004). A neurodynamical cortical model of visual
attention and invariant object recognition. Vision Res. 44, 621–644. doi:
10.1016/j.visres.2003.09.037

Deco, G., and Rolls, E. T. (2005a). Attention, short term memory, and action selec-
tion: a unifying theory. Prog. Neurobiol. 76, 236–256. doi: 10.1016/j.pneurobio.
2005.08.00

Deco, G., and Rolls, E. T. (2005b). Neurodynamics of biased competition and
cooperation for attention: a model with spiking neurons. J. Neurophysiol. 94,
295–313. doi: 10.1152/jn.01095.2004

Denil, M., Bazzani, L., Larochelle, H., and de Freitas, N. (2012). Learning where
to attend with deep architectures for image tracking. Neural Comput. 24,
2151–2184.

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual atten-
tion. Annu. Rev. Neurosci. 18, 193–222. doi: 10.1146/annurev.ne.18.030195.
001205

De Valois, R. L., and De Valois, K. K. (1988). Spatial Vision. New York, NY: Oxford
University Press .

DeWeese, M. R., and Meister, M. (1999). How to measure the information gained
from one symbol. Network 10, 325–340. doi: 10.1088/0954-898X/10/4/303

DiCarlo, J. J., and Maunsell, J. H. R. (2003). Anterior inferotemporal neurons of
monkeys engaged in object recognition can be highly sensitive to object retinal
position. J. Neurophysiol. 89, 3264–3278. doi: 10.1152/jn.00358.2002

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the brain solve visual
object recognition? Neuron 73, 415–434. doi: 10.1016/j.neuron.2012.01.010

Ehinger, K. A., Hidalgo-Sotelo, B., Torralba, A., and Oliva, A. (2009). Modeling
search for people in 900 scenes: a combined source model of eye guidance. Vis.
Cogn. 17, 945–978. doi: 10.1080/13506280902834720

Einhauser, W., Eggert, J., Korner, E., and Konig, P. (2005). Learning viewpoint
invariant object representations using a temporal coherence principle. Biol.
Cybern. 93, 79–90. doi: 10.1007/s00422-005-0585-8

Elliffe, M. C. M., Rolls, E. T., and Stringer, S. M. (2002). Invariant recognition
of feature combinations in the visual system, Biol. Cybern. 86, 59–71. doi:
10.1007/s004220100284

Földiák, P. (1991). Learning invariance from transformation sequences. Neural
Comput. 3, 193–199. doi: 10.1162/neco.1991.3.2.194

Földiák, P. (1992). Models of Sensory Coding. Technical Report CUED/F–
INFENG/TR 91, Cambridge: University of Cambridge.

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 85 | 17

http://www.vision.caltech.edu/~harel/share/gbvs.php
http://www.vision.caltech.edu/~harel/share/gbvs.php
www.blendswap.com
www.makehuman.org
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rolls and Webb Invariant visual object recognition and saliency

Franco, L., Rolls, E. T., Aggelopoulos, N. C., and Jerez, J. M. (2007). Neuronal
selectivity, population sparseness, and ergodicity in the inferior temporal visual
cortex. Biol. Cybernet. 96, 547–560. doi: 10.1007/s00422-007-0149-1

Franco, L., Rolls, E. T., Aggelopoulos, N. C., and Treves, A. (2004). The use of
decoding to analyze the contribution to the information of the correlations
between the firing of simultaneously recorded neurons. Exp. Brain Res. 155,
370–384. doi: 10.1007/s00221-003-1737-5

Franzius, M., Sprekeler, H., and Wiskott, L. (2007). Slowness and sparseness lead
to place, head-direction, and spatial-view cells. PLoS Comput. Biol. 3:e166. doi:
10.1371/journal.pcbi.0030166

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet.
36, 193–202. doi: 10.1007/BF00344251

Garthwaite, J. (2008). Concepts of neural nitric oxide-mediated transmission. Eur.
J. Neurosci. 27, 2783–3802. doi: 10.1111/j.1460-9568.2008.06285.x

Goferman, S., Zelnik-Manor, L., and Tal, A. (2012). Context-aware saliency
detection. Pattern Anal. Mach. Intel. IEEE Trans. 34, 1915–1926. doi:
10.1109/TPAMI.2011.272

Goldberg, M. E., Bisley, J. W., Powell, K. D., and Gottlieb, J. (2006).
Saccades, salience and attention: the role of the lateral intraparietal area in
visual behavior. Prog. Brain Res. 155, 157–175. doi: 10.1016/S0079-6123(06)
55010-1

Griffin, G., Holub, A., and Perona, P. (2007). The Caltech-256. Caltech Technical
Report. Los Angeles, CA: California Institute of Technology.

Gross, C., Bender, D., and Rocha-Miranda, C. (1969). Visual receptive fields of
neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306. doi:
10.1126/science.166.3910.1303

Harel, J., Koch, C., and Perona, P. (2006a). A Saliency Implementation in MATLAB.
Available online at: http://www.vision.caltech.edu/∼harel/share/gbvs.php

Harel, J., Koch, C., and Perona, P. (2006b). Graph-based visual saliency. Adv. Neural
Inf. Process. Syst. 545–552.

Hasselmo, M. E., Rolls, E. T., Baylis, G. C., and Nalwa, V. (1989). Object-
centered encoding by face-selective neurons in the cortex in the superior
temporal sulcus of the monkey. Exp. Brain Res. 75, 417–429. doi: 10.1007/
BF00247948

Hawken, M. J., and Parker, A. J. (1987). Spatial properties of the monkey striate
cortex. Proc. R. Soc. Lond. B 231, 251–288. doi: 10.1098/rspb.1987.0044

Hayhoe, M., and Ballard, D. (2005). Eye movements in natural behavior. Trends
Cogn. Sci. 9, 188–194. doi: 10.1016/j.tics.2005.02.009

Hestrin, S., Sah, P., and Nicoll, R. (1990). Mechanisms generating the time course
of dual component excitatory synaptic currents recorded in hippocampal slices.
Neuron 5, 247–253. doi: 10.1016/0896-6273(90)90162-9

Hummel, J. E., and Biederman, I. (1992). Dynamic binding in a neural network
for shape recognition. Psychol. Rev. 99, 480–517. doi: 10.1037/0033-295X.99.
3.480

Isik, L., Leibo, J. Z., and Poggio, T. (2012). Learning and disrupting invariance in
visual recognition with a temporal association rule. Front. Comput. Neurosci.
6:37. doi: 10.3389/fncom.2012.00037

Itti, L., and Koch, C. (2000). A saliency-based search mechanism for overt and
covert shifts of visual attention. Vis. Res. 40, 1489–1506. doi: 10.1016/S0042-
6989(99)00163-7

Jia, C., Hou, F., and Duan, L. (2013). Visual saliency based on local and global
features in the spatial domain. Int. J. Comput. Sci. 10, 3, 713–719.

Kanan, C. (2013). Active object recognition with a space-variant retina. ISRN Mach.
Vis. 2013:138057. doi: 10.1155/2013/138057

Kanan, C., and Cottrell, G. W. (2010). “Robust classification of objects, faces,
and flowers using natural image statistics,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on (IEEE), 2472–2479. doi:
10.1109/CVPR.2010.5539947

Kanan, C., Tong, M. H., Zhang, L., and Cottrell, G. W. (2009). SUN: Top-
down saliency using natural statistics. Vis. Cognit. 17, 979–1003. doi:
10.1080/13506280902771138

Knudsen, E. I. (2011). Control from below: the role of a midbrain network
in spatial attention. Eur. J. Neurosci. 33, 1961–1972. doi: 10.1111/j.1460-
9568.2011.07696.x

Kootstra, G., Bergstrom, N., and Kragic, D. (2010). “Fast and automatic
detection and segmentation of unknown objects,” in Humanoid Robots
(Humanoids), 2010 10th IEEE-RAS International Conference (IEEE), 442–447.
doi: 10.1109/ICHR.2010.5686837

Larochelle, H., and Hinton, G. E. (2010). Learning to combine foveal glimpses with
a third-order Boltzmann machine. Adv. Neural Inf. Process. Syst. 1, 1243–1251.

Lee, T. S. (1996). Image representation using 2D Gabor wavelets. IEEE Trans. Patt.
Anal. Mach. Intell. 18, 959–971. doi: 10.1109/34.541406

Li, J., Levine, M. D., An, X., Xu, X., and He, H. (2013). Visual saliency based on
scale-space analysis in the frequency domain. IEEE Trans. Patt. Anal. Mach.
Intell. 35, 996–1010. doi: 10.1109/TPAMI.2012.147

Li, N., and DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters
invariant object representation in visual cortex. Science 321, 1502–1507. doi:
10.1126/science.1160028

Li, N., and DiCarlo, J. J. (2010). Unsupervised natural visual experience rapidly
reshapes size-invariant object representation in inferior temporal cortex.
Neuron 67, 1062–1075. doi: 10.1016/j.neuron.2010.08.029

Li, N., and DiCarlo, J. J. (2012). Neuronal learning of invariant object represen-
tation in the ventral visual stream is not dependent on reward. J. Neurosci. 32,
6611–6620. doi: 10.1523/JNEUROSCI.3786-11.2012

Malsburg, C. V. D. (1973). Self-organization of orientation-sensitive columns in the
striate cortex. Kybernetik 14, 85–100. doi: 10.1007/BF00288907

Marr, D. (1982). Vision. (San Francisco, CA: Freeman).
Miller, E. K., and Buschman, T. J. (2013). Cortical circuits for the control of

attention. Curr. Opin. Neurobiol. 23, 216–222. doi: 10.1016/j.conb.2012.11.011
Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in

the primate temporal cortex. Nature 335, 817–820. doi: 10.1038/335817a0
Montague, P. R., Gally, J. A., and Edelman, G. M. (1991). Spatial signalling in the

development and function of neural connections. Cereb. Cortex 1, 199–220. doi:
10.1093/cercor/1.3.199

Mutch, J., and Lowe, D. G. (2008). Object class recognition and localization using
sparse features with limited receptive fields. Int. J. Comput. Vis. 80, 45–57. doi:
10.1007/s11263-007-0118-0

Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.
Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Oliva, A., and Torralba, A. (2006). Building the gist of a scene: the role of global
image features in recognition. Prog. Brain Res. 155, 23–36. doi: 10.1016/S0079-
6123(06)55002-2

Op de Beeck, H., and Vogels, R. (2000). Spatial sensitivity of macaque infe-
rior temporal neurons. J. Comp. Neurol. 426, 505–518. doi: 10.1002/1096-9861
(20001030)426:4<505::AID-CNE1>3.0.CO;2-M

Panzeri, S., Treves, A., Schultz, S., and Rolls, E. T. (1999). On decoding the
responses of a population of neurons from short time epochs. Neural Comput.
11, 1553–1577. doi: 10.1162/089976699300016142

Perrett, D. I., Oram, M. W., Harries, M. H., Bevan, R., Hietanen, J. K.
and Benson, P. J. (1991). Viewer–centered and object centered coding of
heads in the macaque temporal cortex. Exp. Brain Res. 86, 159–173. doi:
10.1007/BF00231050

Perry, G., Rolls, E. T., and Stringer, S. M. (2006). Spatial vs temporal continuity in
view invariant visual object recognition learning. Vis. Res. 46, 3994–4006. doi:
10.1016/j.visres.2006.07.025

Perry, G., Rolls, E. T., and Stringer, S. M. (2010). Continuous transformation learn-
ing of translation invariant representations. Exp. Brain Res. 204, 255–270. doi:
10.1007/s00221-010-2309-0

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D. (2009). A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation. PLoS Comput. Biol. 5:e1000579. doi: 10.1371/jour-
nal.pcbi.1000579

Pollen, D., and Ronner, S. (1981). Phase relationship between adjacent simple cells
in the visual cortex. Science 212, 1409–1411. doi: 10.1126/science.7233231

Rhodes, P. (1992). The open time of the NMDA channel facilitates the self-
organisation of invariant object responses in cortex. Soc. Neurosci. Abstr.
18, 740.

Riche, N., Mancas, M., Gosselin, B., and Dutoit, T. (2012). “Rare: a new bottom-
up saliency model,” in Image Processing, 2012 19th IEEE Conference on (IEEE),
641–644. doi: 10.1109/ICIP.2012.6466941

Riesenhuber, M., and Poggio, T. (2000). Models of object recognition. Nat.
Neurosci. Suppl. 3, 1199–1204. doi: 10.1038/81479

Robinson, L., and Rolls, E. T. (2014). Invariant visual object recognition: the
biological plausibility of two approaches.

Rolls, E. T. (1992). Neurophysiological mechanisms underlying face processing
within and beyond the temporal cortical visual areas. Philos. Trans. R. Soc. 335,
11–21. doi: 10.1098/rstb.1992.0002

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 85 | 18

http://www.vision.caltech.edu/~harel/share/gbvs.php
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rolls and Webb Invariant visual object recognition and saliency

Rolls, E. T. (1995). Learning mechanisms in the temporal lobe visual cortex. Behav.
Brain Res. 66, 177–185. doi: 10.1016/0166-4328(94)00138-6

Rolls, E. T. (2000). Functions of the primate temporal lobe cortical visual areas
in invariant visual object and face recognition. Neuron 27, 205–218. doi:
10.1016/S0896-6273(00)00030-1

Rolls, E. T. (2007). The representation of information about faces in the temporal
and frontal lobes of primates including humans. Neuropsychologia 45, 124–143.
doi: 10.1016/j.neuropsychologia.2006.04.019

Rolls, E. T. (2008). Memory, Attention, and Decision-Making. A Unifying
Computational Neuroscience Approach. Oxford: Oxford University Press.

Rolls, E. T. (2012). Invariant visual object and face recognition: neural and com-
putational bases, and a model, VisNet. Front. Comput. Neurosci. 6:35. doi:
10.3389/fncom.2012.00035

Rolls, E. T. (2014). Emotion and Decision-Making Explained. Oxford: Oxford
University Press.

Rolls, E. T., Aggelopoulos, N. C., Franco, L., and Treves, A. (2004). Information
encoding in the inferior temporal visual cortex: contributions of the firing rates
and the correlations between the firing of neurons. Biol. Cybern. 90, 19–32. doi:
10.1007/s00422-003-0451-5

Rolls, E. T., Aggelopoulos, N. C., and Zheng, F. (2003). The receptive fields of
inferior temporal cortex neurons in natural scenes. J. Neurosci. 23, 339–348.

Rolls, E. T., and Baylis, G. C. (1986). Size and contrast have only small
effects on the responses to faces of neurons in the cortex of the superior
temporal sulcus of the monkey. Exp. Brain Res. 65, 38–48. doi: 10.1007/
BF00243828

Rolls, E. T., Baylis, G. C., Hasselmo, M., and Nalwa, V. (1989). “The representation
of information in the temporal lobe visual cortical areas of macaque monkeys,”
in Seeing Contour and Colour, eds J. Kulikowski, C. Dickinson, and I. Murray
(Oxford: Pergamon).

Rolls, E. T., Baylis, G. C., and Hasselmo, M. E. (1987). The responses of neu-
rons in the cortex in the superior temporal sulcus of the monkey to band-pass
spatial frequency filtered faces. Vision Res. 27, 311–326. doi: 10.1016/0042-
6989(87)90081-2

Rolls, E. T., Baylis, G. C., and Leonard, C. M. (1985). Role of low and high
spatial frequencies in the face-selective responses of neurons in the cortex in
the superior temporal sulcus. Vision Res. 25, 1021–1035. doi: 10.1016/0042-
6989(85)90091-4

Rolls, E. T., and Deco, G. (2002). Computational Neuroscience of Vision. Oxford:
Oxford University Press.

Rolls, E. T., Franco, L., Aggelopoulos, N. C., and Jerez, J. M. (2006). Information
in the first spike, the order of spikes, and the number of spikes provided by
neurons in the inferior temporal visual cortex. Vision Res. 46, 4193–4205. doi:
10.1016/j.visres.2006.07.026

Rolls, E. T., and Milward, T. (2000). A model of invariant object recognition in
the visual system: learning rules, activation functions, lateral inhibition, and
information-based performance measures. Neural Comput. 12, 2547–2572. doi:
10.1162/089976600300014845

Rolls, E. T., and Stringer, S. M. (2001). Invariant object recognition in the visual
system with error correction and temporal difference learning. Network 12,
111–129. doi: 10.1080/net.12.2.111.129

Rolls, E. T., and Stringer, S. M. (2006). Invariant visual object recognition: a model,
with lighting invariance. J. Physiol. Paris 100, 43–62. doi: 10.1016/j.jphysparis.
2006.09.004

Rolls, E. T., and Stringer, S. M. (2007). Invariant global motion recognition in
the dorsal visual system: a unifying theory. Neural Comput. 19, 139–169. doi:
10.1162/neco.2007.19.1.139

Rolls, E. T., and Tovee, M. J. (1994). Processing speed in the cerebral cortex
and the neurophysiology of visual masking. Proc. R. Soc. B 257, 9–15. doi:
10.1098/rspb.1994.0087

Rolls, E. T., and Tovee, M. J. (1995). Sparseness of the neuronal representation of
stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726.

Rolls, E. T., Tovee, M. J., Purcell, D. G., Stewart, A. L., and Azzopardi, P.
(1994). The responses of neurons in the temporal cortex of primates, and
face identification and detection. Exp. Brain Res. 101, 474–484. doi: 10.1007/
BF00227340

Rolls, E. T., and Treves, A. (1998). Neural Networks and Brain Function. Oxford:
Oxford University Press.

Rolls, E. T., and Treves, A. (2011). The neuronal encoding of information in the
brain. Prog. Neurobiol. 95, 448–490. doi: 10.1016/j.pneurobio.2011.08.002

Rolls, E. T., Treves, A., and Tovee, M. J. (1997a). The representational capacity of
the distributed encoding of information provided by populations of neurons in
the primate temporal visual cortex. Exp. Brain Res. 114, 149–162.

Rolls, E. T., Treves, A., Tovee, M., and Panzeri, S. (1997b). Information in the neu-
ronal representation of individual stimuli in the primate temporal visual cortex.
J. Comput. Neurosci. 4, 309–333.

Rolls, E. T., Tromans, J. M., and Stringer, S. M. (2008). Spatial scene represen-
tations formed by self-organizing learning in a hippocampal extension of the
ventral visual system. Eur. J. Neurosci. 28, 2116–2127. doi: 10.1111/j.1460-
9568.2008.06486.x

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., and Poggio, T. (2007a).
A quantitative theory of immediate visual recognition. Prog. Brain Res. 165,
33–56. doi: 10.1016/S0079-6123(06)65004-8

Serre, T., Oliva, A., and Poggio, T. (2007b). A feedforward architecture accounts
for rapid categorization. Proc. Natl. Acad. Sci. U.S.A. 104, 6424–6429. doi:
10.1073/pnas.0700622104

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007c). Robust
object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal.
Mach. Intell. 29, 411–426. doi: 10.1109/TPAMI.2007.56

Sheinberg, D. L., and Logothetis, N. K. (2001). Noticing familiar objects in real
world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci.
21, 1340–1350.

Soltani, A., and Koch, C. (2010). Visual saliency computations: mechanisms,
constraints, and the effect of feedback. J. Neurosci. 30, 12831–12843. doi:
10.1523/JNEUROSCI.1517-10.2010

Spruston, N., Jonas, P., and Sakmann, B. (1995). Dendritic glutamate receptor
channel in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. 482,
325–352.

Stringer, S. M., Perry, G., Rolls, E. T., and Proske, J. H. (2006). Learning invariant
object recognition in the visual system with continuous transformations. Biol.
Cybern. 94, 128–142. doi: 10.1007/s00422-005-0030-z

Stringer, S. M., and Rolls, E. T. (2000). Position invariant recognition in the
visual system with cluttered environments. Neural Netw. 13, 305–315. doi:
10.1016/S0893-6080(00)00017-4

Stringer, S. M., and Rolls, E. T. (2002). Invariant object recognition in the visual
system with novel views of 3D objects. Neural Comput. 14, 2585–2596. doi:
10.1162/089976602760407982

Stringer, S. M., and Rolls, E. T. (2008). Learning transform invariant object recog-
nition in the visual system with multiple stimuli present during training. Neural
Netw. 21, 888–903. doi: 10.1016/j.neunet.2007.11.004

Stringer, S. M., Rolls, E. T., and Tromans, J. M. (2007). Invariant object recognition
with trace learning and multiple stimuli present during training. Network 18,
161–187. doi: 10.1080/09548980701556055

Sutton, R. S., and Barto, A. G. (1981). Towards a modern theory of adap-
tive networks: expectation and prediction. Psychol. Rev. 88, 135–170. doi:
10.1037/0033-295X.88.2.135

Thorpe, S. J. (2009). The speed of categorization in the human visual system.
Neuron 62, 168–170. doi: 10.1016/j.neuron.2009.04.012

Torralba, A., Oliva, A., Castelhano, M. S., and Henderson, J. M. (2006). Contextual
guidance of eye movements and attention in real-world scenes: the role of
global features in object search. Psychol. Rev. 113, 766–786. doi: 10.1037/0033-
295X.113.4.766

Tovee, M. J., and Rolls, E. T. (1995). Information encoding in short firing rate
epochs by single neurons in the primate temporal visual cortex. Visual Cogn.
2, 35–58. doi: 10.1080/13506289508401721

Tovee, M. J., Rolls, E. T., and Azzopardi, P. (1994). Translation invariance and
the responses of neurons in the temporal visual cortical areas of primates. J.
Neurophysiol. 72, 1049–1060.

Tovee, M. J., Rolls, E. T., Treves, A., and Bellis, R. P. (1993). Information encoding
and the responses of single neurons in the primate temporal visual cortex. J.
Neurophysiol. 70, 640–654.

Trappenberg, T. P., Rolls, E. T., and Stringer, S. M. (2002). “Effective size of receptive
fields of inferior temporal visual cortex neurons in natural scenes,” in Advances
in Neural Information Processing Systems, Vol. 14, eds T. G. Dietterich, S. Becker,
and Z. Gharamani (Cambridge, MA: MIT Press), 293–300.

Treves, A., Panzeri, S., Rolls, E. T., Booth, M., and Wakeman, E. A. (1999). Firing
rate distributions and efficiency of information transmission of inferior tempo-
ral cortex neurons to natural visual stimuli. Neural Comput. 11, 601–631. doi:
10.1162/089976699300016593

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 85 | 19

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rolls and Webb Invariant visual object recognition and saliency

Ungerleider, L. G., and Haxby, J. V. (1994). “What” and “Where” in the human
brain. Curr. Opin. Neurobiol. 4, 157–165. doi: 10.1016/0959-4388(94)90066-3

Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual systems,” in
Analysis of Visual Behaviour, eds D. Ingle, M. A. Goodale, and R. J. W.
(Cambridge, MA: Mansfield MIT Press), 549–586.

Van Essen, D., Anderson, C. H., and Felleman, D. J. (1992). Information process-
ing in the primate visual system: an integrated systems perspective. Science 255,
419–423. doi: 10.1126/science.1734518

Wallis, G. (2013). Toward a unified model of face and object recognition in the
human visual system. Front. Psychol. 4:497. doi: 10.3389/fpsyg.2013.00497

Wallis, G., and Rolls, E. T. (1997). Invariant face and object recognition in the visual
system. Prog. Neurobiol. 51, 167–194. doi: 10.1016/S0301-0082(96)00054-8

Wallis, G., Rolls, E. T., and Földiák, P. (1993). Learning invariant responses
to the natural transformations of objects. Int. Joint Conf. Neural Netw. 2,
1087–1090.

Walther, D., Itti, L., Riesenhuber, M., Poggio, T., and Koch, C. (2002). Attentional
selection for object recognition–a gentle way. Biol. Mot. Comput. Vis. 472–479.

Webb, T. J., and Rolls, E. T. (2014). Deformation-specific and deformation-
invariant visual object recognition: pose vs identity recognition of people and
deforming objects. Front. Comput. Neurosci. 8:37. doi: 10.3389/fncom.2014.
00037

Wiskott, L. (2003). Slow feature analysis: a theoretical analysis of optimal free
responses. Neural Comput. 15, 2147–2177. doi: 10.1162/089976603322297331

Wiskott, L., and Sejnowski, T. J. (2002). Slow feature analysis: unsupervised learn-
ing of invariances. Neural Comput. 14, 715–770. doi: 10.1162/089976602317
318938

Wyss, R., Konig, P., and Verschure, P. F. (2006). A model of the ventral visual
system based on temporal stability and local memory. PLoS Biol. 4:e120. doi:
10.1371/journal.pbio.0040120

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D. and DiCarlo, J. J.
(2014). Performance-optimized hierarchical models predict neural responses
in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624. doi:
10.1073/pnas.1403112111

Zhang, L., Tong, M. H., Marks, T. K., Shan, H., and Cottrell, G. W. (2008). SUN:
A Bayesian framework for saliency using natural statistics. J. Vis. 8:32. doi:
10.1167/8.7.32

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 21 May 2014; accepted: 16 July 2014; published online: 12 August 2014.
Citation: Rolls ET and Webb TJ (2014) Finding and recognizing objects in natural
scenes: complementary computations in the dorsal and ventral visual systems. Front.
Comput. Neurosci. 8:85. doi: 10.3389/fncom.2014.00085
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Rolls and Webb. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 85 | 20

http://dx.doi.org/10.3389/fncom.2014.00085
http://dx.doi.org/10.3389/fncom.2014.00085
http://dx.doi.org/10.3389/fncom.2014.00085
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Rolls and Webb Invariant visual object recognition and saliency

A. APPENDIX: THE ARCHITECTURE OF VISNET
This Appendix describes the functional architecture, operation,
and testing of VisNet as used in this paper. VisNet is a hierarchical
feedforward 4-layer network that models properties of the ven-
tral visual system involved in invariant visual object recognition
(Rolls, 2008, 2012).

A.1 THE TRACE RULE
The learning rule implemented in the VisNet simulations uti-
lizes the spatio-temporal constraints placed upon the behavior
of “real-world” objects to learn about natural object transforma-
tions. By presenting consistent sequences of transforming objects
the cells in the network can learn to respond to the same object
through all of its naturally transformed states, as described by
Földiák (1991), Rolls (1992), Wallis et al. (1993), Wallis and
Rolls (1997), and Rolls (2012). The learning rule incorporates a
decaying trace of previous cell activity and is henceforth referred
to simply as the “trace” learning rule. The learning paradigm
we describe here is intended in principle to enable learning of
any of the transforms tolerated by inferior temporal cortex neu-
rons, including position, size, view, lighting, and spatial frequency
(Rolls, 1992, 2000; Rolls and Deco, 2002; Rolls, 2008, 2012).

Various biological bases for this temporal trace have been
advanced as follows: [The precise mechanisms involved may
alter the precise form of the trace rule which should be used.
Földiák (1992) describes an alternative trace rule which mod-
els individual NMDA channels. Equally, a trace implemented by
temporally extended cell firing in a local cortical attractor could
implement a short-term memory of previous neuronal firing
(Rolls, 2008).]

• The persistent firing of neurons for as long as 100–400 ms
observed after presentations of stimuli for 16 ms (Rolls and
Tovee, 1994) could provide a time window within which to
associate subsequent images. Maintained activity may poten-
tially be implemented by recurrent connections between as well
as within cortical areas (Rolls and Treves, 1998; Rolls and Deco,
2002; Rolls, 2008). [The prolonged firing of inferior temporal
cortex neurons during memory delay periods of several sec-
onds, and associative links reported to develop between stimuli
presented several seconds apart (Miyashita, 1988) are on too
long a time scale to be immediately relevant to the present
theory. In fact, associations between visual events occurring
several seconds apart would, under normal environmental con-
ditions, be detrimental to the operation of a network of the
type described here, because they would probably arise from
different objects. In contrast, the system described benefits
from associations between visual events which occur close in
time (typically within 1 s), as they are likely to be from the same
object.]

• The binding period of glutamate in the NMDA channels, which
may last for 100 ms or more, may implement a trace rule by
producing a narrow time window over which the average activ-
ity at each presynaptic site affects learning (Földiák, 1992; Rolls,
1992; Rhodes, 1992; Spruston et al., 1995; Hestrin et al., 1990).

• Chemicals such as nitric oxide may be released during high
neural activity and gradually decay in concentration over a

short time window during which learning could be enhanced
(Földiák, 1992; Montague et al., 1991; Garthwaite, 2008).

The trace update rule used in the baseline simulations of VisNet
(Wallis and Rolls, 1997) is equivalent to both Földiák’s used in the
context of translation invariance (Wallis et al., 1993) and to the
earlier rule of Sutton and Barto (1981) explored in the context of
modeling the temporal properties of classical conditioning, and
can be summarized as follows:

δwj = αyτ xj (A1)

where
yτ = (1 − η)yτ + ηyτ−1 (A2)

and

xj: jth input to the neuron. y: Output from the neuron.
yτ : Trace value of the output

of the neuron at time
step τ .

α: Learning rate.

wj: Synaptic weight between
jth input and the neuron.

η: Trace value. The optimal
value varies with presen-
tation sequence length.

At the start of a series of investigations of different forms of the
trace learning rule, Rolls and Milward (2000) demonstrated that
VisNet’s performance could be greatly enhanced with a modified
Hebbian trace learning rule (Equation A3) that incorporated a
trace of activity from the preceding time steps, with no contri-
bution from the activity being produced by the stimulus at the
current time step. This rule took the form

δwj = αyτ−1xτ
j . (A3)

The trace shown in Equation (A3) is in the postsynaptic term. The
crucial difference from the earlier rule (see Equation A1) was that
the trace should be calculated up to only the preceding timestep,
with no contribution to the trace from the firing on the cur-
rent trial to the current stimulus. This has the effect of updating
the weights based on the preceding activity of the neuron, which
is likely given the spatio-temporal statistics of the visual world
to be from previous transforms of the same object (Rolls and
Milward, 2000; Rolls and Stringer, 2001). This is biologically not
at all implausible, as considered in more detail elsewhere (Rolls,
2008, 2012), and this version of the trace rule was used in this
investigation.

The optimal value of η in the trace rule is likely to be different
for different layers of VisNet. For early layers with small recep-
tive fields, few successive transforms are likely to contain similar
information within the receptive field, so the value for η might be
low to produce a short trace. In later layers of VisNet, successive
transforms may be in the receptive field for longer, and invari-
ance may be developing in earlier layers, so a longer trace may be
beneficial. In practice, after exploration we used η values of 0.6
for layer 2, and 0.8 for layers 3 and 4. In addition, it is important
to form feature combinations with high spatial precision before
invariance learning supported by a temporal trace starts, in order
that the feature combinations and not the individual features
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have invariant representations (Rolls, 2008, 2012). For this rea-
son, purely associative learning with no temporal trace was used
in layer 1 of VisNet (Rolls and Milward, 2000).

The following principled method was introduced to choose
the value of the learning rate α for each layer. The mean weight
change from all the neurons in that layer for each epoch of
training was measured, and was set so that with slow learning
over 15–50 trials, the weight changes per epoch would gradually
decrease and asymptote with that number of epochs, reflecting
convergence. Slow learning rates are useful in competitive nets,
for if the learning rates are too high, previous learning in the
synaptic weights will be overwritten by large weight changes later
within the same epoch produced if a neuron starts to respond to
another stimulus (Rolls, 2008). If the learning rates are too low,
then no useful learning or convergence will occur. It was found
that the following learning rates enabled good operation with the
100 transforms of each of 4 stimuli used in each epoch in the
present investigation: Layer 1 α = 0.05; Layer 2 α = 0.03 (this is
relatively high to allow for the sparse representations in layer 1);
Layer 3 α = 0.005; Layer 4 α = 0.005.

To bound the growth of each neuron’s synaptic weight vector,
wi for the ith neuron, its length is explicitly normalized [a method
similarly employed by Malsburg (1973) which is commonly used
in competitive networks (Rolls, 2008)]. An alternative, more
biologically relevant implementation, using a local weight bound-
ing operation which utilizes a form of heterosynaptic long-term
depression (Rolls, 2008), has in part been explored using a version
of the (Oja, 1982) rule (see Wallis and Rolls, 1997).

A.2 THE NETWORK IMPLEMENTED IN VISNET
The network itself is designed as a series of hierarchical, conver-
gent, competitive networks, in accordance with the hypotheses
advanced above. The actual network consists of a series of four
layers, constructed such that the convergence of information from
the most disparate parts of the network’s input layer can poten-
tially influence firing in a single neuron in the final layer—see
Figure 1. This corresponds to the scheme described by many
researchers (Van Essen et al., 1992; Rolls, 1992, 2008, for exam-
ple) as present in the primate visual system—see Figure 1. The
forward connections to a cell in one layer are derived from a
topologically related and confined region of the preceding layer.
The choice of whether a connection between neurons in adjacent
layers exists or not is based upon a Gaussian distribution of con-
nection probabilities which roll off radially from the focal point
of connections for each neuron. (A minor extra constraint pre-
cludes the repeated connection of any pair of cells.) In particular,
the forward connections to a cell in one layer come from a

Table A1 | VisNet dimensions.

Dimensions # Connections Radius

Layer 4 128 × 128 400 48

Layer 3 128 × 128 400 36

Layer 2 128 × 128 400 24

Layer 1 128 × 128 100 24

Input layer 256 × 256 × 16 – –

small region of the preceding layer defined by the radius in
Table A1 which will contain approximately 67% of the connec-
tions from the preceding layer. Table A1 shows the dimensions for
the research described here, a (16×) larger version than the ver-
sion of VisNet used in most of our previous investigations, which
utilized 32 × 32 neurons per layer. For the research on view and
translation invariance learning described here, we decreased the
number of connections to layer 1 neurons to 100 (from 272), in
order to increase the selectivity of the network between objects.
We increased the number of connections to each neuron in lay-
ers 2–4 to 400 (from 100), because this helped layer 4 neurons to
reflect evidence from neurons in previous layers about the large
number of transforms (typically 100 transforms, from 4 views of
each object and 25 locations) each of which corresponded to a
particular object.

Figure 1 shows the general convergent network architecture
used. Localization and limitation of connectivity in the network
is intended to mimic cortical connectivity, partially because of the
clear retention of retinal topology through regions of visual cor-
tex. This architecture also encourages the gradual combination of
features from layer to layer which has relevance to the binding
problem, as described elsewhere (Rolls, 2008, 2012).

A.3 COMPETITION AND LATERAL INHIBITION
In order to act as a competitive network some form of mutual
inhibition is required within each layer, which should help to
ensure that all stimuli presented are evenly represented by the
neurons in each layer. This is implemented in VisNet by a form
of lateral inhibition. The idea behind the lateral inhibition, apart
from this being a property of cortical architecture in the brain,
was to prevent too many neurons that received inputs from a
similar part of the preceding layer responding to the same activ-
ity patterns. The purpose of the lateral inhibition was to ensure
that different receiving neurons coded for different inputs. This is
important in reducing redundancy (Rolls, 2008). The lateral inhi-
bition is conceived as operating within a radius that was similar
to that of the region within which a neuron received converg-
ing inputs from the preceding layer (because activity in one zone
of topologically organized processing within a layer should not
inhibit processing in another zone in the same layer, concerned
perhaps with another part of the image). The lateral inhibition
used in this investigation used the parameters for σ shown in
Table A3.

The lateral inhibition and contrast enhancement just described
are actually implemented in VisNet2 (Rolls and Milward, 2000)
and VisNetL (Perry et al., 2010) in two stages, to produce filtering
of the type illustrated elsewhere (Rolls, 2008, 2012). The lateral
inhibition was implemented by convolving the activation of the
neurons in a layer with a spatial filter, I, where δ controls the con-
trast and σ controls the width, and a and b index the distance
away from the center of the filter

Ia,b =
⎧⎨
⎩

−δe
− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑
a�=0,b�=0

Ia,b if a = 0 and b = 0.
(A4)

This is a filter that leaves the average activity unchanged.
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The second stage involves contrast enhancement. A sigmoid
activation function was used in the way described previously
(Rolls and Milward, 2000):

y = fsigmoid(r) = 1

1 + e−2β(r−α)
(A5)

where r is the activation (or firing rate) of the neuron after the
lateral inhibition, y is the firing rate after the contrast enhance-
ment produced by the activation function, and β is the slope
or gain and α is the threshold or bias of the activation func-
tion. The sigmoid bounds the firing rate between 0 and 1 so
global normalization is not required. The slope and threshold are
held constant within each layer. The slope is constant throughout
training, whereas the threshold is used to control the sparseness
of firing rates within each layer. The (population) sparseness of
the firing within a layer is defined (Rolls and Treves, 1998; Franco
et al., 2007; Rolls, 2008; Rolls and Treves, 2011) as:

a = (
∑

i yi/n)2

∑
i y2

i /n
(A6)

where n is the number of neurons in the layer. To set the sparse-
ness to a given value, e.g., 5%, the threshold is set to the value of
the 95th percentile point of the activations within the layer.

The sigmoid activation function was used with parameters
(selected after a number of optimization runs) as shown in
Table A2.

In addition, the lateral inhibition parameters are as shown in
Table A3.

A.4 THE INPUT TO VISNET
VisNet is provided with a set of input filters which can be applied
to an image to produce inputs to the network which correspond
to those provided by simple cells in visual cortical area 1 (V1). The
purpose of this is to enable within VisNet the more complicated
response properties of cells between V1 and the inferior tempo-
ral cortex (IT) to be investigated, using as inputs natural stimuli
such as those that could be applied to the retina of the real visual
system. This is to facilitate comparisons between the activity of
neurons in VisNet and those in the real visual system, to the same
stimuli. In VisNet no attempt is made to train the response prop-
erties of simple cells, but instead we start with a defined series

Table A2 | Sigmoid parameters for the runs with 25 locations by Rolls

and Milward (2000).

Layer 1 2 3 4

Percentile 99.2 98 88 95

Slope β 190 40 75 26

Table A3 | Lateral inhibition parameters for the 25-location runs.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4

of filters to perform fixed feature extraction to a level equiva-
lent to that of simple cells in V1, as have other researchers in
the field (Hummel and Biederman, 1992; Buhmann et al., 1991;
Fukushima, 1980), because we wish to simulate the more com-
plicated response properties of cells between V1 and the inferior
temporal cortex (IT). The elongated orientation-tuned input fil-
ters used accord with the general tuning profiles of simple cells
in V1 (Hawken and Parker, 1987) and were computed by Gabor
filters. Each individual filter is tuned to spatial frequency (0.0626
to 0.5 cycles / pixel over four octaves); orientation (0◦ to 135◦ in
steps of 45◦); and sign (±1). Of the 100 layer 1 connections, the
number to each group in VisNetL is as shown in Table A4. Any
zero D.C. filter can of course produce a negative as well as pos-
itive output, which would mean that this simulation of a simple
cell would permit negative as well as positive firing. The response
of each filter is zero thresholded and the negative results used to
form a separate anti-phase input to the network. The filter out-
puts are also normalized across scales to compensate for the low
frequency bias in the images of natural objects.

The Gabor filters used were similar to those used previously
(Deco and Rolls, 2004). Following Daugman (1988) the receptive
fields of the simple cell-like input neurons are modeled by 2D-
Gabor functions. The Gabor receptive fields have five degrees of
freedom given essentially by the product of an elliptical Gaussian
and a complex plane wave. The first two degrees of freedom are
the 2D-locations of the receptive field’s center; the third is the size
of the receptive field; the fourth is the orientation of the bound-
aries separating excitatory and inhibitory regions; and the fifth is
the symmetry. This fifth degree of freedom is given in the stan-
dard Gabor transform by the real and imaginary part, i.e., by the
phase of the complex function representing it, whereas in a bio-
logical context this can be done by combining pairs of neurons
with even and odd receptive fields. This design is supported by the
experimental work of Pollen and Ronner (1981), who found sim-
ple cells in quadrature-phase pairs. Even more, Daugman (1988)
proposed that an ensemble of simple cells is best modeled as a
family of 2D-Gabor wavelets sampling the frequency domain in
a log-polar manner as a function of eccentricity. Experimental
neurophysiological evidence constrains the relation between the
free parameters that define a 2D-Gabor receptive field (De Valois
and De Valois, 1988). There are three constraints fixing the rela-
tion between the width, height, orientation, and spatial frequency
(Lee, 1996). The first constraint posits that the aspect ratio of the
elliptical Gaussian envelope is 2:1. The second constraint postu-
lates that the plane wave tends to have its propagating direction
along the short axis of the elliptical Gaussian. The third constraint
assumes that the half-amplitude bandwidth of the frequency
response is about 1 to 1.5 octaves along the optimal orientation.
Further, we assume that the mean is zero in order to have an
admissible wavelet basis (Lee, 1996).

Table A4 | VisNet Layer 1 Connectivity.

Frequency 0.5 0.25 0.125 0.0625

# Connections 74 19 5 2

The frequency is in cycles per pixel.
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In more detail, the Gabor filters are constructed as follows
(Deco and Rolls, 2004). We consider a pixelized grey-scale image

given by a N × N matrix �
orig
ij . The subindices ij denote the spa-

tial position of the pixel. Each pixel value is given a grey level
brightness value coded in a scale between 0 (black) and 255
(white). The first step in the preprocessing consists of remov-
ing the DC component of the image (i.e., the mean value of
the grey-scale intensity of the pixels). (The equivalent in the
brain is the low-pass filtering performed by the retinal ganglion
cells and lateral geniculate cells. The visual representation in the
LGN is essentially a contrast invariant pixel representation of the
image, i.e., each neuron encodes the relative brightness value at
one location in visual space referred to the mean value of the
image brightness.) We denote this contrast-invariant LGN rep-
resentation by the N × N matrix �ij defined by the equation

�ij = �
orig
ij − 1

N2

N∑
i=1

N∑
j=1

�
orig
ij . (A7)

Feedforward connections to a layer of V1 neurons perform the
extraction of simple features like bars at different locations, ori-
entations and sizes. Realistic receptive fields for V1 neurons that
extract these simple features can be represented by 2D-Gabor
wavelets. Lee (1996) derived a family of discretized 2D-Gabor
wavelets that satisfy the wavelet theory and the neurophysiolog-
ical constraints for simple cells mentioned above. They are given
by an expression of the form

Gpqkl(x, y) = a−k	
l (a−k(x − 2p), a−k(y − 2q)) (A8)

where

	
l = 	(x cos (l
0) + y sin (l
0),−x sin (l
0) + y cos (l
0)),
(A9)

and the mother wavelet is given by

	(x, y) = 1√
2π

e− 1
8 (4x2+y2)[eiκx − e− κ2

2 ]. (A10)

In the above equations 
0 = π/L denotes the step size of each
angular rotation; l the index of rotation corresponding to the
preferred orientation 
l = lπ/L; k denotes the octave; and the
indices pq the position of the receptive field center at cx = p and
cy = q. In this form, the receptive fields at all levels cover the
spatial domain in the same way, i.e., by always overlapping the
receptive fields in the same fashion. In the model we use a = 2,
b = 1 and κ = π corresponding to a spatial frequency bandwidth
of one octave. We used symmetric filters with the angular spacing
between the different orientations set to 45 degrees; and with 4
filter frequencies spaced one octave apart starting with 0.5 cycles
per pixel, and with the sampling from the spatial frequencies set
as shown in Table A4.

Cells of layer 1 receive a topologically consistent, localized, ran-
dom selection of the filter responses in the input layer, under the
constraint that each cell samples every filter spatial frequency and
receives a constant number of inputs.

A.5 MEASURES FOR NETWORK PERFORMANCE
A.5.1 Information theory measures
A neuron can be said to have learnt an invariant representation
if it discriminates one set of stimuli from another set, across
all transforms. For example, a neuron’s response is translation
invariant if its response to one set of stimuli irrespective of
presentation is consistently higher than for all other stimuli irre-
spective of presentation location. Note that we state ‘set of stimuli’
since neurons in the inferior temporal cortex are not generally
selective for a single stimulus but rather a subpopulation of stim-
uli (Baylis et al., 1985; Abbott et al., 1996; Rolls et al., 1997a; Rolls
and Treves, 1998; Rolls and Deco, 2002; Franco et al., 2007; Rolls,
2007, 2008; Rolls and Treves, 2011). We used measures of network
performance (Rolls and Milward, 2000) based on information
theory and similar to those used in the analysis of the firing of
real neurons in the brain (Rolls, 2008; Rolls and Treves, 2011). A
single cell information measure was introduced which is the max-
imum amount of information the cell has about any one object
independently of which transform (here position on the retina
and view) is shown. Because the competitive algorithm used in
VisNet tends to produce local representations (in which single
cells become tuned to one stimulus or object), this information
measure can approach log2 NS bits, where NS is the number of
different stimuli. Indeed, it is an advantage of this measure that
it has a defined maximal value, which enables how well the net-
work is performing to be quantified. Rolls and Milward (2000)
also introduced a multiple cell information measure used here,
which has the advantage that it provides a measure of whether all
stimuli are encoded by different neurons in the network. Again, a
high value of this measure indicates good performance.

For completeness, we provide further specification of the two
information theoretic measures, which are described in detail by
Rolls and Milward (2000) (see Rolls, 2008 and Rolls and Treves,
2011 for an introduction to the concepts). The measures assess
the extent to which either a single cell, or a population of cells,
responds to the same stimulus invariantly with respect to its loca-
tion, yet responds differently to different stimuli. The measures
effectively show what one learns about which stimulus was pre-
sented from a single presentation of the stimulus at any randomly
chosen location. Results for top (4th) layer cells are shown. High
information measures thus show that cells fire similarly to the dif-
ferent transforms of a given stimulus (object), and differently to
the other stimuli. The single cell stimulus-specific information,
I(s, R), is the amount of information the set of responses, R, has
about a specific stimulus, s (see Rolls et al., 1997b and Rolls and
Milward, 2000). I(s, R) is given by

I(s, R) =
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

(A11)

where r is an individual response from the set of responses R
of the neuron. For each cell the performance measure used was
the maximum amount of information a cell conveyed about
any one stimulus. This (rather than the mutual information,
I(S, R) where S is the whole set of stimuli s), is appropriate
for a competitive network in which the cells tend to become
tuned to one stimulus. (I(s, R) has more recently been called
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the stimulus-specific surprise (DeWeese and Meister, 1999; Rolls
and Treves, 2011). Its average across stimuli is the mutual
information I(S, R).)

If all the output cells of VisNet learned to respond to the
same stimulus, then the information about the set of stimuli
S would be very poor, and would not reach its maximal value
of log2 of the number of stimuli (in bits). The second mea-
sure that is used here is the information provided by a set of
cells about the stimulus set, using the procedures described by
Rolls et al. (1997a) and Rolls and Milward (2000). The multiple
cell information is the mutual information between the whole
set of stimuli S and of responses R calculated using a decod-
ing procedure in which the stimulus s′ that gave rise to the
particular firing rate response vector on each trial is estimated.
[The decoding step is needed because the high dimensionality of
the response space would lead to an inaccurate estimate of the
information if the responses were used directly, as described by
Rolls et al. (1997a) and Rolls and Treves (1998).] A probability
table is then constructed of the real stimuli s and the decoded
stimuli s′. From this probability table, the mutual information
between the set of actual stimuli S and the decoded estimates S′ is
calculated as

I(S, S′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
(A12)

This was calculated for the subset of cells which had as single cells
the most information about which stimulus was shown. In par-
ticular, in Rolls and Milward (2000) and subsequent papers, the
multiple cell information was calculated from the first five cells for
each stimulus that had maximal single cell information about that
stimulus, that is from a population of 35 cells if there were seven
stimuli (each of which might have been shown in for example 9
or 25 positions on the retina).

A.5.2 Pattern association decoding
The output of the inferior temporal visual cortex reaches struc-
tures such as the orbitofrontal cortex and amygdala, where asso-
ciations to other stimuli are learned by a pattern association
network with an associative (Hebbian) learning rule (Rolls, 2008,
2014). We therefore used a one-layer pattern association network
(Rolls, 2008) to measure how well the output of VisNet could be
classified into one of the objects. The pattern association network

had four output neurons, one for each object. The inputs were
the ten neurons from layer 4 of VisNet for each of the four objects
with the best single cell information, making 40 inputs to each
neuron. The network was trained with the Hebb rule:

δwij = αyixj (A13)

where δwij is the change of the synaptic weight wij that results
from the simultaneous (or conjunctive) presence of presynaptic
firing xj and postsynaptic firing or activation yi, and α is a learn-
ing rate constant that specifies how much the synapses alter on
any one pairing. The pattern associator was trained for one trial
on the output of VisNet produced by every transform of each
object.

Performance on the test images extracted from the scenes was
tested by presenting an image to VisNet, and then measuring
the classification produced by the pattern associator. Performance
was measured by the percentage of the correct classifications of an
image as the correct object.

This approach to measuring the performance is very biolog-
ically appropriate, for it models the type of learning thought to
be implemented in structures that receive information from the
inferior temporal visual cortex such as the orbitofrontal cortex
and amygdala (Rolls, 2008, 2014). The small number of neurons
selected from layer 4 of VisNet might correspond to the most
selective for this stimulus set in a sparse distributed representa-
tion (Rolls, 2008; Rolls and Treves, 2011). The method would
measure whether neurons of the type recorded in the inferior
temporal visual cortex with good view and position invariance
are developed in VisNet. In fact, an appropriate neuron for an
input to such a decoding mechanism might have high firing rates
to all or most of the view and position transforms of one of the
stimuli, and smaller or no responses to any of the transforms of
other objects, as found in the inferior temporal cortex for some
neurons (Hasselmo et al., 1989; Perrett et al., 1991; Booth and
Rolls, 1998), and as illustrated for VisNet layer 4 neuron in this
investigation in Figure 5B. Moreover, it would be inappropriate
to train a device such as a support vector machine or even an
error correction perceptron on the outputs of all the neurons in
layer 4 of VisNet to produce 4 classifications, for such learning
procedures, not biologically plausible (Rolls, 2008), could map
the responses produced by a multilayer network with untrained
random weights to obtain good classifications.
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of object recognition yields
selectivity for non-accidental
properties
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for Brain Sciences, Providence, RI, USA

Non-accidental properties (NAPs) correspond to image properties that are invariant to

changes in viewpoint (e.g., straight vs. curved contours) and are distinguished from

metric properties (MPs) that can change continuously with in-depth object rotation (e.g.,

aspect ratio, degree of curvature, etc.). Behavioral and electrophysiological studies of

shape processing have demonstrated greater sensitivity to differences in NAPs than in

MPs. However, previous work has shown that such sensitivity is lacking in multiple-views

models of object recognition such as HMAX. These models typically assume that object

processing is based on populations of view-tuned neurons with distributed symmetrical

bell-shaped tuning that are modulated at least as much by differences in MPs as in

NAPs. Here, we test the hypothesis that unsupervised learning of invariances to object

transformations may increase the sensitivity to differences in NAPs vs. MPs in HMAX.

We collected a database of video sequences with objects slowly rotating in-depth in an

attempt to mimic sequences viewed during object manipulation by young children during

early developmental stages. We show that unsupervised learning yields shape-tuning in

higher stages with greater sensitivity to differences in NAPs vs. MPs in agreement with

monkey IT data. Together, these results suggest that greater NAP sensitivity may arise

from experiencing different in-depth rotations of objects.

Keywords: inferotemporal cortex, ventral stream, HMAX, invariance, object constancy, object recognition, learning

1. Introduction

Invariant object recognition is a notoriously challenging computational problem (Marr, 1982).
Our visual system has to deal with large intra-class variations owing to the effect of 2D and 3D
transformations (including translation, scaling and rotation) because small changes in an object’s
3D view may yield large changes on its 2D projection on our retinas. Yet, despite these large intra-
class variations, primates are capable of robustly and effortlessly recognizing objects (Thorpe et al.,
1996), vastly outperforming the best existing computer vision systems.

Object constancy requires the development of visual representations that remain stable
across object transformations (Földiák, 1998). In particular, one may distinguish between those
object properties that will remain stable across changes in viewpoint and those that will not
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(see Figure 1, for an illustration). Properties such as the degree
of curvature of an object’s contours, its length, or the amount of
expansion of a cross section are examples of properties that will
be affected by changes in viewpoint. Conversely, there also exist
qualitative shape properties that remain stable across changes in
viewpoint, e.g., whether an edge is straight or curved, whether a
surface is convex or concave, or whether a cross section ends at
a point vs. a side. These qualitative properties are known as non-
accidental properties (NAPs) and need to be contrasted with their
quantitative counterparts known as metric properties (MPs).

There is a long history of studies related to NAPs in
computational vision (see Lowe, 1984, for review): From a
theoretical point of view, a visual system needs to focus on the
detection of image structures that are unlikely to have arisen by
accident. For instance, the probability of a curved edge to appear
straight because of projection is extremely small and would
happen as an “accident” of viewpoint (Richards et al., 1996).
The stability of NAPs over viewpoints makes them useful for
achieving object constancy. Indeed, NAPs have been the focus of
a prominent psychological theory of object recognition called the
Recognition-by-Components (RBC) theory (Biederman, 1987).
Briefly, this structural-description theory states that the visual
system may encode a finite visual vocabulary of basic 3D shapes
called geons. These geons can be differentiated on the basis

FIGURE 1 | Representative appearance changes undergone by objects

during out-of-plane rotations. Variations of metric properties here include:

(A) increasing angle at a point and (B) increasing size, shape and curvature of

cross section of a cone (C) increasing size, shape and curvature of cross

section of a cylinder (D) decreasing length of a cylinder and (E) decreasing

area of cross-section and increasingly skewness of the edges of a cube.

of differences in NAPs, and generic object categories can be
represented as compositions of geons. This theory has motivated
the design of a number of experimental studies and it is
now relatively well established that our visual system exhibit
greater sensitivity to differences in NAPs compared to MPs (see
Biederman, 2007, for review).

Behaviorally, it has been shown that participants can more
accurately distinguish between two objects that differ along an
NAP vs. an MP (Biederman and Bar, 1999). Furthermore, when
trained to recognize novel object categories where two NAPs
(the degree of curvature and the degree of parallelism) are
systematically varied, adult participants are more likely to treat
a change in NAP as categorical (as opposed to within-category
variation) compared to a similar change in MP (Abecassis et al.,
2001). When a more sensitive paradigm is employed, preschool
children, like adults, find it easier to discriminate NAPs vs. MPs
(Amir et al., 2014). In addition, both adults and 4 month olds
exhibit a saccadic preference for NAPs vs.MPs (Amir et al., 2011).

The neural basis of NAP selectivity was more directly studied
by Kayaert et al. (2003) who recorded neuronal responses in the
inferior temporal cortex (ITC) of the macaque. It was shown
that neural responses are more strongly modulated by changes in
NAPs than by equally large pixel-wise changes in MPs (Kayaert
et al., 2003).

Further work later showed that such increased NAP sensitivity
is incompatible with multiple-viewsmodels of object recognition
such as the HMAX (see Riesenhuber and Poggio, 1999; Serre,
2014, for reviews), which assume that shape processing is
based on broadly-tuned neuronal populations with distributed
symmetric bell-shaped tuning: Shape-tuned units in these
models are modulated at least as much by differences in
MPs as in NAPs (Amir et al., 2012). It remains an open
question—if and how—HMAX can be modified to account
for the increased NAP sensitivity found both behaviorally and
electrophysiologically.

Here, we test the hypothesis that mechanisms for learning
transformation sequences may increase the model sensitivity to
differences in NAPs vs. MPs. Given thatMP changes result in part
from generic object transformations (3D rotation), and given the
focus of the original model on 2D transformations, we reasoned
that learning invariances to natural object transformations
should yield a decrease in the sensitivity of model units to
MPs compared to NAPs (see Tarr and Kriegman, 2001, for
a similar argument). To test our hypothesis, we created a
database of video sequences with objects slowly rotating in
depth in an attempt to mimic sequences viewed during object
manipulation by young children during early developmental
stages (Figure 3).

Several algorithms have been proposed for learning
transformation sequences (e.g., Perrett et al., 1984; Foldiak,
1991; Hietanen et al., 1992; Wallis et al., 1993; Einhäuser et al.,
2002; Wiskott and Sejnowski, 2002; Spratling, 2005; Stringer
et al., 2006; Masquelier et al., 2007). Here, we consider a
simple form of sequence learning via a “temporal pooling”
mechanism similar to that used in the Hierarchical Temporal
Memory algorithm (Hawkins and Blakeslee, 2004). The basic
idea is to incorporate invariance pooling mechanisms in
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intermediate stages of the HMAX to include more generic object
transformations (such as 3D rotation).

In the original model, IT-like units in the the last stage
are organized in feature columns (Figure 2A) modeled after
those found in cortex (Tanaka, 2003): Each feature column is
characterized by its tuning for a distinct visual feature over a
range of positions and scales. Feature selectivity is learned from
individual object views (Serre et al., 2007b) and each column
activity reflects the degree of similarity between an input stimulus
and the corresponding preferred feature. Assuming N feature
columns, the resulting population activity encodes an input
stimulus as an N-dimensional pattern of activity (Figure 2B).
The difference in the pattern of activity associated with two
distinct input stimuli reflects the visual dissimilarity between the
two stimuli and does not distinguish between an MP vs. NAP
change (1MP−Base ≈ 1NAP−Base; Figure 2C).

In the extended model, feature columns include multiple
views of the same feature sampled from short object
transformation sequences (∼300ms). The responses of features
within a column are then combined via a max operation (as
done in the original model for invariance to position and
scale; Figures 2A,B). Such unsupervised learning mechanism
is consistent with both human behavioral (Wallis and Bülthoff,
2001; Cox et al., 2005) and nonhuman primate (Li et al.,
2008, 2010) studies which suggest that tolerance to object
transformations is at least partly supported by the natural
temporal contiguity of visual experience. As we will show, the
proposed pooling mechanism yields a visual representation
which exhibits greater tolerance to object transformations and,
as a result, a greater sensitivity for NAP compared to MP changes
(1MP−Base < 1NAP−Base) in agreement with neurophysiological
data.

FIGURE 2 | Feature columns, invariance to object transformations and NAP sensitivity. (A) Feature columns in the extended (bottom) vs. the original (top)

model (i.e., w/ and w/o temporal pooling). One of the key computational mechanisms in the HMAX builds on the proposal by Hubel and Wiesel (1962) to achieve

tolerance of 2D transformations via a selective pooling mechanism (at the level of complex cells) over afferent units with the same preferred selectivity (feature) but

slightly different positions and scales (not shown). Here, we propose a simple extension of this idea to include a more general form of pooling, i.e., over a

transformation sequence of the preferred stimulus learned through visual experience. This pooling is done within feature columns which include different views of the

same feature learned from object transformation sequences. (B) Shown are the corresponding patterns of (column) activity for the original and the extended model.

(C) Sample stimuli used to probe the selectivity for MP (1MP−Base) vs. NAP (1NAP−Base) changes from a Base stimulus as done in Kayaert et al. (2003). Whereas the

original model fails to exhibit any sensitivity to NAP vs. MP changes (1NAP−Base ≈ 1MP−Base), the extended model exhibits greater tolerance to object

transformation through the “temporal pooling” mechanism and, as a result, greater sensitivity to NAP vs. MP changes (1NAP−Base > 1MP−Base ). Shown in red is the

hypothetical stimulus location driving the unit response.
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2. Materials and Methods

2.1. Video Database
We used a consumer-grade camera to collect short video
sequences (30Hz) with the aim to mimic object manipulations
(Figure 3). Everyday objects were placed in diverse environments
and the camera was moved slowly around the object to create
3–5 s long videos of the object undergoing a transformation
(combination of small translation, scaling, and in-depth
rotation). The video database included 12 common objects
routinely found in a dorm room with at least 20 video sequences
per category for a total of about 240 video sequences. For
each category, the object background, initial viewpoint, and
magnitude of the rotation was varied as much as possible.

2.2. The HMAX Model
Here, for convenience, we used a somewhat simplified
implementation of the HMAX, which includes only four
processing stages (Serre et al., 2007b). We only very briefly
review the model architecture as details of the implementation
have been described elsewhere (see Serre et al., 2007b; Serre,
2014, for details) and source code for the model is publicly
available at: http://serre-lab.clps.brown.edu/resources.

The HMAX model of object recognition combines a
hierarchical build-up of invariance and selectivity (inspired by
Fukushima, 1980) with the idea of multiple-views (view-based)
recognition of 3D objects (Riesenhuber and Poggio, 1999, 2000).
Over the years, several related hierarchical models have been
developed (Mel, 1997; Wallis and Rolls, 1997; LeCun et al.,
1998; Riesenhuber and Poggio, 1999; Ullman et al., 2002; Amit

and Mascaro, 2003; Wersing and Köerner, 2003; Masquelier and
Thorpe, 2007; Mutch and Lowe, 2008; Jarrett et al., 2009; Pinto
et al., 2011; Saxe et al., 2011).We focus here on theHMAX because
the underlying parameters of the architecture were explicitly
derived from available neuroscience data and because this was
the model originally tested for NAP modulation and compared
against IT data by Amir et al. (2012). Without loss of generality,
we expect related models to exhibit similar trends.

Each processing stage in the HMAX model is organized in
columns. Each column contains a complete dictionary of S unit
selectivities for that particular layer. For instance, a column in
the first S1 stage (modeled after simple cells in striate cortex; see
Lades et al., 1993, for an early system using Gabor filters for face
recognition) contains a complete range of orientation and spatial
frequency tuning and a column of S2 units (corresponding to
units in intermediate areas of the ventral stream of the visual
cortex) to a complete dictionary of shape-tuned units (see later).
Simple units pool over afferent units using a Gaussian-like tuning
operation. That is, the response y of a simple unit, receiving
the pattern of inputs x from the previous layer is given by y =

exp−γ ||w− x||2, where γ defines the sharpness of the tuning
around the preferred stimulus of the unit corresponding to the
weight vector w. These columns are then replicated at different
positions and scales, which is the key mechanism by which the
model gains its tolerance to 2D transformations (position and
scale) at the level of C units. The pooling operation at the level
of complex units is a max operation over afferent units. That is,
the response y of a complex unit from the previous layer is given
by y = maxj∈pool xj. The parameters governing the invariance
properties of the C units (i.e., the size of the pooling range over

FIGURE 3 | Representative frames sampled from a collected video database of everyday objects undergoing 3D transformations (i.e., combination of

translation, scaling, and in-depth rotation).
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position and scale) is constrained by available physiology data
(Serre et al., 2007a).

In the original model, the only learning that takes place
is at the level of the dictionary of S2 units. This is done
via an imprinting learning rule whereby during the training
procedure, units store patterns of neural activity associated with
the presentation of patches of natural scenes that are presented
in their receptive field (see Serre et al., 2007b, for details).
More sophisticated algorithms have been proposed for learning
intermediate visual features (e.g., Shams and von der Malsburg,
2002; Ullman et al., 2002; Masquelier and Thorpe, 2007; Hu
et al., 2014). Here, without loss of generality, we used the simple
imprinting learning rule to stay as faithful as possible to the
original model but it is expected that other algorithms would
yield qualitatively similar results.

2.3. Measuring NAP Selectivity
Here we conducted in silico experiments on the HMAX model
with the aim to mimic the experimental methods described in the
original studies (Kayaert et al., 2003; Amir et al., 2012) as closely
as possible. The stimulus set consisted in the 36 basic shapes
used in Kayaert et al. (2003). Each of the 36 stimuli exhibited
five level of variations along a single dimension: four metric
variations of increasing amplitude (denoted MP1–MP4) and one
non-accidental variation (denoted NAP). The NAP variation
was calibrated so that the resulting change from the base shape
(measured by the euclidean distance directly on pixel intensities)
was equal or less than the change associated with MP2.

Sample stimuli are shown on Figure 4. The NAP/MP percent
modulation for model units was computed using the same
formula as described in the original study by Kayaert et al. (2003):
(response basic shape—response to object variation)/(response
basic shape)∗100.

3. Results

We first reproduced the results by Amir et al. (2012)
demonstrating that the original HMAX failed to exhibit a greater
sensitivity for NAPs vs. MPs. We trained a baseline model with
the object video dataset (Section 2; Figure 3). As in the original
electrophysiology study, units were selected based on their
visual responsiveness to the base images in the stimulus dataset
used for electrophysiology (see Kayaert et al., 2003, for details)
which yielded 243 NAP-MP comparisons. For each model unit,
we computed the NAP and MP percent modulation for its
preferred stimulus (Section 2). Figure 5A shows the MP percent
modulation vs. NAP percent modulation for each unit in the
original model. We found an average of 20% NAP modulation,
compared to an average 22% MP modulation from the base
object. A wilcoxon signed-rank test confirmed no significant
NAP vs. MP modulation (p = 0.76). Overall, only 49% of the
units had a greater NAP modulation, as compared to the 63%
found in IT (Kayaert et al., 2003).

We then proceeded to extend the model to learning
invariances from transformation sequences. In the original
model, IT-like units are organized in feature columns whose

FIGURE 4 | Sample stimuli from the study by Kayaert et al. (2003). The column labeled BASE corresponds to a reference image. The column labeled NAP

corresponds to a transformation of the base image where an NAP was changed. MP1, MP2, MP3, and MP4 correspond to a transformation of the base image with

an MP of increasing magnitude.
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FIGURE 5 | Percent modulation of C2 units from the base image to MP2 vs. percent modulation of C2 units from the base image to NAP for (A) original

HMAX (B) the extended model.

selectivity is determined by a simple imprinting learning rule
(Section 2). Each feature column (C2 unit) is hard-coded by
considering afferent (S2) units tuned to the same preferred
feature but with receptive fields at different locations (and
scales), yielding a visual representation which is tolerant to 2D
transformations. However, no mechanism for invariance to 3D
transformations is present in the original model yielding a “salt-
and-pepper” organization of feature columns for changes in
viewpoint (Figure 2A).

Here, we extended the invariance pooling mechanism to
also include different views of a feature undergoing a 3D
transformation during a relatively small (∼300ms) time window.
This was done by considering feature columns which include
multiple units with a selectivity for different views of the same
feature occurring in close temporal proximity.

Visual responsiveness for this new set of C2 model units
was assessed as for the original model which yielded 159 NAP-
MP comparisons. As shown on Figure 5B, this model extension
yielded a dramatic increase in NAP vs. MP modulation with
an average 35% NAP modulation vs. a 24% MP modulation. A
Wilcoxon test showed a significant modulation for NAP vs. MP
(p < 0.01). We further observed that 71% of the newmodel units
were now more strongly modulated by a change in NAP vs. MP.
As seen in Figure 5B, the majority of data points now fell below
the diagonal, illustrating a greater sensitivity to NAP change.
Table 1 summarizes these findings and provides a comparison to
IT data reported in Kayaert et al. (2003).

Interestingly, we also found that learning transformation
sequences yielded a significant improvement in object
recognition classification accuracy over changes in viewpoint.
We used the scikit-learn toolbox (Pedregosa et al., 2011) to
train and test a multi-class linear SVM on the original and
extended model outputs using a random split procedure of
the video dataset (n = 15). The regularization parameter was
optimized using a cross-validation procedure. We found an
overall significantly higher accuracy for the extended model
(95.2 ± 2.1%, chance level: 8.3%) vs. the original model (85.6 ±

TABLE 1 | Comparison between IT Data (Kayaert et al., 2003), the original

as well as the extended HMAX.

% NAP % MP Sample Wilcoxon % units

Modulation Modulation size p-value NAP>MP

from base from base Modulation

IT Data 33 21–26 n = 243 p < 2e-06 63

Original HMAX 20 22 n = 243 p = 0.7645 49

Extended HMAX 35 24 n = 159 p = 1.2e-05 71

Sample sizes correspond to the number of NAP-MP comparisons as done in the original

study.

1.8%, p < 0.01) suggesting that the proposed unsupervised
invariance learning algorithm does indeed yield a model with
greater generalization to changes in viewpoint.

4. Discussion

We have described a simple extension of a hierarchical model
of object recognition (HMAX) which enables the network to
learn transformation sequences. The original model includes
mechanisms for building tolerance to 2D transformations
(position and scale). We have shown that the proposed extension
yields a model with better generalization capability for more
complex transformation sequences which also include 3D
rotations. Most importantly, we have shown that the resulting
model exhibits greater sensitivity for NAPs vs. MPs in better
agreement with IT data (Kayaert et al., 2003).

While our study has focused on the HMAX model, we
expect our main results to apply broadly to the general
class of feedforward hierarchical models (see Serre, 2014, for
review). Despite differences in their specific wiring and detailed
architecture, tolerance to object transformations in these models
arise from Hubel-Wiesel types of pooling mechanisms and we
thus expect our results to generalize to this broad class of
models. Similarly, we also expect different learning rules to
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yield qualitatively similar results. While the present learning rule
yielded NAP modulation in excellent agreement with IT data, it
remains an open question whether other learning rules would
provide similar or better fit to data.

Overall, our study suggests that the greater sensitivity
for NAPs over MPs, as reported in several behavioral and
electrophysiological studies (see Biederman, 2007, for review)
may be driven by computational mechanisms for invariant object
recognition.
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This paper investigates how utilizing diversity priors can discover early visual features

that resemble their biological counterparts. The study is mainly motivated by the sparsity

and selectivity of activations of visual neurons in area V1. Most previous work on

computational modeling emphasizes selectivity or sparsity independently. However, we

argue that selectivity and sparsity are just two epiphenomena of the diversity of receptive

fields, which has been rarely exploited in learning. In this paper, to verify our hypothesis,

restricted Boltzmann machines (RBMs) are employed to learn early visual features

by modeling the statistics of natural images. Considering RBMs as neural networks,

the receptive fields of neurons are formed by the inter-weights between hidden and

visible nodes. Due to the conditional independence in RBMs, there is no mechanism

to coordinate the activations of individual neurons or the whole population. A diversity

prior is introduced in this paper for training RBMs. We find that the diversity prior indeed

can assure simultaneously sparsity and selectivity of neuron activations. The learned

receptive fields yield a high degree of biological similarity in comparison to physiological

data. Also, corresponding visual features display a good generative capability in image

reconstruction.

Keywords: restricted Boltzmann machine, diversity prior, V1 simple cell, inhibition, Markov networks

1. Introduction

Much has been advanced in the knowledge of the brain in the last century since the foundation
of modern neuroanatomy by Ramón y Cajal (Ramón y Cajal, 1888, 1904; Jones, 2007). The
work of HUBEL and WIESEL (1959) was the first breakthrough in the understanding of simple
cells in area V1 of the visual cortex. V1 simple cells perform an early stage processing of the
visual input from the retina and the lateral geniculate nucleus (LGN). One important property
of V1 simple cells is that their receptive fields are selective in terms of location, orientation, and
frequency, which can be modeled by Gabor filters. Another characteristic on V1 simple cells is that
their activation pattern—when analyzed as a population—is sparse (Field, 1994). Selectivity (also
referred to as “lifetime sparseness” by Willmore and Tolhurst, 2001) is related to a neuron having
a response only to a small number of different (although similar) stimuli and providing a much
lower response to other (usually very different) stimuli. Sparsity (or “population sparseness” by
Willmore and Tolhurst, 2001) is a term expressing that the fraction of neurons from a population
that is activated by a certain stimulus should be relatively small. Selectivity and sparsity would
be due to a redundancy-reduction mechanism, where the visual cortex has evolved to encode
visual information as efficiently as possible (Barlow, 1989). This sparse coding would then enhance
coding efficiency, and when tested, leads in fact to Gabor-like representations (Olshausen and Field,
1996). Although sparse coding has been very successful at generating receptive fields similar to
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those of simple cells, sparsity does not necessarily imply
selectivity (Willmore and Tolhurst, 2001). In addition to
this, recent multi-unit neurophysiological recordings found
that just maximizing sparsity does not correlate with visual
experience, suggesting that coding efficiency is also due to lateral,
recurrent and feedback connections for the purpose of resolving
ambiguities (Berkes et al., 2009). In order to show the (lack
of) relationship between sparsity and selectivity, we illustrate
these concepts in Figure 1A. Each row (red) in this figure
represents how one neuron selectively responds to different
visual stimuli while each column (blue) describes how many
neurons are activated by one stimulus. Although selectivity and
sparsity can be related at their average values, they are not
necessarily correlated: Selective neurons do not ensure sparse
neuron coding (Figure 1C); similarly, sparsely activated neurons
are not necessarily narrowly selective (Figure 1D).

Another hypothesis on how to achieve coding efficiency
is dependence minimization, which can be achieved applying
independent component analysis (ICA) (Hyvärinen and Oja,
2000). ICA is a dimensionality reduction methodology widely
used in signal processing for decomposing a compound
signal into their components (or so-called bases) that are as
independent as possible. In ICA, independence maximization

A B

C D

FIGURE 1 | Understanding sparsity and selectivity. White circles

indicate activations while gray circles denote inactivations. (A) Explaining

the concepts of sparsity and selectivity; (B) An example of good sparsity

and good selectivity; (C) An example of good selectivity but bad sparsity;

(D) An example of good sparsity but bad selectivity. See text for further

description.

is achieved by pursuing extrema of the kurtosis (a measure
of function “peakedness”) of each components’ distribution.
Applying ICA on natural images has also produced receptive
fields like those of V1 simple cells (Bell and Sejnowski, 1997;
van Hateren and van der Schaaf, 1998). Be either ICA or sparse
coding, in the end, they are two successful learning strategies that
can learn primary visual cortex-like receptive fields (Olshausen
and Field, 1996; van Hateren and van der Schaaf, 1998).
Another successful learning strategy at emulating the hierarchical
architecture of the brain is deep learning (Bengio, 2009; LeCun
et al., 2015), which is usually constructed with a stack of
restricted Boltzmann machines (RBMs). RBMs have recently
attracted increasing attention due to its successes in learning
representations (Hinton, 2002; Hinton and Salakhutdinov, 2006).
In RBMs, there is no connection among hidden units (Figure 2),
which makes inference and learning of RBMs quite easy and
fast. That means that given some visible data, all hidden units
are conditionally independent from each other (see Section
2.2). Even so, RBMs provide a nonlinear coding of natural
images, which goes beyond sparse coding or ICA. However,
the capability of RBMs is still limited when learning receptive
fields similar to those of V1 simple cells. When RBMs are
trained on natural images, many learned features can be rather
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FIGURE 2 | A graphical model of a restricted Boltzmann machine

(RBM). Gray circles represent observed variables while empty circles are

hidden variables.

distributed, unlocalized and repeated, which is far from the
(selective and sparse) nature of the learning task. Prior work
has exploited different strategies to adapt RBMs toward learning
selective or sparsely-activated neurons (Lee et al., 2007; Goh
et al., 2010; Luo et al., 2011) on visual inputs. Meanwhile, most
of those works focus on either one property, thus not ensuring
sparsity and selectivity simultaneously in the resulting emulated
neurons, which as mentioned before may be suboptimal for
coding efficiency.

Empirically, neither sparse coding nor ICA can yield both,
good selectivity and sparsity simultaneously (Willmore and
Tolhurst, 2001). In this paper, we propose a novel hypothesis
to interpret the selectivity and sparsity of neuron activations
through the diversity of neurons’ receptive fields. Based on the
analysis exposed above, we can see that the effect of sparsity is
to better differentiate neurons, while the goal of selectivity is
to avoid “over-tolerant” neurons, thus both aimed at reducing
ambiguities. We propose that, in order to reach bot—high
degrees of neural population sparsity and individual neuronal
selectivity—we need one condition: diverse receptive fields. To
the best of our knowledge, the diversity of receptive fields
(features) has rarely been exploited to guide learning, even
though it has been achieved unintentionally in several existing
models. By contrast to conventional models, we use diversity as a
starting point instead of as a result. An earlier pioneering work
focusing on the importance of diversity in neural coding was
presented by Padmanabhan and Urban (2010).

We argue that selectivity and sparsity of neurons’ activations
can be seen as two epiphenomena of the diversity of receptive
fields. To verify this hypothesis, we impose a diversity prior
on the inter-weights within the RBMs when learning simple
neurons’ receptive fields from natural images. This prior will
introduce a bias over the inter-weights toward higher degrees
of sum similarity minimization. The prior indirectly coordinates
neurons’ activations by diversifying the inter-weights within the
RBMs, which would mimic the effect of inhibition. It is worth
noting that the prior is only employed in the learning phase,
yet its implicit effect on coordinating neurons’ activations will
remain after learning. In this sense, the diversity prior is in line
with the influence of inhibitory interneurons (King et al., 2013)
(see Section 2.3 for more details). It should be finally noted that
we do not consider an RBM (even if trained with diversity priors)
as a full biologically-plausible model of V1 simple cells, since
we are not considering many other aspects and properties of
simple cells, e.g., contrast normalization, contrast adaption, etc.

The purpose of our study is to verify and advocate for using
diversity as a new principle in order to guide the learning of more
similar primary visual cortex cell receptive fields.

2. Materials and Methods

In this section, we describe our basic experimental setup,
which includes the construction of visual stimulus data, the
restricted Boltzmann machine (RBM), and the proposed prior
for training. For the RBM, a brief introduction of the model and
its probabilistic properties is provided in Section 2.2. Readers are
referred to Hinton (2002) for a more detailed and deeper study.

2.1. Images
The benchmark database from Olshausen and Field (1996)1

was used in this paper. This database consists of 10 natural
images, which were preprocessed with a pseudo-whitening filter,
which flattens the spectrum of natural images by rescaling
Fourier coefficients. This step is commonly applied (Olshausen
and Field, 1996; Willmore and Tolhurst, 2001), and to some
extent is similar to retinal processing. Alternatively, a similar
preprocessing function is the log transform, which is more often
used in ICA (van Hateren and van der Schaaf, 1998). Then,
100,000 small patches (size 14× 14) were extracted from random
positions of the 10 whitened images. Furthermore, a sigmoid
function was applied to the pixel intensities to fit their values into
the range [0, 1]. In addition, the patches with variances smaller
than 0.1 were filtered out in order to accelerate training.

2.2. Restricted Boltzmann Machines
The restricted Boltzmannmachine (RBM) is a two-layer, bipartite
Markov network, which is a “restricted version” of the Boltzmann
machine with only inter-connections between a hidden layer
and a visible layer. RBMs have been recently rather popular
in constructing deep neural networks (DNNs) (Hinton and
Salakhutdinov, 2006). A graphical model of an RBM is presented
in Figure 2. Input data is binary and Nv dimensional; they are
fed into Nv units in the visible layer v. The Nh units in the
hidden layer h are stochastic binary variables, i.e., v ∈ {0, 1}Nv ,
h ∈ {0, 1}Nh . The joint probability of {v, h} is:

p(v, h) =
1

Z
exp(−E(v, h)) E(v, h) = −v⊤Wh− h⊤b− v⊤c

(1)
where W ∈ R

Nv×Nh is the matrix of symmetric weights, b ∈

R
Nh×1 and c ∈ R

Nv×1 are biases for hidden units and visible
units, respectively. Z =

∑
v,h exp(−E(v, h)) is the partition

function for normalization. In our experiment, to fit the size of
small image patches, Nv is equivalent to 196, and Nh is 200, i.e.,
200 hidden units. Because of the restricted connections in RBMs,
hidden units hj are conditionally independent of each other given
the visible data v,

p(h|v) =
∏
j

p(hj|v) p(hj = 1|v) = S(v⊤W·j + bj) (2)

1Available on http://redwood.berkeley.edu/bruno/sparsenet/.
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and similarly, visible units vi are conditionally independent of
each other given h.

p(v|h) =
∏
i

p(vi|h) p(vi = 1|h) = S(Wi·h+ ci) (3)

where Wi· and W·j denote the ith row and jth column of
matrix W, bj and ci are the jth and ith entry of vector b and

c, respectively. S(·) is the logistic function S(x) = 1
1+exp(−x)

.

Given training data D = {v(l)}L
l=1

, an RBM can be learned by
maximizing the average log-likelihood of D:

W∗ = argmax
W

L(D) = argmax
W

1

L

L∑
l=1

(
log

∑
h

p(v(l), h)

)
(4)

Since the log-likelihood is concave with respect toW, b, c (Koller
and Friedman, 2009, Chapter 20), based on Equation (1), gradient
ascent can be applied on Equation (4) by computing the gradient
of L(D) with respect toW, b, c as:

∇WL(D) =
1

L

L∑
l=1

[
Ev(l)∈D,h∼p(h|v(l))(v

(l)h⊤)− Ev,h∼p(v,h)(vh
⊤)
]

(5)

∇bL(D) =
1

L

L∑
l=1

[
Eh∼p(h|v(l))(h)− Eh∼p(v,h)(h)

]
(6)

∇cL(⌋) =
1

L

L∑
l=1

[
Ev(l)∈D(v(l))− Ev∼p(v,h)(v)

]
(7)

where Ep(·) denotes the expected values with respect to p.
Obviously, the first terms in Equations (5–7) are easy to compute
with v(l) from D and h inferred using Equation (2). However,
the sampling v, h ∼ p(v, h) in the second term of Equation
(5) makes learning practically infeasible because it requires a
large number of Markov chain Monte Carlo (MCMC) iterations
to reach equilibrium. Fortunately, we can compute an efficient
approximation to the exact gradient: contrastive divergence
(CD), which works well in practice (Hinton and Salakhutdinov,
2006). By using CDk, only a small number of k steps are run
in block Gibbs sampling (usually k = 1), and Equation (5) can
finally be approximated as

∇WL̂(D) =
1

L

L∑
l=1

[
v(l)p(h(l)+|v(l))⊤ − p(v(l)−|h(l)+)

p(h(l)−|v(l)−)⊤
]
(8)

∇bL̂(D) =
1

L

L∑
l=1

[
p(h(l)+|v(l))− p(h(l)−|v(l)−)

]
(9)

∇cL̂(D) =
1

L

L∑
l=1

[
v(l) − p(v(l)−|h(l)+)

]
(10)

where h(l)+ denotes the inferred hidden vector from the lth
observed data point v(l) (using Equation 2), and v(l)−, h(l)− are

vectors after one-step block Gibbs sampling (using Equations 2,
3 and again Equation 2).

2.3. Imposing a Diversity Prior
In RBMs, columns of W are basis images, with which v can be
reconstructed from h. To some extent, they can also represent
neurons’ receptive fields. To this end, a natural choice of biasing
parameters is to diversify the columns ofW as much as possible.
The way in which we approach diversification is minimizing
square cosine similarities among columns ofW:

argmin
W

Nh∑
j=1

Nh∑
k6=j

∥∥∥∥∥
W⊤

·,jW·,k

||W·,j||||W·,k||

∥∥∥∥∥
2

(11)

Note that the denominator in Equation (11) is necessary, because
eliminating it will generate many “dead” neurons. This repulsive
design among W·,j was also employed in the local competition
algorithm (LCA) (Rozell et al., 2008). Zylberberg et al. (2011)
also found that inhibition between two neurons are proportional
to the similarity (measured by the vector dot product) between
their receptive fields. Here, in order to gain a more clear
understanding on how the diversity prior can replicate the effect
of neural inhibition, an illustrating example is presented in
Figure 3. In particular, for computing the gradient with respect
to W, Equation (8) needs to infer the activations of the hidden
units. The prior, which can bias the columns of W toward a
more diverse population will indirectly coordinate the activations
by suppressing the emergence of similar receptive fields, and
therefore leads to a similar effect neural inhibition has during
learning. Also, the effect from the prior will remain after learning
with the learned diverseW. An extreme case is that the activation
probabilities of neurons are exclusive to each other. Sparsity and
selectivity are expected to be enhanced simultaneously by using
this diversity-induced bias (Equation 11) (Figure 1B). We can
define the prior probability distribution over parameters p(W) as

p(W) ∝ exp


−λ ·

Nh∑
j=1

Nh∑
k6=j

∥∥∥∥∥
W⊤

·,jW·,k

||W·,j||||W·,k||

∥∥∥∥∥
2

 . (12)

Then, the parameters can be estimated via maximum a posteriori
(MAP):

W∗ = argmax
W

p(W|D) = argmax
W

p(W)

L∏
l=1

∑
h

p(v(l), h|W)

(13)
In our previous work (Xiong et al., 2014), we used absolute
cosine similarities, of which the derivative cannot be analytically
computed and therefore we had to resort to MCMC-based
simulated annealing to conduct MAP. However, here by using
the square cosine similarity, Equation (13) can be converted to a
constrained concave optimization:

W∗ = argmax
W

L(D)− λ

Nh∑
j=1

Nh∑
k6=j

(W⊤
·,jW·,k)

2

s.t. ∀j ∈ [1,Nh], ||W·,j|| = 1

(14)
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FIGURE 3 | Left, Middle: An illustrating example shows how the diversity

prior would mimic the effect of inhibition among neurons’ activations

during learning. Empty circles denote activated neurons while gray circles

are inactivated ones. Right: although the diversity prior is only employed

in the learning phase, its implicit effect on coordinating neurons’

activations will remain after learning. Intuitively, it can be considered as if

there would exist virtual inhibitory interneurons which are induced by the

diversity prior.

In this paper, since the above optimization problem is concave
with respect to W, we employed gradient ascent to solve it (see
the Appendix for details), and derived an iterative update ofW as

Wt+1
·,j = Wt

·,j +∇WL̂(D)− 2λ




Nh∑
k6=j

(W·,k ⊗W·,k)

+ C
||W·,j|| − 1

||W·,j||
INv

)
W·,j (15)

where ⊗ denotes the outer product between vectors, and INv is
a Nv × Nv identity matrix. In Equation (15) we can see that the
iterative update ofW is composed of two parts, where the first is
the gradient of the log-likelihood while the second is the gradient
of the log prior.

3. Results

In this section the learned receptive fields are shown, with which
we measure the selectivity and sparsity of neurons’ activations.
We also compare the learned receptive fields with physiological
data. Finally, we test the learned receptive fields in an image
reconstruction experiment. The training dataset, the code of
learning RBM, the learned diverse RBM and other materials used
in our experiments are available at: https://iis.uibk.ac.at/public/
xiong/resources.html#Diverse_RBM. Following Hinton (2002),
we conducted training on mini-batches at one epoch. In all 400
epochs were run and it takes around 18 h with our Matlab code
on an Intel core i7 laptop.

3.1. Basis Images
In Figure 4, a subset of basis images (i.e., columns of W) of
RBMs trained with the diversity prior are shown. They look quite
similar to the receptive fields of simple cells in macaque monkey
V1 (Zylberberg et al., 2011, Figure 3). Rigorously speaking,
basis images cannot be directly considered as receptive fields
since they are internal connections or representations instead of
response characteristics. The receptive fields of ICA are usually
estimated as the inverse of the weight matrix (van Hateren and
van der Schaaf, 1998), while in sparse coding reverse correlation
is used for receptive fields (Olshausen and Field, 1996). Here, we
employed a reverse correlation method similar to Hosoya (2012)
who also developed a probabilistic model. For each hidden unit,
its receptive field is estimated as

RF =

S∑
s=1

p(hj = 1|vs)vs, (16)

where p(hj = 1|vs) is computed as in Equation (2), while {vs}
S
s=1

is a set of visual stimuli which are randomly selected in the
training database. This is a little different from the procedure
by Hosoya (2012), since they generate synthetic vs from a
Gaussian distribution. Meanwhile, we arrived at a finding similar
to Hosoya (2012). By linearly fitting the RF of each unit to its
corresponding basis images, we found that our basis images are
almost identical to their corresponding receptive fields.

3.2. Selectivity and Sparsity
There exist several ways to measure selectivity and sparsity, out
of which kurtosis and Treves-Rolls sparseness are popularly used
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FIGURE 4 | Basis images (columns of W) learned in our model. They can

be also considered as receptive fields since we found that they are almost

identical.

(Willmore and Tolhurst, 2001). Willmore and Tolhurst (2001)
empirically proved that there exists a high correlation between
these two measures. In other words, there would be no difference
in using these two measures to quantify neurons’ activations.
Here, we use Treves-Rolls sparseness.

For a neuron, its selectivity is computed across all L input
visual stimuli:

selectivity = 1−
(
∑L

l=1 rl/L)
2

(
∑L

l=1 r
2
l
/L)

(17)

where rl is the activation probability of the neuron given the lth
stimulus, computed as in Equation (2).

The sparsity of population activations by one stimulus is
computed across all Nh neurons:

sparsity = 1−
(
∑Nh

j=1 rj/Nh)
2

(
∑Nh

j=1 r
2
j /Nh)

(18)

where rj denotes the activation probability of the jth neuron
by the stimulus. We computed the mean selectivity of all 200
neurons and the mean sparsity on all training small patches. The
results are plotted in Figure 5. Two relevant models (selective
RBM and sparse RBM, see Section 4.1) were tested as well for
comparison. It can be seen that using the diversity prior in
learning can result in comparable selectivity and sparsity as using
selectivity prior or sparse prior. Meanwhile, the diversity prior
should be preferred since it generates a much smaller number
of “dead” neurons (see Section 4.1). In our experiment, λ =

FIGURE 5 | Mean sparsity and mean selectivity of neurons’ activations

in diverse RBM, sparse RBM and selective RBM, respectively.

FIGURE 6 | Selectivies and sparsities when using different λ-values in

the diverse RBM.

10−3 was used to obtain the above result. To check how λ value
affects sparsity and selectivity, in Figure 6 a plot with several λ

is presented. When λ is small, e.g., 0, 10−5, 10−4, the effect of
the diversity prior is weak or totally removed and both selectivity
and sparsity decrease (Figure 6). The receptive fields of a diverse
RBM trained with λ = 10−5 are shown in Figure 7A. If we
use a big value of λ, e.g., 10−2, 10−1, 1, the iterative update
of W Equation (15) is greatly dominated by the prior part,
and therefore the fitness to the training data D deteriorates.
It can be seen that selectivity and sparsity also decrease
(even to a larger degree) using relatively large λs (Figure 6).
The receptive fields learned with λ = 1 are displayed in
Figure 7B.

3.3. Comparison with Biological Data
To better compare our receptive fields against physiological
results (Ringach, 2002), we first fitted our receptive fields to
Gabor filters:
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FIGURE 7 | The receptive fields learned using (A) λ = 10−5, (B) λ = 1.

G(x, y; x0, y0,A, σx, σy, θ, f , φ) = A cos(2π fx′ + φ)

exp

(
− x′2

2σ 2
x
−

y′2

2σ 2
y

)

x′ = (x− x0) cos θ + (y− y0) sin θ

y′ = −(x− x0) sin θ + (y− y0) cos θ
(19)

x

FIGURE 8 | After fitting receptive fields with Gabor filters, we pooled

their shape profiles (nx,ny ), for comparison to physiological data of

macaque monkeys (Ringach, 2002).

whose parameters are the center position (x0, y0), amplitude A,
size (σx, σy), orientation θ , spatial frequency f and phase φ.
The fitting is done via the Nelder-Mead Simplex method, and
therefore is not very reliable. Similar to Hosoya (2012) and
Zylberberg andDeWeese (2013), we conducted quality control by
filtering out some receptive fields which were poorly fitted. First,
we compared our receptive fields with those of macaque monkey
V1 cells2 (Ringach, 2002) in units of the sinusoidal wavelength:
(nx, ny) = (σxf , σyf ). In Figure 8, we pooled (nx, ny) of our
receptive fields as well as the data from Zylberberg and DeWeese
(2013). We found that they don’t deviate very much although
they slightly differ from each other. We also checked the statistics
of aspect ratios within receptive fields:

ny
nx
. In Figure 9 two

histograms are displayed, which are global distributions of aspect
ratios from our receptive fields and from the macaque monkey
V1 cells, respectively. We can see that they are also quite close.

3.4. Image Reconstruction
Reconstruction using RBMs is quite straightforward. First, small,
non-overlapping patches (size 14 × 14) were extracted from
a preprocessed image. For each small patch v, the activation
probability of each neuron p(hj|v) can be computed as in
Equation (2). Then, instead of using binary states of hj, p(hj|v)
is used for recovering v by using Equation (3). It is worth noting
that although RBMs are probabilistic models, we use the value
of p(vi|h) to recover the intensity of each pixel and thus the
reconstruction is deterministic.

Out of the 10 images in the original database, 8 were used
for training and the remaining 2 were used for testing the image
reconstruction. The two test images were whitened and sigmoid-
mapped using the same preprocessing procedure as the training
images. They are shown in the left panel of Figure 10. In the right

2Data are available at: http://www.ringachlab.net/lab/Data.html.
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FIGURE 9 | A comparison of the histograms of aspect ratios (nx/ny )

within macaque monkey V1 neurons and the learned diverse RBM

neurons.

panel of Figure 10 the reconstructions of the two test images are
presented. It can be seen that the reconstructions look very good
in qualitative terms.

4. Discussion

4.1. Sparsity and Selectivity Prior on RBM
There are previous studies that learn simple cell receptive fields
through the use of RBMs, either enforcing sparsity or selectivity.
One recent example of the former is the sparse group restricted
Boltzmannmachine (SGRBM) (Luo et al., 2011), an RBM trained
with the CD algorithm plus an l1/l2 norm regularization on the
activations of the neuron population. At each iteration, given a
visual stimulus, and after computing the activation probabilities
of the whole neuron set, SGRBM attempts to minimize the
l1/l2 norm of the set of activation probabilities. Although l1/l2
norm regularization can ensure sparsity, it can also lead to many
“dead” (never responding) and “potential over-tolerant” (always
responding) neurons (see Figure 1D). In the case of the latter, a
study that enforces selectivity is the one from Lee et al. (2007)
which uses a selectivity-induced regularization that suppresses
the average activation probability of each neuron to all training
stimuli.

One limitation of this strategy, as argued by Goh et al.
(2010), is that decreasing average activation probabilities cannot
guarantee selectivity. Instead, it will result in many similar
neurons with uniformly low activation probabilities to all types of
visual stimuli, which are prone to be “dead” as well. Following this
line of thought and in order to prove the validity of our diverse
RBM, two additional RBMs were trained using the CD algorithm
with sparse regularization (sparse RBM) (Luo et al., 2011) and
the CD algorithm with selectivity regularization (selective RBM)
(Lee et al., 2007). For both of them, 200 hidden neurons were
learned and their receptive fields are presented in Figure 11. We
can see that the neurons’ receptive fields learned in sparse RBM
and selective RBM look similar to those of our RBM trained with

FIGURE 10 | Reconstruction using receptive fields of the learned

diverse RBM. The left panel of (A,B) shows two test images after

preprocessing, while the right panel of (A,B) shows two corresponding

reconstructions.

a diversity prior. However, both sparse CD and selective CD led to
many useless, “dead” neurons. We estimated the rough number
of “dead” neurons by counting the number of neurons whose
maximal activation probabilities to all training stimuli is smaller
than 0.1, and the results are shown in Figure 12. Furthermore,
we also computed the mean selectivity and the mean sparsity
of neurons in sparse RBM and selective RBM in the same way
as we did for the diverse RBM; their results are also shown in
Figure 5.

4.2. The Equivalent to a Diversity Prior in
Biological Systems
Knowing about how neuron receptive field properties arise is of
great importance in visual neuroscience in order to hypothesize
the circuits and connections that give rise to those properties.
On one hand, one of the characteristics of simple cells in
V1 is selectivity to oriented stimuli. These can be obtained
through placing some constraint in learning from natural images.
An example is the influential work by Olshausen and Field
(1996). A set of coefficients is then formed such that they
have a cost associated to them depending on how the activity
is distributed. The aim is to increase sparsity, meaning lower
cost. This approach leads to V1-like simple-cell receptive fields
through the learning of a set of weights that correspond to
the connections of the input layer with simple neurons in
area V1.

On the other hand, inhibition seems to play a central role
in the shaping of simple-cell receptive fields. We can consider
three types of inhibitory inputs: feedforward, lateral and feedback
(also known as recurrent). Feedforward inhibition is regarded
as the main source of orientation selectivity in simple cells
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FIGURE 11 | The receptive fields learned in the learned (A) sparse

RBM, (B) selective RBM.

by some researchers (Heggelund, 1981; Celebrini et al., 1993;
Ferster and Miller, 2000) and has been modeled by others,
e.g., (Azzopardi et al., 2014). The classical role of feedback
connections was the enhancement of receptive-field responses
to top-down modulations (Ito and Gilbert, 1999; Treue, 2003),
which have been successfully modeled for attention (Rodriguez-
Sanchez et al., 2007) and contour integration (Neumann and

FIGURE 12 | Number of dead neurons in the learned diverse RBM,

sparse RBM and selective RBM, respectively.

Sepp, 1999; Tschechne and Neumann, 2014). But other studies
are in support of feedback connections as the source of simple-
cell selectivity through recurrent connections, most recently from
Angelucci and Bressloff (2006). The appearance of orientation
selectivity this way has also been proposed in models of recurrent
inhibition, e.g., (Sabatini, 1996; Carandini and Ringach, 1997).
Finally, even though there is an alive discussion regarding
if orientation selection is achieved through feedforward or
recurrent connections, it is interesting to note that none of
them rule out that lateral inhibition can at least be partially
blamed for this selectivity, e.g., (Celebrini et al., 1993; Angelucci
and Bressloff, 2006). Lateral connections have in fact being
made explicit into recent sparse coding models (Garrigues and
Olshausen, 2008; King et al., 2013).

The common ground of all the aforementioned works is that
inhibition is fundamental to the selectivity properties of simple
cells, irrespective of where that inhibition comes from. Inhibition
is also linked to the appearance of sparse sensory coding (Vinje
and Gallant, 2000; Haider et al., 2010). We can conclude then,
that inhibition would generate RF diversity, since as we have
shown in this work (Figure 1), imposing diversity generates both
selective and sparse neural populations. By explicitly favoring
diversity in our model, we would be mimicking the effect that
inhibition should have on feature learning in a biological system.

5. Conclusion

We test a recent new concept, that of diversity (Padmanabhan
and Urban, 2010; O’Donnell and Nolan, 2011), by applying
diversification on the columns of W when using a RBM to
learn receptive fields. This diversification has the implication
of providing a set of neurons that is at the same time sparse
and selective, which, as mentioned in the introduction, is
not always the case for sparse models. Imposing diversity is
thus a more general condition to achieve both, sparsity and
selectivity.
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Appendix

A1. MAP optimization with the Sum Similarity
Minimization Prior
The optimization problem (Equation 14) can be rewritten as

max
W

L(D)− λ




Nh∑
j=1

Nh∑
k6=j

(W⊤
·,jW·,k)

2 + C

Nh∑
j=1

(||W·,j|| − 1)2




︸ ︷︷ ︸
O

,

(A1)
where C is an extra parameter that is set relatively large
to guarantee the satisfaction of the constraints in Equation
(14). In our experiment, C is equivalent to 104. In this
way, the constrained optimization problem is converted to an
unconstrained one. It was already shown that the gradient ascent
can used to maximize L(D). It is easy to see that O is also convex
with respect toW; therefore, the same gradient ascent can be also

applied on −λO. The gradient of O with respect to W can be
computed as

∂O

∂W·,j
= 2

Nh∑
k6=j

(W⊤
·,jW·,k)W·,k + 2C(||W·,j|| − 1)

W·,j

||W·,j||
(A2)

= 2

Nh∑
k6=j

(W·,k ⊗W·,k)W·,j + 2C(||W·,j|| − 1)
W·,j

||W·,j||

(A3)

= 2




Nh∑
k6=j

(W·,k ⊗W·,k)+ C
||W·,j|| − 1

||W·,j||
INv


W·,j,

(A4)

where ⊗ denotes the outer product between vectors and INv is a

Nv × Nv identity matrix.
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Visual recognition is a computational challenge that is thought to occur via efficient coding.
An important concept is sparseness, a measure of coding efficiency. The prevailing view is
that sparseness supports efficiency by minimizing redundancy and correlations in spiking
populations. Yet, we recently reported that “choristers”, neurons that behave more similarly
(have correlated stimulus preferences and spontaneous coincident spiking), carry more
generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior
temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they
were likely missed in previous studies. Here, we report that correlation strength is distinct
from sparseness (choristers are not simply broadly tuned neurons), that choristers are
located in non-granular output layers, and that correlated activity predicts human visual
search efficiency. These counterintuitive results suggest that a redundant correlational
structure supports efficient processing and behavior.

Keywords: object recognition, inferior temporal cortex, macaque, visual search, efficient coding

INTRODUCTION
Visual recognition engages neural mechanisms that are essential
to our ability to learn and process complex information (Poggio
and Bizzi, 2004). The key challenge of recognition is generaliza-
tion, which requires that the representation is both object-specific
and invariant to changes such as illumination and pose, even for
novel objects. This is thought to occur via a hierarchy of cortical
areas along the ventral visual pathway, ending in the inferior
temporal (IT) cortex (Miyashita, 1993; Logothetis and Sheinberg,
1996; Tanaka, 1996; Tootell et al., 2003), but the underlying
computations remain poorly understood (DiCarlo and Cox, 2007;
DiCarlo et al., 2012). Current models and theories of recognition
(Riesenhuber and Poggio, 1999; Masquelier and Thorpe, 2007;
Mutch and Lowe, 2008; Bengio, 2009; Krizhevsky et al., 2012; Le
et al., 2012; Zeiler and Fergus, 2014; Cadieu et al., 2014) are based
on the idea that a hierarchy of simple and complex cells combine
to increase specificity and invariance. To improve these models, it
is necessary to understand the computations of local populations
of neurons at an intermediate level of abstraction (DiCarlo et al.,
2012).

A key concept is sparseness, a measure of coding efficiency.
The current thinking is that sparseness increases efficiency by
minimizing redundancy, correlation, and noise (Gawne and
Richmond, 1993; Zohary et al., 1994; Vinje and Gallant, 2000;
Olshausen and Field, 2004; Ecker et al., 2010; Renart et al., 2010;
Xing et al., 2011; Hansen et al., 2012; King et al., 2013). Yet,
reports in V1 slices and in vivo have shown the existence of
neural ensembles that fire reliably in concert during spontaneous
activity (Sadovsky and Maclean, 2014), and the same ensembles
are active both without stimulation and in response to stimulation
(Chu et al., 2014; Miller et al., 2014). We recently reported (Lin
et al., 2014) that in macaque IT, correlated neurons “choristers”
(Kenet et al., 2005; Carandini, 2014), neurons that have similar

stimulus tuning and coincident spike timing, even during sponta-
neous activity, carry more generalizable object information than
uncorrelated neurons (“soloists”). This surprising result hints
that, counterintuitively, correlation supports efficient coding and
that current thinking focused on sparsening, decorrelation, and
denoising may be flawed.

The idea that the correlational structure, i.e., the spatial pat-
tern of homogeneity vs. heterogeneity within a local population
of neurons, may support efficient coding has been postulated
in theory (Abbott and Dayan, 1999; Sompolinsky et al., 2001;
Wu et al., 2002; Dehaene and Changeux, 2005; Averbeck et al.,
2006; Cohen and Kohn, 2011; Ecker et al., 2011; Eyherabide
and Samengo, 2013; Shamir, 2014), but it has received little
experimental support. Three novel aspects of our study allowed
us to explore this hypothesis.

First, we used dense electrode arrays (64 sites across roughly
two cortical columns, 0.2 mm resolution horizontally and in
depth, Figure 1A) to characterize the correlational structure.
High-density arrays allowed us to record neurons that have
similar tuning, to measure redundancy as “Average Correlation
Strength” (a site’s average pairwise tuning similarity with all
other sites in the array, where the tuning similarity between
two sites is the Pearson correlation of their z-normalized stimu-
lus responses, related to the concept of “population sparseness”
Willmore et al., 2011). Because previous reports of efficient
coding had insufficient sampling density to measure popula-
tion sparseness, they instead measured “sparseness” as tuning
sharpness, the selectivity of a neuron’s response across stim-
uli, under the assumption that “sparseness” and “population
sparseness” are interchangeable (that sparseness and correlation
strength are inversely related) (Rolls and Tovee, 1995; Vinje and
Gallant, 2000; Zoccolan et al., 2007; Willmore et al., 2011).
When studies did examine functional correlation, it was in terms
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FIGURE 1 | Experimental design and “pipe cleaner” model. (A) We
inserted a dense multi-depth array (64 sites across ∼2 cortical columns) in
macaque lateral IT (A16) and recorded spiking responses under light
neurolept anesthesia. Stimuli were presented via rapid serial visual
presentation, for 94 ms ON and 106 ms OFF (5 Hz), in pseudorandom order
for 10 repetitions. Spike count from 100 to 200 ms post stimulus onset was
averaged across repetitions. (B) A “pipe cleaner” model linking local
correlational structure in neighboring columns to invariant representation.
Most neurons are weakly correlated “soloists” (the bristles), tied to an
underlying structure of correlated neurons (“choristers”, the spine).
Sampling a few points along the spine (a few choristers) is sufficient to
reconstruct the overall structure. The model predicts that generalizable
object information is carried by the choristers, and that the heterogeneity of
the soloists may help to fine-tune the choristers to support generalization.

of individual pairs of neurons, without comparing the rela-
tionship between sparseness (tuning sharpness) and correlation
(Gawne and Richmond, 1993; Sato et al., 2009; Takeuchi et al.,
2011), or the comparison was limited to layers 2/3 (Tamura
et al., 2014). Whether “correlation strength” and “sparseness”
are related for a diverse sample of IT neurons remains untested
(Willmore et al., 2011), and answering this question is impor-
tant for understanding how local architecture relates to coding
efficiency.

Second, the dense multi-depth arrays allowed us to exam-
ine layer specificity, which can tell us about input-output rela-
tionships. We and others (Sato et al., 2009; Lin et al., 2014;
Tamura et al., 2014) previously reported that local IT populations
have a correlational structure in which most neurons are weakly
correlated and few neurons have strong tuning correlation and

significant spontaneous coincident spiking (∼6% of neuronal
pairs in IT, vs. ∼50% of pairs in V1; Chu et al., 2014). Yet, these
rare IT choristers are also highly efficient. Just 4–5 choristers per
array (the top 6% as defined by k-means clustering, or 8% as
defined by average pairwise tuning correlation) have the same
object coding capability, for within-category generalization, as
the entire array population (no more are needed given their
object coding efficiency; Figure 7C of Lin et al., 2014). Based on
this correlational structure and the much-better object coding
capability of choristers vs. soloists, we previously proposed a
“pipe cleaner” model (Figure 1B, a “fiber bundle” in mathe-
matical terminology) in which the choristers (the spine) are the
substrate of IT’s output, encoding an invariant representation
that supports generalization and recognition, and in which the
soloists (the bristles) are IT’s inputs, acting as heterogeneous
tensors that fine-tune this high-dimensional representation (in
the parlance of DiCarlo et al. (2012), to support “cortically
local subspace untangling” and to “flatten object manifolds”). If
so, choristers and soloists should be layer specific, with soloists
tending to be in input layers and choristers tending to be in
output layers. Such layer-specificity would be consistent with
reports of decorrelated responses near layer 4 of V1 (Ecker
et al., 2010; Hansen et al., 2012) and with reports that toler-
ance but not selectivity (sparseness) increases along the ven-
tral visual pathway (Rust and Dicarlo, 2010; Willmore et al.,
2011).

Third, we tested whether local correlated activity can pre-
dict visual search efficiency for complex naturalistic object stim-
uli. Previous reports have linked IT neuronal tuning to visual
perception (Logothetis and Schall, 1989; Op de Beeck et al.,
2001; Baker et al., 2002; Sigala and Logothetis, 2002; Mruczek
and Sheinberg, 2007a; Sripati and Olson, 2010; Verhoef et al.,
2012) and have linked perception to topography in V1 (Michel
et al., 2013), but the interpretation was not linked to correla-
tional structure. If local correlational structure, e.g., from short-
range lateral inhibition in IT, predicts search efficiency, it would
support that correlated activity and topography are linked to
complex shape perception. It would also support recent reports
that abnormal correlated activity and excitatory/inhibitory bal-
ance in object areas are linked to abnormal perception in
autistics, linking these findings to spiking activity (Jiang et al.,
2013; Robertson et al., 2013). Here, we asked whether local
correlated activity predicts visual search for combinations of
naturalistic objects. To avoid effects that might be driven by
spatial attention or processes earlier in visual cortex, we used
brief presentations at random locations followed by masking,
and we equalized the stimuli for low level visual properties
such as Fourier energy. Also, our stimuli were object com-
binations defined by local correlated activity in IT (“neurally
defined features”; each “feature” is a set of objects), rather than
abstract human-defined shapes as in previous reports, so that
the predictions are specifically tied to contrastive coding of
complex features by neighboring IT columns (e.g., from lateral
inhibition).

Together with our previous report (Lin et al., 2014), these
tests provide additional support for the hypothesis that cor-
related activity supports efficient processing and behavior. We
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report that although the concepts of sparseness and decorrelation
are often conflated, correlation strength and sparseness (when
measured as tuning sharpness) should be considered as sepa-
rate factors. We also provide additional support for choristers
as the output neurons of IT, based on their cortical depth.
Finally, we show that correlated activity in macaque IT pre-
dicts human visual search performance in a task with complex
shapes.

METHODS
NEUROPHYSIOLOGY AND STIMULUS PRESENTATION
All experimental procedures in monkeys (Macaca cyclopis) were
performed in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use Commit-
tee of National Yang-Ming University. The procedures for the
experiments were described in Lin et al. (2014) and are briefly
summarized here. We inserted dense microelectrode arrays that
had 64 sites (8 shanks and 8 contacts per shank, at 0.2 mm spacing
spanning 1.4 × 1.4 mm horizontally and in depth, NeuroNexus
A8×8-5mm-200-200-413) spanning all cortical depths and∼2–4
neighboring cortical columns (Figure 5 of Lin et al. (2014)).
Recordings were made from 5 arrays, where each array was
a separate insertion in a separate recording session, across 4
monkeys.

Initial surgery for headpost, EEG, and recording chamber
implant was under isoflurane anesthesia, followed by repeated
recording sessions under light neurolept anesthesia (Fujita et al.,
1992; Wang et al., 2000; Tsunoda et al., 2001; Yamane et al.,
2006; Sato et al., 2009, 2013; Brown et al., 2011) (0.9 µg/kg/hr
i.v. Fentanyl, 70%/30% N2O/O2, 0.25 mg/kg i.m. droperidol,
and 0.3–0.5% isoflurane) and muscle relaxation (1.2 mg/kg/hr
i.v. rocuronium bromide). The fentanyl concentration is 100×
lower than in a recent report that contrasted awake vs. anes-
thetized signals (Ecker et al., 2014), and 10× lower than in
reports that did not find an effect on neuronal dynamics (Lough-
nan et al., 1987; Constantinople and Bruno, 2011). Our signals
also lacked artifacts such as prolonged responses and up/down
fluctuations reported with other anesthetics (Contreras et al.,
1997; Haider et al., 2013). Compared to awake recordings, light
anesthesia and muscle relaxation have the advantage of excluding
potential effects from task-related top-down signals (Sigala and
Logothetis, 2002; Maier et al., 2007; Ruff and Cohen, 2014)
or eye movements (Rajkai et al., 2008; Ito et al., 2011), and
a recent report suggests that activity during running resem-
bles activity under anesthesia and is dissimilar to “visually
detached” activity during quiet wakefulness (Froudarakis et al.,
2014).

Single units were analyzed for coincident spiking and to
remove cases of multiple detection of the same neuron across
different contacts. All “site” responses were based on multi-unit
activity (MUA) pooled from isolated single units at the same
contact. We report only “site” responses because lower spike
counts and the possibility of oversorting with single unit activity
(SUA) can artificially weaken correlation measurements (Cohen
and Kohn, 2011), and because the conclusions were the same
as for MUA. The stimuli were 240 grayscale rendered objects or

113 colored photographed objects presented via rapid serial visual
presentation (94 ms ON/ 106 ms OFF).

ANALYSES
Analyses were based on spike count from 100 to 200 ms after
stimulus onset. Each site’s tuning function was calculated as its
trial-averaged response, z-normalized across stimuli. The same
matrix of trial-averaged and z-normalized tuning responses across
the array (i.e., a 240 × 64 matrix for 240 stimuli and 64 sites)
was used as the input for correlation analysis, k-means, principal
component analysis (PCA), and classifier analysis as described in
Lin et al. (2014).

We classified each site as a “chorister” or “soloist” based on
the site’s average pairwise tuning correlation with other sites
from the same array (the same calculation as in Lin et al.
(2014) Figure 7C, brown line, but here “choristers” are random
sites in the top 30%ile instead of rank-ordered sites in the top
8%ile). This top 30%ile corresponds to 16 sites per array for
arrays 1–3 and 8 sites per array for arrays 4 and 5 that had
more inactive sites. “Soloists” are the remaining sites (Figure 2A
black dots). Choristers and soloists lie along a continuum of
average pairwise tuning correlation strengths (Figure 2A). For
object classification (Figure 2B) and noise covariation analyses
(Figure 2C), we compared choristers (top 30%ile) against soloists
in the 45–65%ile. For cortical depth (Figure 3B), the soloists are
the bottom 30%ile. Layer-specificity is not seen for soloists in the
45–65%ile.

We used a linear support vector machine classifier to estimate
the ability of a hypothetical downstream neuron (e.g., in pre-
frontal cortex) to read out the category of an untrained object
(within-category generalization) based on the population activity
in IT. The classifier output is based on the weighted sum of spiking
activity from a set of IT neurons followed by a decision threshold.
Because there were 8 possible categories, the classifier learned
a one-vs.-all decision hyperplane for each of 8 categories and
output the category that had the highest certainty.

Sparseness was calculated according to Vinje and Gallant
(2000) and Zoccolan et al. (2007) as:

S =

1−

(∑ Ri
n

)2

∑ R2
i

n

/(
1−

1

n

)
,

where Ri is the site response to the i-th stimulus and n is the
number of stimuli in the set.

We could estimate the cortical depth because we were able
to visually see individual sites disappear into the brain during
insertion and, because of the small footprint of the array shanks
(15 µm thick, 33 µm wide), we could also track individual units
as they transitioned from the deepest to the most superficial sites
during array insertion. Anatomical confirmation of depth was
impossible due to damage from later recording sessions. However,
we estimate that the deviation of the array from vertical was less
than 8 deg (less than 0.2 mm horizontal offset at the deepest
site), based on anatomical confirmation of our V1 recordings
using the same arrays (Supplemental Figure 1 in Chu et al.,
2014).
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FIGURE 2 | Local correlational structure, sparseness, and
generalization performance. (A) Sparseness (tuning width) and average
correlation strength were only weakly related across 250 sites in
anesthetized IT (r = −0.09, p = 0.04). Sparseness was calculated according
to Zoccolan et al. (2007) and Vinje and Gallant (2000). Average correlation
strength was the average site-to-site tuning correlation between each site
and all other sites in the same array. Sparseness and average correlation
strength were each highly consistent across two stimulus sets (r = 0.72 and
0.70, p < 10−37 and p < 10−39 resp.). Choristers (brown) are the 30%ile of

(Continued )

FIGURE 2 | Continued
sites with the highest average correlation strength per array, and soloists
(black) are the remaining sites. (B) Visual responsiveness vs.
within-category generalization performance for choristers (top 30%ile,
brown) vs. soloists (45–65%ile, red), for 2 sites per array, with at least
600 µm horizontal distance between sites. Visual responsiveness was
calculated as the evoked (baseline-subtracted) response to each site’s
preferred object, shown as the median across 10 sites (2 sites per array,
5 array insertions across 4 monkeys). Chance is 12.5% for 8 categories, and
ceiling performance is based on all sites. Choristers and soloists were
defined without test stimuli. Compare with Figure 7C of Lin et al. (2014).
(C) Noise correlation (Rsc) of choristers vs. soloists (same colors and
definitions as in (B) also with at least 600 µm horizontal distance). To
control for visual drive, we also show Rsc for pairs of sites that have mean
evoked response to each site’s preferred object between 10 and 30 spikes/s
(blue). Arrows and numbers indicate mean Rsc.

For PCA, each PC consists of relative site activities (e.g., 1× 64
matrix of coefficients for 64 sites, normalized to unit length) and
stimulus-related scores (e.g., 1 × 240 matrix of weights for 240
stimuli) for that PC. The z-normalized response of a site to a
stimulus can be back-calculated by summing, across all PCs, the
product of the site’s coefficient for each PC and the stimulus’s
score for that PC.

HUMAN TESTING
Observers
Procedures were approved by the Institutional Review Board of
Georgetown University and informed consent was obtained from
all observers. Six observers (3 male, 3 female, including the second
author) participated in the experiments. All observers had normal
or corrected-to-normal vision. Apart from the second author,
observers were naïve as to the purpose of the experiment and were
paid for participation.

Apparatus
Stimuli were controlled by computer using Matlab and Psych-
toolbox 3 (Kleiner et al., 2007) and displayed on a 17′′ cathode
ray tube (CRT) (Sony Trinitron Multiscan 17sfII) with spatial
resolution 1024× 768 pixels and refresh rate of 60 Hz. Eye-screen
distance was 57 cm, so that each pixel subtended approximately
0.03◦. Ambient illumination was <4 Cd/m2.

Stimuli
Object stimuli belonging to neurally defined features (grayscale
rendered objects, “Set 1”) were resized to 64 × 64 pixels
(1.9◦ × 1.9◦) and convolved with a 3 × 3 pixel Difference-
of-Gaussians filter to match the background gray. Because the
IT correlational structure is slightly more stable across stim-
ulus sets for z-normalized responses than for raw responses,
we constructed stimuli using the neurally defined features
from z-normalized responses. Object stimuli were then equated
for low-level image properties using the SHINE toolbox
(Willenbockel et al., 2010). Groups of object stimuli were
then randomly tiled to create the background (5 different
objects), target (3 different objects), and distractors (3 differ-
ent objects). Tiling position combinations were restricted to
avoid lines of the same object. Target and distractors luminances
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FIGURE 3 | Cortical depth vs. correlation strength and sparseness. (A,B)
We sorted sites by their average strength of tuning correlation with other
sites in the same array, then grouped the top ∼30% of sites per array as
“choristers” and the bottom ∼30% as “soloists”. Choristers are rarer in layer
4 (1.0–1.2 mm depth), whereas soloists are more common at 0.2 and 1.2 mm
depth. The number of sites selected per group was higher for arrays 1–3 (16

choristers and 16 soloists per array) than for arrays 4 and 5
(8 choristers/soloists per array), because arrays 4 and 5 had fewer active
channels. Average correlation strengths of choristers and soloists were
0.15 ± 0.04 and 0.02 ± 0.03, resp. (C,D) Same analysis based on sparseness
(tuning sharpness). Average sparseness of broadly tuned and sharply tuned
(sparse) sites were 0.12 ± 0.08 and 0.69 ± 0.25, resp.

were darkened by 5%, to make them more visible against the
background. Mask stimuli were specific for each trial, created
by scrambling the background (without target and distrac-
tors) at 0.24◦ resolution. Fixation point was a black square of
0.45◦ × 0.45◦.

General procedure
Each block consisted of 144 trials comprising 48 “oppo-
site”, 48 “related”, and 48 “unrelated” conditions, all with the
same stimulus onset asynchrony (SOA) and adaptation dura-
tion. To minimize effects spanning across trials, each trial
was preceded by an inter-trial interval (trial was initiated by
key press), a blank fixation screen (1.5 s), and an adapt-
ing background of up to 8 s. In addition, objects were bal-
anced across targets, distractors, and background and across
conditions.

RESULTS
The neurophysiological data here is based on reanalysis of a
previously reported dataset collected in monkeys under light
neurolept anesthesia (Lin et al., 2014). Briefly, analyses are based
on trial-averaged z-normalized responses (250 multi-unit “sites”
and 6462 site pairs from 359 neurons) to stimuli that were
presented via rapid serial visual presentation (Figure 1A). We
begin by addressing a few concerns about our previous report:

that the 6% cutoff of choristers is arbitrary and that in fact
“choristers” and “soloists” are not two types of neurons, and
that perhaps the better object coding performance of choris-
ters is due to multiple detection of the same neuron across
contacts, or because soloists are less visually driven. In fact,
the distribution of average correlation strengths is continuous,
and the separation into “choristers” and “soloists” is merely
for convenience of comparison, not to say that there are two
distinct cell types. Correlation strength and within-category gen-
eralization performance both decline smoothly, so missing a few
top “choristers” during sampling should not affect the resulting
structure very much. To increase the population size for testing
the effect of average correlation strength, we relaxed the defini-
tion of choristers as random sites in the top 30%ile of average
pairwise correlation strength per array (Figure 2A, brown), and
of soloists as random sites in the median 30%ile (45–65%ile;
black is lower 70%ile). This 30%ile threshold for choristers
corresponds to minimum average correlation strengths of 0.12,
0.15, 0.16, 0.09, and 0.06 for the 5 arrays. These thresholds are
similar for sites separated by at least 0.6 mm horizontal distance
(0.09, 0.11, 0.14, 0.07, and 0.05). Although correlated neurons
do tend to be more visually driven than uncorrelated neurons
(c.f. Figure 5C of Tamura et al. (2014)), we still observed higher
performance for choristers when choristers and soloists were
matched for visual drive (Figure 2B,∼12 Sp/s baseline-subtracted
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response to each site’s preferred stimulus; based on 5 arrays and
2 sites per array, at least 0.6 mm horizontal distance between
sites).

SPARSENESS AND CORRELATION STRENGTH ARE MOSTLY UNRELATED
In previous reports, sparseness (measured as tuning sharpness)
was thought to support efficient coding by reducing corre-
lated activity (Young and Yamane, 1992; Rolls and Tovee, 1995;
Baddeley, 1996; Olshausen and Field, 1996; Bell and Sejnowski,
1997; Vinje and Gallant, 2000; Zoccolan et al., 2007). This would
predict that soloists should have better object coding capability
(whereas our results suggest that choristers have better object cod-
ing, at least for within-category generalization) and that soloists
should be sharply tuned. Conversely, a trivial explanation of
the better object coding capability of choristers is that perhaps
choristers are broadly tuned and therefore have better tolerance
to stimulus variations.

We report that neither prediction is correct. Sparseness
(measured as the modified sparseness index of Vinje and Gallant
(2000), Lin et al. (2014) and average correlation strength are
mostly uncorrelated across sites. Within each of 5 arrays (5 sepa-
rate array insertions across 4 monkeys), the relationship between
sparseness and average correlation strength was non-significant,
and it was weak and barely significant when pooled across all
arrays (Pearson r = −0.09, p = 0.04, N = 250 sites, Figure 2A).
This weakness was not due to noise in either measurement,
because sparseness and average correlation strength were each
highly consistent across two stimulus sets (r = 0.72 and 0.70,
p < 10−37 and p < 10−39, resp.). This dissociation between
sparseness and correlation is consistent with a previous conjecture
that these measures are unrelated (Willmore et al., 2011) and
with a recent report that found a weak (albeit positive, r = 0.07,
p < 0.001, rather than negative) dissociation in layer 2/3 (Tamura
et al., 2014). Our data show that the dissociation also holds for a
wider sample of IT neurons across supragranular, granular, and
infragranular depths.

CORRELATED NEURONS ARE MOSTLY IN OUTPUT LAYERS
A key issue in linking neural activity to models is the cortical layer
of different functional elements. An ongoing debate is whether
neurons are correlated or uncorrelated, and whether these are in
input or output layers. In V1, a recent study suggested that noise
correlations are much lower than previously thought (Ecker et al.,
2010), but alternatively it has been reported that noise correlation
is layer-dependent and is lower, with better coding efficiency, in
the granular layer (Hansen et al., 2012).

We suggest that neither view is entirely correct in IT. Here,
we report that correlated neurons (choristers, with more effi-
cient coding) are almost exclusively found in supragranular and
infragranular layers. In IT, signal (tuning) correlation and noise
correlation are related, and choristers tend to have stronger noise
correlation (choristers (brown): Rsc = 0.13; soloists (45–65%ile,
red): Rsc = 0.04; p < 10−22, unpaired t-test; Figure 2C), includ-
ing pairs separated by at least 0.6 mm horizontal distance and
with similar visual drive (mean baseline-subtracted response to
preferred stimulus of each cell is between 10 and 30 spikes/sec)
(choristers: Rsc = 0.16; soloists: Rsc = 0.06; p < 10−13; blue).

Of the 64 choristers, most were in supragranular and infra-
granular layers and only five were between 1.0–1.2 mm depth,
near layer 4 (Figure 3A). Conversely, the most uncorrelated
soloists (the ∼30% of sites with the lowest correlation strength
per array) were more prevalent at 0.2 and 1.2 mm depth (layers 1
and 4), although roughly half were in supragranular and infra-
granular layers (Figure 3B). The result was similar for single-unit
activity. The proportion of choristers vs. soloists was significantly
lower in the granular layer (1.0–1.2 mm) compared to supra-
granular and infragranular layers (p = 0.0007 and p = 0.0003,
two-sided Fisher’s test), and the difference between supragranular
and infragranular layers was non-significant. This layer-specificity
is consistent with a recent report in V1 that also measured
correlated variability (Hansen et al., 2012). In contrast to corre-
lation strength, sparseness, a measure of coding efficiency that
is commonly based on tuning sharpness (Young and Yamane,
1992; Rolls and Tovee, 1995; Vinje and Gallant, 2000; Zoccolan
et al., 2007), was not layer specific (Figures 3C,D, n.s. for all
comparisons).

THE LOW DIMENSIONAL CORRELATIONAL STRUCTURE IS ALSO IN
OUTPUT LAYERS
A recent perspective article (DiCarlo et al., 2012) highlighted
the need to understand the processing of local populations of
neurons at an intermediate level of abstraction. Covariation
analysis (e.g., k-means clustering and PCA) is a useful form
of abstraction because it directly ties the correlational structure
to the idea of a low-dimensional manifold representation of
object features (DiCarlo et al., 2012) and to our pipe cleaner
model (Lin et al., 2014). We often encounter novel objects and
novel environments (Vaziri et al., 2014) that must be catego-
rized, and it is thought that the visual system learns useful
shape statistics of the animal’s environment (Srihasam et al.,
2014). A key concept of the model is that the invariant rep-
resentation, which supports generalization across rotation-in-
depth, changes in illumination, and variations within an object
category (studied here), has a spatial organization that is con-
centrated in a low-dimensional correlational structure. Such a
low-dimensional correlational structure could be very useful for
decoding by downstream neurons and for generalization learning,
by providing a smoothly differentiable structure that is stable
across categories, by reducing the number of inputs that must
be pooled (instead of listening to all neurons, a downstream
neuron could conceivably identify the most useful neurons in
a population based solely on coincident timing, even during
spontaneous activity), and by supporting robustness for noisy
spiking populations.

We previously used k-means clustering (Lin et al., 2014) to
identify clusters of sites that behaved more similarly across stim-
uli. Note that this is different from the typical approach, where
the same data is clustered as groups of stimuli according to their
response similarity (Kiani et al., 2007). Also, to focus on the
local correlational structure, we focused our analysis specifically
within each array, rather than pooling across the entire popula-
tion (all arrays). Here, we extend our approach to PCA, to tie
the low-dimensional structure to output layers and to behavior.
Because many of the conclusions drawn from PCA regarding
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FIGURE 4 | Cortical depth vs. low-dimensional correlational structure. (A)
Percent of response variance explained by PCs 1–5, based on z-normalized
responses. Chance and 5–95%ile distributions are indicated by open circles
and red bars, based on shuffling of response IDs across trials. (B,C) Explained

variance for Arrays 2 and 3, from two separate array insertions (separate
recording sessions) in monkey 2. (D) Cortical depth vs. percent explained
variance of PCs 1 and 2 across 5 arrays. (E) Comparison of distributions in (D)
among different depths. *p < 0.05, **p < 0.01, ***p < 0.001, •p = n.s.

spatial structure are similar to those from k-means clustering and
from pairwise site correlations, we will discuss only the highlights
below.

Compared to k-means clustering, PCA has the advantage of
explaining more of the variance using fewer dimensions, because
each PC is exactly aligned to maximally explain the remaining
variance, whereas k-means clustering will include sites that are
uncorrelated (soloists). Thus, whereas k-means clustering tends
to highlight columnar organization (changes in tuning across cor-
tex), PCA can reveal the layer-specificity of the low-dimensional
correlational structure. For these dense arrays, the spatial pat-
terns of site covariation were nearly identical between the lower
PCs and k-means clustering and corresponded roughly to the
differential activation of neighboring columns (at higher PCs,
it is less likely that the orthogonal PCs are relatable to biolog-
ical processes). Specifically, PC1 (the dimension of maximum
variance within an array) corresponds roughly to activation vs.
suppression of most sites in the array, which may contribute to
invariant representation by encoding how strongly a feature or
feature contrast is present within an object category. PC2 (the
dimension that best explains the remaining variance) corresponds
roughly to the differential activation of two neighboring cortical
columns (i.e., the sign and relative strength of a feature contrast)
and appears virtually identical to k-means clustering at k = 2
(Figure 5 of Lin et al., 2014).

By examining how well the lowest PCs explain the variance
of individual sites, we can determine the layer-specificity of the
low-dimensional correlational structure. Because of the high pro-
portion of soloists and the rarity of choristers (Figure 2A and
Gawne and Richmond, 1993; Sato et al., 2009; Lin et al., 2014), the
first few PCs explained only a small fraction of the total variance
within each array (Figures 4A–C, example arrays 1–3; responses
were averaged across repetitions and z-normalized), even though

the tuning of individual sites was highly consistent across even vs.
odd trials (r ∼ 0.6–0.9, Figure 2A of Lin et al. (2014)). The first
two PCs explained only about 25% of the response variance across
stimuli. A previous study reported 15% explained variance for
two PCs, based on recordings from random penetrations across
IT (Baldassi et al., 2013), and another study reported ∼70% for
two PCs (∼60% for PC1) based on recordings from electrode
bundles targeted to the centers of IT optical imaging domains
(Figures 10, 16 of Sato et al. (2009)). A possible explanation for the
large difference across studies is that in addition to layer-specific
heterogeneity of choristers vs. soloists, there is also topographical
heterogeneity that cannot be attributed to bias from image guided
electrode targeting.

For individual sites, the percent of variance explained (%EV)
by the first two PCs varied widely and was lower for sites in
layers 1 and 4 (0.2 and 1.2 mm depths) (Figures 4D,E). It
was more widely distributed, with up to 77%EV, for sites in
supragranular and infragranular layers. The specificity of the
correlational structure to output layers hints that it is shaped
by local networks, rather than by feedforward or thalamic input
to layer 4 or feedback from higher areas to layer 1. The lower
explained variance at 0.2 mm and 1.2 mm depths (many sites
are <5%EV), despite good even-vs.-odd trial tuning consistency
at all depths (Figure 2A of Lin et al. (2014)), suggests that the
inputs to layers 1 and 4 are nearly orthogonal to the correlated
activity, consistent with our “pipe cleaner” model. In comparison,
scrambling the stimulus IDs of the scores of the first two PCs,
without altering the PCA coefficients, resulted in −23%EV on
average (i.e., the difference between the scrambled prediction
and the actual response has a total variance that is on average
123% that of each site’s actual total variance, Figure 4D). The
fact that the EVs of scrambled predictors are negative, and not
zero, for sites in all layers further supports that these sites are
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visually driven and selective. Only layer 4 (1.2 mm depth) had
average response below baseline (−0.5 spikes/s), consistent with
suppression by local or feedforward inhibition. Overall, this result
extends upon the layer-specificity of choristers and soloists as
measured by average correlation strength by showing that the
correlational structure is concentrated in a few dimensions (a low-
dimensional manifold), mainly in a subpopulation of neurons in
output layers.

NEURALLY DEFINED FEATURES BASED ON CORRELATED ACTIVITY
To link the correlational structure to behavior, we constructed
“neurally defined features” based on the tuning of neighboring
IT columns. Previous reports used a variety of methods (feature
reduction, k-means clustering, PCA, or simply averaging the
tuning along a penetration) to characterize IT tuning (Young
and Yamane, 1992; Tsunoda et al., 2001; Baldassi et al., 2013;
Sato et al., 2013). However, because their analyses focused on the
tuning of single neurons or random IT populations, behavior has
not been tied to the concept of a cortically local low-dimensional
manifold and lateral inhibition.

Here, to focus on the differential coding by local popula-
tions, we defined “neurally defined features” as sets of stim-
uli determined by PCA of each array (the same PCs as in
Figure 4, e.g., computed from a 240 stimuli × 64 site matrix of
z-normalized tuning responses). The “neurally defined features”
are sets of stimuli with extreme PCA scores, treated collectively
without altering or blending the images. For example, feature
“Array 1 PC1+” is the set of 10 stimuli with the most posi-
tive PC1 scores for Array 1, allowing that some of the same
stimuli may also belong to PC2+ or PC2− or to features of
another array (however, for behavioral testing we did not allow
“reuse” of stimuli across background, target, and distractor within
a trial). Although one “Array 1 PC1+” stimulus may have a
higher PC1 score than another “Array 1 PC1+” stimulus, we
treat them equally because it is the collective effect of the set
of “Array 1 PC1+” stimuli that dilutes away stimulus-specific
effects, to increase the feature’s specificity to that neuronal pop-
ulation (e.g., vs. populations in early visual cortex or elsewhere
in IT). In each array, PC2+ and PC2− correspond to differen-
tial activation of neighboring cortical columns, and PC1+ and
PC1− correspond to co-activation and co-suppression of most
neurons in the array (differential activation at a larger spatial
scale).

Figure 5A shows examples of stimulus responses along PCs
1 and 2 for Array 1. The red and blue matrices show exam-
ples of baseline-subtracted firing rates across the 8 × 8 array
to specific stimuli. Across different levels of overall activation
and suppression (different PC1 scores), stimuli that differentially
activated the left column more than the right column (PC2−
stimuli) tended to be objects with protrusions, whereas stim-
uli that differentially activated the right column more than the
left column (PC2+ stimuli) tended to be objects with inter-
nal features. Although these semantic descriptions are quali-
tative and are not part of the feature definition, the positive
and negative PC extremes appeared to prefer contrastive fea-
tures (“rumpled” vs. “smooth”, “upward” vs. “downward vertex
with gradient”) that were consistent across two stimulus sets

(grayscale rendered objects and color/grayscale/silhouette pho-
tographed objects). Therefore, we assigned the positive and nega-
tive extremes to separate features, resulting in 12 neurally defined
features derived from 6 PC feature dimensions (PCs 1 and 2 from
3 arrays, i.e., 3 separate recording sessions across 2 monkeys,
Figure 5B).

Why use PCA, instead of k-means clustering or penetration
averaging? Because neighboring columns have correlated tuning
and because k-means clustering does not distinguish soloists
from choristers, features from one k-means cluster are less visu-
ally distinguishable from those of neighboring clusters. Unlike
PCA, k-means clustering or penetration averaging would have
ordered stimuli according to how strongly they activated each
column, causing stimuli that appear very different to group
together (e.g., the bike (#46) and the fence (#11) for the right
column, or the shears (#128) and the couch (#87) for the
left column). PCA features appear more different, particularly
PC2+ vs. PC2−. We note that this advantage of PCA may be
specific to local populations sampled by densely spaced elec-
trode arrays. The differential coding along PC2 is consistent
with previous reports of a “shape-contrast” effect in perception
(Suzuki and Cavanagh, 1998) and in IT responses (Leopold
et al., 2006), although it is distinct from the idea of norm-
based encoding (Valentine, 1999) because it is primarily driven
by shape rather than by semantic category or low-level proper-
ties such as color and texture (Baldassi et al., 2013; Lin et al.,
2014).

These PC feature dimensions were uncorrelated across arrays
(Pearson correlations of PC scores were non-significant), even the
features measured from different sessions 3 mm apart in the same
monkey (M2), indicating that the features are not simply due
to familiarity (Mruczek and Sheinberg, 2005, 2007b; Hein et al.,
2007; Anderson et al., 2008) or coarse topography (Op de Beeck
et al., 2007; Sato et al., 2013). Also, the monkeys had never seen
these stimuli previously.

NEURALLY DEFINED FEATURES PREDICT VISUAL SEARCH EFFICIENCY
To link correlated activity to behavior, we designed a human
visual search task in which the target, distractors, and back-
ground were disjoint sets of objects from monkey neurally
defined features. Previous reports based on simple features such
as orientation, color, and size hint that visual performance is
associated with horizontal processes and lateral inhibition in
early visual cortex (Butler et al., 2008; Yoon et al., 2010; Michel
et al., 2013). Here, we asked whether lateral inhibition among
complex feature representations in IT might also predict visual
performance. Because of the short horizontal range of lateral
inhibition in macaque IT, which may translate to longer-range
inhibition in humans if similar statistical feature mechanisms
are useful for representation, we tested whether the target would
be more salient from the background if they were contrastive
(“opposite” sign) features from the same array (differentially
activating neighboring columns, e.g., Array 2 PC2+ target vs.
PC2− background), than if they were “related” features (different
PCs of the same array, activating the same column at differ-
ent scales, e.g., Array 2 PC2+ target vs. PC1+ background) or
“unrelated” features (PCs from different arrays, activating distant
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FIGURE 5 | Neurally defined features. (A) Neurally defined features based
on Array 1’s PC1 and PC2 scores. Each red and blue 8 × 8 matrix shows
baseline-subtracted response to one stimulus across the 64 sites, spanning
all depths and neighboring IT columns. PC1+ stimuli activated most sites.
PC2+ and PC2− stimuli differentially activated sites on the right and left sides
of the array. Numbers indicate stimulus IDs. Black dots in stimulus 19’s matrix
indicate inactive sites. Red lines indicate 5–95%ile, and filled circles indicate
stimuli with significant PC2. “Protrusions” and “Internal Features” are labels
to help see the pattern of PC2− and PC2+ stimuli, but the labels are not part

of the feature definition. (B) Features from 3 array insertions (3 recording
sessions) in two monkeys and two stimulus sets. Only the stimuli with the
most extreme scores are shown, out of 240 object stimuli for set 1 (grayscale
rendered 3D objects) and 113 stimuli for set 2 (color, grayscale, and silhouette
photographs). The slight difference between panels (A) and (B) is because
the scores in A are calculated from unnormalized responses, to scale with the
baseline-subtracted firing rates in the matrices, whereas the scores in (B) are
from z-normalized responses, for better consistency of spatial covariation
patterns across stimulus sets.
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FIGURE 6 | Visual search task based on neurally defined features.
(A) “Related”, “Opposite”, and “Unrelated” conditions are tied to the
differential activation of overlapping, neighboring, and distant IT columns
by neurally defined features. In each condition, the target objects belong
to one feature (e.g., Array 2 PC2+) and the distractor and background
objects are disjoint sets belonging to the other feature (e.g., Array 2
PC2−). “Related” features are from different PCs of the same array.
“Opposite” features are from opposite signs of the same PC of the same
array. “Unrelated” features are from different arrays. (B) Time course of
each trial. Following Fixation screen and Adapting Background (0–8 s),

Target and Distractors appeared for 34–136 ms, followed by a Mask with
tile-scrambled background images. After disappearance of the fixation
point, subjects reported via keypress the target quadrant. (C) Each trial
consisted of one target and 3 distractors at four possible locations.
Objects and target locations were balanced across all conditions.
(D) Example stimulus from “opposite” condition, with target in quadrant
4. Distractors and background are from Array 3 PC2−. Target is from Array
3 PC2+. All object stimuli were matched for low level image properties via
the SHINE toolbox. To aid target localization, a luminance pedestal was
added to target and distractors.

columns >3 mm apart, e.g., Array 2 PC2+ target vs. Array 1
PC2+ background) (Figure 6A). The distractors and background
were disjoint sets of objects sharing the same neurally defined
feature.

To induce a temporary visuoperceptual distortion as in
Leopold et al. (2001), we adapted the subject to the background
for up to 8 s, followed by a brief (34–136 ms) presentation of the
target and distractors and then a mask (scrambled background)
(Figures 6B,C). Subjects indicated via key press the quadrant
in which the target appeared. Subjects were instructed to search
for the quadrant whose pattern appeared different from the
other three quadrants. We measured visual search efficiency as
the reporting accuracy of the target quadrant (chance = 25%
correct). Such visual search displays are commonly used to study
early perceptual processes and have only recently been applied
to neurally related complex shapes (Sripati and Olson, 2010).
A strength of the task is that the brief stimulus appearance
and the target location randomization preclude artifacts from

differences in spatial attention or eye position. To focus the task
on complex shapes rather than early visual processes, we used the
SHINE toolbox (Willenbockel et al., 2010) to equalize the objects
in terms of low-level cues including luminance, contrast, and
orientation-specific Fourier power (including spatial frequency)
(Figure 6D).

We began by comparing, in one subject, how performance
depended on stimulus condition, target duration (stimulus onset
asynchrony “SOA” between target/distractors and mask) and
adaptation duration. At 34 ms SOA, performance was consistently
higher across different durations of adaptation when the target
feature was “opposite” in sign to the distractors and background
(i.e., when target and background were contrastive features that
differentially drive neighboring IT columns) (Figure 7A, blue)
than when target and background were “related” features (red)
(p = 0.038, Cochran-Mantel-Haenszel test). Although perfor-
mance was slightly higher at 2 s adaptation, the odds ratios
were not heterogeneous across different levels of adaptation
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FIGURE 7 | Visual search performance for neurally defined features.
(A) Performance of one subject for target whose neurally defined feature is
“opposite” (blue) or “related” (red) to that of the distractors and
background, across different adaptations and different stimulus onset
asynchrony (SOA) between stimulus and mask. Accuracy is higher for
“opposite” at 34 ms SOA, and the difference between “opposite” and
“related” is more consistent at longer adaptation. Error bars show 95% CI,
based on 48 trials per condition. (B) Performance across 6 subjects at 2 s
adaptation and 34 ms SOA for “opposite” (blue), “related” (red), and
“unrelated” (green) conditions. Black line indicates average performance
across subjects. The difference between “opposite” and “related” is
significant at p = 0.03, based on Wilcoxon signed ranks test. (C) Average
performance across 6 subjects at 34, 68, and 136 ms SOA, 2 s adaptation.

(p = n.s., Breslow-Day test). An opposite effect was seen at
68 ms SOA at 0 and 0.5 s adaptation, but the effect reversed
with longer adaptation. At the longest adaptation (8 s), per-
formance was higher for “opposite” than for “related” features
at all SOAs. Based on this pattern, we surmised that the effect
was most reliably consistent with the prediction at the shortest
SOA (34 ms) and with longer adaptation. To avoid tiring the
subjects with the 8 s long adaptation or a possible flooring effect
at shorter adaptation (e.g., 0.5 s), we tested all subjects at 2 s
adaptation.

Across 6 subjects, visual search efficiency was consistently
higher for “opposite” features than for “related” features at 34 ms
SOA and 2 s adaptation (Figure 7B, p = 0.03, Wilcoxon signed
rank test). As with the first subject, the higher performance for
“opposite” features was only observed at the shortest SOA of
34 ms across the 6 subjects (Figure 7C). The persistence of the
effect across different durations of adaptation at the short 34 ms
SOA hints that the effect is likely driven by feed-forward process-
ing and short-range lateral interactions in IT, because 34 ms is
likely too brief for feedback (Bansal et al., 2014; Scholl et al., 2014)
or long-range lateral interactions (Singer and Kreiman, 2014;
Tang et al., 2014). We suggest that the mechanism is associated
with short-range lateral inhibition (e.g., between neighboring
columns) in IT, similar to reports of lateral interactions in early
visual cortex (Das and Gilbert, 1999; Michel et al., 2013), rather
than a distance-dependent effect in IT, because the search effi-
ciency of “related” (0 mm cortical separation) and “unrelated”
(>3 mm separation) features was not significantly different. Also,
“opposite” features had higher search performance than “unre-
lated” features in 4 of 6 subjects, but this difference did not reach
significance.

DISCUSSION
Our results suggest that correlated activity contributes to efficient
coding and human visual search efficiency. The main findings are
that correlation strength and sparseness are only weakly related
and should be considered as separate factors, that correlated
activity is primarily located in output layers, and that correlated
activity in monkey IT predicts human visual search efficiency.
Together, these results suggest that correlated activity may be the
substrate of IT’s output and that, contrary to previous reports,
correlated activity contributes to coding efficiency.

“POPULATION SPARSENESS” VS. “SPARSENESS” IN EFFICIENT
CODING
These results suggest that a fundamental shift is needed in our
approach to understanding efficient coding. Previous reports of
efficient coding assumed that population sparseness and tun-
ing sharpness (conventionally termed “sparseness”; Rolls and
Tovee, 1995; Vinje and Gallant, 2000; Zoccolan et al., 2007;
Willmore et al., 2011) are interchangeable. Instead, our results
suggest that correlation strength (inversely related to popula-
tion sparseness) is better than tuning sharpness as a measure
of population redundancy, and that these two measures are
mostly unrelated. Surprisingly, they show that the representation
is more correlated in output layers than in input layers, which
is opposite to the expectation that increasing sparseness sup-
ports efficient coding. This layer-specific increase in correlation
is unrelated to tuning sharpness. Together with our previous
report showing the better object coding capability of choristers vs.
soloists, these results highlight the role of correlation in efficient
coding.

WHY ARE CORRELATION STRENGTH AND SPARSENESS UNRELATED?
The main reason for this apparent discrepancy is that previous
studies did not measure population sparseness. Their wider elec-
trode spacing meant that neuronal tuning was too dissimilar to
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compute population sparseness. Dense sampling, on the order
of 64 neurons per mm3, is necessary to measure population
sparseness, because neuronal tuning is heterogeneous even within
a cortical column and because choristers are rare (Sato et al.,
2009; Lin et al., 2014). It is unclear what mechanism might
enable correlation of sharply tuned neurons in output layers
and decorrelation of broadly tuned neurons in input layers. The
prevalence of soloists in input layers 1 and 4 suggests that the
feedforward and feedback inputs to IT are already decorrelated,
or that they are actively decorrelated by inhibition. Conversely,
our finding that correlated activity is mostly in output layers is
consistent with the layer specificity of local circuits and horizontal
fibers. However, the consistency of our V1 and IT results in terms
of tuning and spike timing correlational structure suggest that
they are probably driven more by local circuitry than by long
range fibers, which have different patterns in V1 vs. IT (Tanigawa
et al., 2005).

IMPLICATIONS FOR VISUAL SEARCH EFFICIENCY
Overall, these results support that a human homolog of IT,
previously shown by many studies (Grill-Spector et al., 2001;
Tootell et al., 2003; Orban et al., 2004; Kriegeskorte et al., 2008),
guides search based on complex features. In relation to classical
theories of visual search based on feature integration theory
(FIT; Treisman and Gelade, 1980), these results differ in two key
aspects. First, whereas FIT posits that fast visual search relies
on early visual areas, our results support an accumulating body
of evidence that later visual areas also contribute to fast visual
search (Hochstein and Ahissar, 2002). Second, FIT posits that pre-
attentive, parallel search is more efficient for low-level features
than for feature conjunctions. Our results show that preattentive,
parallel search is also more efficient for specific types of com-
plex features, contextually dependent on the complex features
present in the background, and that this contextual dependency
is specifically linked to cortical neighborhood relationships and
correlated activity in IT. This supports a model by Duncan and
Humphreys that all search is parallel and depends on represen-
tational similarity and competition for resources across multi-
ple levels of the visual system (Duncan and Humphreys, 1989,
1992).

Consistent with a previous report that linked macaque IT
responses to human visual search efficiency (Sripati and Olson,
2010), our results suggest that this context dependency is due
to a stimulus-specific competition for resources that can be
explained by local contrastive mechanisms such as lateral inhi-
bition (Wang et al., 2000; Leopold et al., 2001). Our results
strengthen the case that this mechanism is tied to competition
for local resources in IT, vs. in earlier areas, because it depends
on IT cortical proximity. Also, by linking search efficiency to
correlational structure, our results support an assumption in
the previous report (Sripati and Olson, 2010), that a popu-
lation of heterogeneous neurons (e.g., within an IT column)
can be modeled by the discriminative capacity of their cor-
related activity, as the activity of a few neurons (choristers).
One difference from the previous report (Sripati and Olson,
2010) is that their behavioral and neural responses were pre-
dicted by the coarse footprint difference of the objects, i.e., the

spatial overlap of the blurred images, whereas in our data the
coarse footprint difference does not predict better performance
in the “opposite” condition (unpaired t-test of distributions of
coarse footprint index in correct vs. incorrect trials was non-
significant). This difference, together with our use of brief pre-
sentations and masking, further supports that low-level features
are insufficient to account for our results. Also, because the
correlational structure was tied to shape rather than semantic
category (Lin et al., 2014), and because there was no differ-
ence in category overlap across stimulus conditions, our results
support that the contrastive mechanism was feature-based, not
semantically-based.

IMPLICATIONS FOR COMPUTATIONAL MODELS OF RECOGNITION
An ongoing debate in computational modeling of recognition
and generalization learning is how to design the architecture, e.g.,
whether it is necessary to simulate populations of binary spiking
neurons (Masquelier and Thorpe, 2007; Chan et al., 2011; Merolla
et al., 2014), or whether convolutional networks are sufficient
or even superior. Although convolutional networks outperform
spiking networks on datasets like ImageNet, and their perfor-
mance approximates ideal observers on object categorization and
exceeds that of randomly sampled IT neurons (surprising because
IT is the last stage of the ventral pathway) (Krizhevsky et al.,
2012; Cadieu et al., 2013, 2014; Zeiler and Fergus, 2014), their
performance remains far worse than that of humans on real-
world vision. In a recent model that approximates IT and ideal
observers (Yamins et al., 2014), the approximation to IT is as low
as 20%EV for single sites (mean 48.5%EV), and IT split-half data
still outperforms the best model on predicting representational
dissimilarity for image generalization, object generalization, and
category generalization. Our results suggest that part of this gap is
due to the much poorer coding capability of soloists vs. choristers
and due to the rarity of choristers. We suggest that the comparison
(for both convolutional and spiking networks) should be against
IT choristers, rather than a random pool of IT neurons. Also, our
layer-specific correlation results show that correlation strength
increases from input to output layers within a cortical column.
Increasing the cell and layer specificity of modeling could in
principle favor spiking network models with individual cores that
simulate computations within cortical columns, as in Merolla
et al. (2014).

Another aspect that may favor spiking network models is
the relationship between correlational structure and learning.
Whereas learning in convolutional networks occurs via genetic
algorithms that guide connection patterns based on overall per-
formance, learning in spiking networks is more local and can
in principle be tied to our “pipe cleaner” model and spike
timing dependent plasticity (STDP). This difference in approach
manifests in convolutional networks as a gradual increase in
performance along the hierarchy (Serre et al., 2007), whereas
in our data the near-chance performance of soloists hints
that performance increase may be staggered along the hierar-
chy, alternating between low performing input layers and high
performing output layers for each cortical “area”. This alter-
nation between low-performing soloists and high-performing
choristers may be critical to learning and maintaining an
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invariant representation (cortically local subspace untangling;
DiCarlo et al., 2012). Another aspect that could be modeled is
that choristers are rarer in IT (Lin et al., 2014) than in V1
(Chu et al., 2014). We speculate that the increasing rarity of
choristers is because of increasing complexity (increasingly high-
dimensional feature spaces) along the visual hierarchy, which
requires ever larger and more heterogeneous populations of
soloists within each column to develop and maintain an invariant
low-dimensional (manifold) representation. These emphases on
local learning could also benefit from architectures based on
multicore networks.

HOW MIGHT THE CORRELATIONAL STRUCTURE FUNCTION
ALGORITHMICALLY?
How might a homogeneous/heterogeneous spiking network sup-
port generalization learning? Our conceptual “pipe cleaner”
model (Lin et al., 2014) predicts that the feedforward and
feedback inputs to IT may act as tensors, enabling the fine
adjustments that may be necessary to build and maintain an
invariant representation. The near-orthogonality of the inputs
vs. the manifold (Figure 4D) indicates that they are optimally
tuned to alter the manifold (i.e., co-alignment with the manifold
would be inefficient and could conceivably result in uneven
coverage). Such adjustments could occur via STDP, because
soloists (mostly in the input layers) that are better tuned to the
feedforward (environmental) and feedback (behavioral context)
input statistics will spike more quickly, shaping the tuning of
the choristers that support the invariant representation. This
prediction is consistent with a recent report that found layer-
specific temporal sequencing in perirhinal cortex (Takeuchi et al.,
2011). Because the invariant representation in IT is based on
shape rather than semantic category, invariance training on any
category would also improve invariance to other categories that
share the same feature, supporting generalization from few exam-
ples. We speculate that the combination of heterogeneity (popu-
lation sparseness) in the input layers and redundancy/smoothness
(overlap in tuning) in the output layers may be important for
populations of spiking neurons, to achieve sufficient bit reso-
lution from binary spiking neurons operating in high dimen-
sional feature space. This problem of poor bit resolution has
been criticized as a fundamental weakness of spiking network
models vs. convolutional network models of recognition, and
homogeneous/heterogeneous networks may be a key part of the
brain’s solution.

ON TECHNICAL APPROACHES TO STUDY EFFICIENT CODING
Recent technical advances have improved cell-specificity, sam-
pling density, and anatomical co-registration. Our results suggest
that, to better understand how the local correlational structure
contributes to efficient coding, simultaneous sampling across
multiple depths down to at least 1.0–1.2 mm is essential, to
map both the inputs and the outputs within a column. Sampling
density on the order of 64 neurons/mm3 is also critical, to
measure correlational structure (not just tuning sharpness) and
to detect choristers that are rare in IT. Finally, high temporal
resolution is necessary, to link the correlational structure to
mechanisms such as STDP and to learning behavior. Currently,

dense electrode arrays (e.g., the NeuroNexus Matrix Array) are
the only technology that meets these design requirements in
terms of deep sampling and sampling individual spikes in-vivo
in behaving mammals. Unlike other technologies that are still in
development, this technology is available today, and its potential
for transforming neuroscience remains largely untapped.
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How do we understand the complex patterns of neural responses that underlie scene
understanding? Studies of the network of brain regions held to be scene-selective—the
parahippocampal/lingual region (PPA), the retrosplenial complex (RSC), and the occipital
place area (TOS)—have typically focused on single visual dimensions (e.g., size), rather
than the high-dimensional feature space in which scenes are likely to be neurally
represented. Here we leverage well-specified artificial vision systems to explicate a
more complex understanding of how scenes are encoded in this functional network.
We correlated similarity matrices within three different scene-spaces arising from: (1)
BOLD activity in scene-selective brain regions; (2) behavioral measured judgments of
visually-perceived scene similarity; and (3) several different computer vision models.
These correlations revealed: (1) models that relied on mid- and high-level scene
attributes showed the highest correlations with the patterns of neural activity within
the scene-selective network; (2) NEIL and SUN—the models that best accounted for
the patterns obtained from PPA and TOS—were different from the GIST model that
best accounted for the pattern obtained from RSC; (3) The best performing models
outperformed behaviorally-measured judgments of scene similarity in accounting for
neural data. One computer vision method—NEIL (“Never-Ending-Image-Learner”), which
incorporates visual features learned as statistical regularities across web-scale numbers
of scenes—showed significant correlations with neural activity in all three scene-selective
regions and was one of the two models best able to account for variance in the PPA
and TOS. We suggest that these results are a promising first step in explicating more
fine-grained models of neural scene understanding, including developing a clearer picture
of the division of labor among the components of the functional scene-selective brain
network.

Keywords: scene processing, parahippocampal place area, retrosplenial cortex, transverse occipital sulcus,

computer vision

INTRODUCTION
The past several decades have given us an unprecedented view of
the inner workings of the human brain, allowing us to measure
localized neural activity in awake, behaving humans. As cognitive
neuroscientists, our challenge is to make sense of this rich source
of data, connecting the activity we observe to mental mechanisms
and behavior. For those of us who study high-level vision, making
this connection is particularly difficult—vision scientists have not
yet articulated any clear theories about what constitutes a “vocab-
ulary” of intermediate visual features or what are the underlying
building blocks of scene or object representation. Here we begin
to address this issue by taking a different path to articulating a
candidate set of features for visual representation: using a variety
of extant computer vision models that make different commit-
ments as to what counts as a visual feature as proxies for models

of biological vision. We suggest that, to the extent that computer
vision models and biological vision systems have similar end
goals, the two domains will overlap in both their representations
and processing assumptions.

To explore this issue, we had participants view 100 differ-
ent scenes while we measured their brain activity, using func-
tional Magnetic Resonance Imaging (“fMRI”), in regions that are
known to be preferentially involved in scene processing. In partic-
ular, we hold that meaningful information can be extracted from
the reliable patterns of activity that occur within scene selective
regions: the parahippocampal/lingual region (the parahippocam-
pal place area, “PPA”), the retrosplenial complex (“RSC”), and the
occipital place area (also referred to as the transverse occipital sul-
cus, “TOS”). However, due to a lack of any fine-grained theories
of scene understanding, it is unclear as to how one goes about
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interpreting the complex meaning inherent in these neural pat-
terns. As alluded to above, we turn to models of computer vision
to help us unravel how the human brain encodes and represents
visual scenes, directly comparing the representations of scenes
within these artificial vision systems to our obtained patterns of
BOLD activity as measured by fMRI. The application of models
derived from computer vision has one significant advantage: the
models are well specified. As such, any particular model makes
clear and explicit assumptions regarding representation and cor-
respondence between a model and human neural responses or
behavior allows us to infer that the two work similarly. Hence
our emphasis on comparing a large number of models that all
work somewhat differently from one another. In adopting mod-
ern computer vision models, we also note that these systems
are built to understand the same complex visual world we deal
with everyday (i.e., in contrast to earlier models that relied on
“toy” worlds or highly-restricted visual domains). In particular,
some of the models we include leverage large-scale/“web-scale”
image datasets that may more accurately learn informative visual
regularities embedded in the natural environment.

In that we have no strong a priori knowledge as to which of
several very different models might be most effective with respect
to accounting for neural data, our primary goal is to test whether
we observe some correspondence between the patterns of neural
activity elicited in high-order visual scene regions (i.e., PPA, RSC,
and TOS) and the patterns of scene similarity as defined by these
varying artificial vision models, and, specifically, which of these
models does the best job at accounting for the neural data. We are
also interested in the correspondence between artificial and bio-
logical vision systems, as well as the correspondence between the
patterns of similarity obtained from neural responses and from
behaviorally-measured explicit perceptual ratings.

We should note that our focus on accounting for neural
responses in three specific brain regions of interest—the PPA,
RSC, and TOS—is based on several decades of research describ-
ing the neural responses of these particular regions. Each has
been shown to be selectively responsive to and optimized for
processing scenes as compared to other visual stimuli, for exam-
ple, single objects, faces, and meaningless visual patterns. It is
also the case that all three of these regions are involved both
in scene perception and spatial navigation; however, the PPA
tends to be preferentially involved in scene recognition and the
RSC tends to be preferentially involved in processing the larger
spatial environment (Epstein and Higgins, 2007). These regions
have also been sensitive to scene parts: both objects and spa-
tial relations (Harel et al., 2013; Park et al., 2014); as well as
more global properties of a scene such as the spatial bound-
ary (Kravitz et al., 2011; Park et al., 2011; Watson et al., 2014).
Finally, PPA, RSC and TOS have been shown to carry informa-
tion regarding the statistical significance of objects occurring with
specific scene categories (Stansbury et al., 2013) and the PPA has
been shown to be sensitive to mid-level visual features, for exam-
ple, recurring textures (Cant and Goodale, 2011; Cant and Xu,
2012). However, despite this array of empirically-demonstrated
sensitivities to properties of the visual world, the specific com-
putations that give rise to these functional responses are not well
understood.

Here we use models originating from the field of computer
vision to help reveal the computational processes that may be real-
ized within these scene-selective brain regions. Given that scenes
are complex visual stimuli that carry useful information within
low-level visual features (e.g., oriented lines, edges, junctions,
etc.), mid-level features (e.g., groupings and divisions of features
that are superordinate to the low-level features), and high-level
features (e.g., semantic meaning, categorization) we apply sev-
eral different computer vision methods to capture these multiple
levels. In particular, we attempt to account for variation in our
neuroimaging data collected while participants are viewing a wide
variety of different scenes using both high-level semantic feature-
based models (e.g., SUN semantic attributes; Patterson and Hays,
2012) and low-level visual feature-based models (e.g., SIFT, HOG;
Lowe, 2004; Dalal and Triggs, 2005). We predict that low-level fea-
tures will be encoded in brain areas that selectively process scenes,
but are also encoded in non-scene-selective regions such as early
visual areas. In contrast, as discussed below, mid- and high-level
features that capture the inherent meaning of a scene are pre-
dicted to be specifically encoded in scene-selective brain regions
exclusively.

In studying scene or object understanding, the field faces a sig-
nificant challenge: between visual input and semantics there is a
significant gap in knowledge with respect to any detailed account
of the mid- and high-level visual features that form the represen-
tation of visual information. That is, almost all theories of mid-
and high-level visual representation rest on human intuition,
providing little formal method for articulating the features under-
lying visual semantics or its precursors: mid-level visual features
that are compositional in nature (Barenholtz and Tarr, 2007). For
example, for us, distinguishing between a manmade and a nat-
ural scene is trivial and we typically account for our judgments
by referring to semantic features within a scene (e.g., trees, build-
ings). However, there are also mid-level features (e.g., rectangular
shapes) that are highly correlated with a scene’s high-level seman-
tics that may provide some insight into how the visual system can
so readily understand the difference between manmade and nat-
ural. As one example, recent work suggests that the PPA responds
preferentially to both simple rectilinear features and objects com-
prised of a predominantly rectilinear features (Nasr et al., 2014).
This and other results hint that focusing on high-level semantics
exclusively may miss critical elements of how scenes are selectively
processed in the human brain. Relying on human intuition also
suffers from the Titchenerian problem that introspection alone
does not have access to the unconscious processing that makes
up the bulk of our cognition. Thus, theories based largely on
intuition almost surely miss identifying the bulk of visual fea-
tures (or parts) that are critical in the neural representation of
scenes. To address the need for mid-level, non-intuition-based
visual features, one of the primary (and most interesting) com-
puter vision models we apply is NEIL, the “Never Ending Image
Learner” (www.neil-kb.com; Chen et al., 2013). NEIL is a large-
scale (“web-scale”) image-analysis system that, using only “weak
supervision,” automatically extracts underlying statistical regular-
ities (e.g., both mid-level and high-level visual attributes) from
natural scene images and constructs intuitively-correct scene cat-
egories. In doing so, NEIL both limits the need for the application
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of human intuition and allows for the simultaneous exploration
of features at multiple levels of scene representation (i.e., low- to
high-level). In applying NEIL, we asked whether the attributes
that NEIL learns to characterize scenes give rise to a scene similar-
ity space that correlates with a neurally-derived scene similarity
space. Good correspondence between the two domains repre-
senting the same scenes would suggest that cortical vision is
sensitive to some of the same statistical regularities—at a variety
of levels—NEIL extracts to build a category structure for scenes.

In the past few years, a small number of studies have applied
models drawn from computer vision to the question of neural
representation in visual cortex. For the most part, this approach
has focused on object recognition and examined a wide region
of visual cortex, including low-level regions, V1–V3, mid-level
regions, V4, and high-level regions, IT (Baldassi et al., 2013; Leeds
et al., 2013; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014). However, to our knowledge, only one study has com-
bined computer vision methods with neural scene understanding.
In particular, Watson et al. (2014) examined how well low-level
scene features derived from GIST, a descriptor that analyzes orien-
tation energy at different spatial frequencies and spatial positions
(Oliva and Torralba, 2001), might account for the fMRI-derived
neural patterns associated with scene processing in the human
ventral stream. They found that scene-specific regions (PPA, RSC,
TOS) elicited patterns of activity that were better accounted for by
low-level (GIST) properties as compared to semantic categories
for scenes. However, Watson et al.’s study is limited by its “jump”
from very low-level features (GIST) to very high-level semantic
categories and their use of only four scene categories. Here we
build on this result by looking at different metrics at different lev-
els of representation and expanding the space of stimuli to 100
different scenes across 50 different scene categories, asking how
well this range of computationally-motivated metrics can account
for the complex neurally-derived scene space we measure in PPA,
RSC, and TOS.

At the same time we explore representational metrics derived
from computer vision, we also consider human behavior directly,
examining the scene space derived from how humans judge two
visually-presented scenes as similar. A priori, if two scenes are
judged as similar, we might expect that the two scenes would elicit
similar neural response patterns in scene selective brain regions.
Of course, as noted earlier, explicit intuitions about cognitive
processing are unreliable indicators of the complex underlying
mechanisms supporting such processing. As such, it is unclear as
to whether conscious behavior is a good predictor of neural repre-
sentation. Thus, models of representation arising from computer
vision may actually reveal more subtle information about neural
encoding that cannot be inferred using behavioral methods. This
empirical question—how well does behavior explain the neural
activity elicited by scene understanding—is included in our study
as a benchmark against which we can measure the performance
of the computer vision models we apply to our data.

More generally, it is worth considering what we might be able
to infer from our present methods. Particularly given our back-
ground emphasis on explicating better-specified accounts of mid-
and high-level features, we might hope that a fine-grained analysis
of our results would reveal the specific nature of representational

features (e.g., a catalog of some sort). Unfortunately, such a
detailed account is beyond what is realistically possible in our
present study given: (1) the power limitations arising from the
low number of observations we can collect from individual par-
ticipants in an fMRI session; (2) the low SNR of BOLD responses;
and (3) the middling spatial and poor temporal resolution of
fMRI. To be clear, we view our present study as a first step in
working toward such detailed accounts, but, realistically, such an
account is not obtainable without many refinements in meth-
ods and theories. That being said, we hold that our present study
does allow important inferences about the neural representation
of scenes. More specifically, as discussed earlier, each of the com-
puter vision models employed here makes assumptions regarding
how it encodes visual scene information. Although the similarity
metrics we use do not allow us to break down these assumptions
to the level of specific features, they do help us choose between
different models. Such model selection is common in some areas
of science, but less so in the cognitive neurosciences where there
are often few options from which to select (which is our point
about the current state of knowledge regarding mid- and high-
level visual representation). Our approach is to adopt a range of
models from computer vision to enable a more comprehensive
search space that encompasses a wider range of representational
assumptions, including assumptions that might not be inferred
through intuition. In the end, we learn something about which
representational assumptions appear most promising for fur-
ther investigation, thereby laying the groundwork for studies in
which we specifically manipulate features derived from the most
effective models.

A separate concern relates to a potential confound between
receptive field (RF) size and feature complexity. At issue is the fact
that more complex features tend to encompass more of the visual
field and, therefore, are more likely to produce responses in the
extrastriate scene-selective regions that are known to have larger
RF sizes. However, we are less than certain as to how one would
tractably partial out RF size from feature complexity. For exam-
ple, if more complex features are more complex precisely because
they are more global and reflect the relations between constituent
parts, then—by definition—they are also captured in larger RFs.
This is similar to the confound in the face recognition literature
between RF size and “holistic” or “configural” processing (see for
example, Nestor et al., 2008). Researchers argue that a particular
effect is holistic, when, in fact, it is also the case that it is captured
by larger RFs. Indeed, it may be that much of what we think of
in the ventral pathway with respect to complexity is reasonably
equivalent to RF size. We view trying to tease these two dimen-
sions apart as an important question, but one that is beyond our
present study.

More concretely, our study empirically examines human visual
scene processing by way of scene similarity across three differ-
ent domains: neuroimaging data, behavior, and computer vision
models. In particular, we used fMRI with a slow event-related
design to isolate the patterns of neural activity elicited by 100
different visual scenes. Using a slow event-related design we
were able to analyze the data on a trial-by-trial/scene-by-scene
basis, therefore allowing us to associate a specific pattern of
BOLD activity with each individual scene. We then constructed a
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correlation matrix representing “scene-space” based on this neu-
ral data, performing all pairwise correlations between measured
neural patterns within the brain regions of interest. This neurally-
defined scene-space was then correlated with scene-spaces arising
from a range of computer vision models [see Section Computer
Vision (CV) Metrics]—each one providing a matrix of pairwise
scene similarities of the same dimensionality as our neural data.
At the same time, to better understand how the neural rep-
resentation of scenes relates to behavioral judgments of scene
similarity, we also ran a study using Amazon Mechanical Turk
in which participants rated the similarity, on a seven-point scale,
between two visually-presented scenes (4950 pairwise similarity
comparisons).

MATERIALS AND METHODS
STIMULI
Scene stimuli were 100 color photographs from the NEIL database
(www.neil-kb.com) (Chen et al., 2013) depicting scenes from 50
different scene categories as defined by NEIL—two exemplars
from each category were used. Categories ranged from indoor
to outdoor and manmade to natural in order to achieve good
coverage of scene space. See Supplemental Material for a list of
categories and Figure S1 for images of stimuli used. Scene images
were square 600 × 600 pixels, and were presented at a 7◦ × 7◦
visual angle.

fMRI EXPERIMENT
Localizer stimuli
Stimuli used in the independent scene “localizer” consisted of
color photographs of scenes, objects, and phase-scrambled pic-
tures of the scenes. The objects used were not strongly associated
with any context, and therefore were considered weak contextual
objects (e.g., a folding chair) (Bar and Aminoff, 2003). Pictures
were presented at 5◦ × 5◦ visual angle. There were 50 unique
stimuli in each of the three stimulus conditions.

Participants
Data from nine participants in the fMRI portion of the study
were analyzed (age: M = 23, 20–29; two left handed; five female).
One additional participant (i.e., N = 10) was excluded from the
data analysis due to falling asleep and missing a significant num-
ber of trial responses. Data from one other participant only had
half the dataset included in the analysis due to severe movement
issues in one of the two sessions. All participants had normal, or
corrected-to-normal vision, and were not taking any psychoac-
tive medication. Written informed consent was obtained from all
participants prior to testing in accordance with the procedures
approved by the Institutional Review Board of Carnegie Mellon
University. Participants were financially compensated for their
time.

Procedure
Each individual participated in two fMRI sessions in order to
acquire sufficient data to examine the responses associated with
individual scenes. Both sessions used the same procedure. The
average time between the two sessions was 3.6 days, ranging from
1 to 7 days. Each fMRI session included six scene processing runs,

a high resolution mprage anatomical scan run after the third scene
processing run, and at the end of the session, one or two runs of a
functional scene localizer.

During fMRI scanning, images were presented to the partic-
ipants via 24 inch MR compatible LCD display (BOLDScreen,
Cambridge Research Systems LTD., UK) presented at the head of
the bore and reflected through a head coil mirror to the partici-
pant. Each functional scan began and ended with 12 s of a white
fixation cross (“+”) presented against a black background. For the
scene processing runs, there were 50 picture trials—one exemplar
from each of the 50 categories. The paradigm was a slow event-
related design and order of the stimuli were random within the
run. Two runs were required to get through the full set of 100
scenes, with no scene category repeating within the run. There
were three presentations of each stimuli in each session (i.e., six
functional runs) and across the two sessions, there were data for a
total of six trials per a unique stimulus. Stimuli were presented for
1 s, followed by 7 s of fixation. On a random eight of the 50 trials
of a run, the image rotated a half a degree to the right and then
back to center, which took a total of 250 ms. Participants were
asked to press a button when a pictured “jiggled.” Participants
performed on average 96% correct.

After all six of the scene processing runs, a functional scene
localizer was administered in order to independently define scene
selective areas of the cortex (PPA, RSC, and TOS). The localizer
was a block design such that 12 stimuli of the same condition
(either scenes, objects, or phase scrambled scenes) were presented
in row. Each stimulus was presented for 800 ms with a 200 ms ISI.
Between stimuli blocks, there were 8 s of a fixation cross presen-
tation. There were six blocks per condition, and 18 blocks across
conditions per run. The participant’s task was to press a button if
the picture immediately repeated (1-back task), of which there
were two per block. Thus, in each block there were 10 unique
stimuli presented, with two stimuli repeated once. Based on time
of the scan session and energy of the participant, either one or two
localizer runs were administered.

Before the participant went into the MRI scanner, they were
told to remember the images as best as possible for a memory
test. Once the participant concluded the fMRI portion of the ses-
sion they performed a memory test outside the scanner. In the
memory test, there were two trials for each of the 50 scene cate-
gories, with one trial presenting an image from the MRI session
and the other trial presenting a new exemplar. For each trial, the
participant had a maximum of 3 s to respond, with the picture
on the screen for the entire time. The picture was removed from
the screen as soon as the participant responded and the next trial
began. Participants were 81% correct on average. The memory
test was used to motivate the participants to pay attention, and
was not used in any of the analyses.

fMRI data acquisition
Functional MRI data was collected on a 3T Siemens Verio MR
scanner at the Scientific Imaging and Brain Research Center
at Carnegie Mellon University using a 32-channel head coil.
Functional images were acquired using a T2∗-weighted echo-
planar imaging pulse sequence (31 slices aligned to the AC/PC,
in-plane resolution 2 × 2 mm, 3 mm slice thickness, no gap, TR
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= 2000 ms, TE = 29 ms, flip angle = 79◦, GRAPPA = 2, matrix
size 96 × 96, field of view 192 mm, reference lines = 48, descend-
ing acquisition). Number of acquisitions per run was 209 for the
main experiment, and 158 for the scene localizer. High-resolution
anatomical scans were acquired for each participant using a T1-
weighted MPRAGE sequence (1 × 1 × 1 mm, 176 sagittal slices,
TR = 2.3 s, TE = 1.97 ms, flip angle = 9◦, GRAPPA = 2, field of
view = 256).

fMRI data analysis
All fMRI data were analyzed using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/) and in-house Matlab scripts. Data across the two
sessions were realigned to correct for minor head motion by
registering all images to the mean image.

Functional scene localizer. After motion correction, the data of
the scene functional localizer was smoothed using an isotropic
Gaussian kernel (FWHM = 4 mm). The data was then analyzed
as a block design using a general linear model and a canon-
ical hemodynamic response function. A high pass filter using
128 s was implemented. The general linear model incorporated a
robust weighted least squares (rWLS) algorithm (Diedrichsen and
Shadmehr, 2005). The model simultaneously estimated the noise
covariates and temporal auto-correlation for later use as covari-
ates within the design matrix. The six motion parameter estimates
that output from realignment were used as additional nuisance
regressors. Data were collapsed across all localizer runs, with each
run used as an additional regressor. The design matrix mod-
eled three conditions: scenes, weak contextual objects, and phase
scrambled scenes. The main contrast of interest was examining
the differential activity that was greater for scenes as compared
with objects and phase-scrambled scenes.

Event-related scene data. After motion correction, the data from
the scene task runs were analyzed using a general linear model.
Motion corrected data from a specific region of interest was
extracted and nuisance regressors from the realignment were
applied. The data was subjected to a 128 s high pass filter and
was subjected to correction from rWLS, as well as a regressor
represented each of the different runs. The data for the entire
event window (8 s) was extracted for each scene stimulus, for
each voxel within the region of interest, and averaged across the
number of repetitions. Data in the 6–8 s time frame was used
for all further analysis. This was the average peak activity in the
time course across all trials for all participants. All six presen-
tations of the stimulus were averaged together, including those
that “jiggled” for the 250 ms. A similarity matrix of all the scenes
(100 × 100) was then derived by cross-correlating the data for
each scene across the voxels in the brain regions of interest within
each individual. R-values from each of the cells in the similar-
ity matrix were then averaged across participants for a group
average.

Region of interest (ROI) analysis
All regions of interest analyzed were defined at the individual
level using the MarsBaR toolbox (http://marsbar.sourceforge.net/
index.html). Scene-selective regions (PPA, RSC, and TOS) were
defined using the localizer data in the contrast of scenes greater

than objects and phase-scrambled scenes. Typically, a threshold of
FWE p < 0.001 was used to define the set of voxels. Size of ROIs
were a priori chosen to have a goal of 100–200 voxels, or as close
to that as possible. Two control non-scene selective ROIs were also
chosen. One was a region in very early visual cortex along the left
hemisphere calcarine sulcus defined in the localizer data as phase-
scrambled greater than objects. The right hemisphere dorsolateral
prefrontal cortex (DLPFC) was also chosen as a control region,
which was defined using the localizer data in an all task (collapsed
across all three conditions) greater than baseline comparison.
Typically the threshold for the DLPFC ROI was lower than the
other ROIs—FWE p < 0.01, or p < 0.00001 uncorrected, if not
enough voxels survived the correction. Control ROIs were defined
in all participants.

AMAZON MECHANICAL TURK (MTurk)
Behavioral judgments of similarity for each pairwise comparison
of scenes were acquired through the use of study administered on
MTurk.

Participants
Participants were voluntarily recruited through the human intel-
ligence task (HIT) directory on MTurk. Enough individuals were
recruited to satisfy reaching 20 observations for each of the 4950
pairwise scene comparisons. This resulted in 567 individuals par-
ticipating in at least one HIT (10 scene pairs). An individual
participated in an average of 17.2 HITs, and the range was from
1 to 174. All participants reported they were over the age of 18,
with normal or corrected to normal vision, and located within
the United States. Participants were financially compensated for
each HIT completed. Participants read an online consent form
prior to testing in accordance with the procedures approved by
the Institutional Review Board of Carnegie Mellon University.

Procedure and data analysis
Each HIT contained 11 comparisons. Pairs of scenes were pre-
sented side-by-side, and the participant was asked to rate the
similarity of the two scenes on 1–7 scale (1 = completely differ-
ent; 7 = very similar), there was also an option of 8 for identical.
The scale was presented below the pair of images with both the
number and the description by each response button. In each
HIT there was one pair that was identical for use as a catch trial.
Participants were encouraged to use the entire scale. A partic-
ipant’s data were removed from the analysis if he/she did not
respond correctly on the catch trials. If the participant missed a
number of catch trials (over the course of several HITs) and exclu-
sively used only 1 and 8 on the scale, that participant’s entire data
was removed from the analysis due to ambiguity as to whether
she/he was actually completing the task, or just pressing 1 and 8.
All valid data was then log transformed due to a preponderance
of different judgments relative to any other response; skewness
of 2.67 (SE = 0.04) and kurtoisis of 8.76 (SE = 0.07). The data
were then used to construct a similarity matrix of the scenes
(100 × 100) with the value of each cell determined by the average
response for the pairwise comparison across the ∼20 observa-
tions. Some comparisons had missing responses due to removal
of ambiguous data.
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COMPUTER VISION (CV) METRICS
Each of the 100 scenes was analyzed by several different com-
puter vision methods. The vector of features for each scene within
each model was cross-correlated across all pairwise scene correla-
tions to generate the similarity matrix defining the scene-space
for that technique. We chose a wide variety of computer vision
models that implement features that can roughly be divided
in two categories: mid- and high-level attribute-based (NEIL,
SUN semantic attributes, GEOM) and low-level (GIST, SIFT,
HOG, SSIM, color). The former, attribute-based features, capture
semantic aspects in the image, for example, highways, fountains,
canyons, sky, porous etc. Low-level features such as GIST, SIFT,
and HOG capture distributions of gradients and edges in the
image. Gradients are defined as changes/derivatives of pixel val-
ues in the X and the Y direction in the image and edges are
obtained after post-processing of these gradients. Note that for
the purposes of this paper, we will use the terms gradients and
edges interchangeably. Finally, models such as SSIM encode geo-
metric layout of low-level features and shape information in the
image. Local self-similarities in edge and gradient distributions
complement low-level features such as those in SIFT. Critically,
all of these models have a proven track record for effective scene
classification (Oliva and Torralba, 2006; Vedaldi et al., 2010; Xiao
et al., 2010). We now describe each of these models in more
detail.

NEIL
The Never-Ending Image Learner (Chen et al., 2013) is a system
that continuously crawls the images on the internet to automat-
ically learn visual attributes, objects, scenes and common sense
knowledge (i.e., the relationships between them). NEIL’s strength
comes from the large-scale data it analyzes in which it learns
this knowledge; and by using commonsense relationships in this
knowledge base to constrain its classifiers. NEIL’s list of visual
attributes were generated using the following mechanism (Chen
et al., 2013): first, an exhaustive list of attributes used in the com-
puter vision community were compiled, which included semantic
scene attributes (SUN) (Patterson and Hays, 2012; Shrivastava
et al., 2012), object attributes (Farhadi et al., 2009; Lampert
et al., 2013) and generic attributes used for multimedia retrieval
(Naphade et al., 2006; Yu et al., 2012). This exhaustive list was
then pruned to only include attributes that represented adjectival
properties of scenes and objects (e.g., red, circle shape, vertical
lines, grassy texture). At the time of our study, the scene clas-
sifiers learned by NEIL were based on a scene space defined by
84 of these visual attributes, encompassing low-, mid- and high-
level visual information of the scenes. For each scene there is a
vector of scores, one for each attribute, of how confidently that
attribute can be identified in that scene image. For each attribute
classifier, we computed the variance of its scores across all scene
categories used within the experiment, and used exponentiated
variance for re-weighing the scores of each attribute individu-
ally. This normalization increases the weights on attributes that
are more effective for distinguishing between scene categories and
down weights the attributes that are less effective. The similarity
matrix for NEIL was constructed as a cross-correlation of these
scores.

Semantic scene attributes (SUN)
We use the set of 102 high-level SUN attributes as proposed in
Patterson and Hays (2012), which were originally defined through
crowd-sourcing techniques specifically intended to character-
ize scenes. These attributes were classified under five different
categories: materials (e.g., vegetation), surface properties (e.g.,
sunny), functions or affordances (e.g., biking), spatial envelope
(e.g., man-made), and object presence (e.g., tables). For each
attribute, we have a corresponding image classifier as trained in
Patterson and Hays (2012). The scores of these 102 classifiers
were then used as features. These scores represent the confidence
of each classifier in predicting the presence of the attribute in
the image. The similarity matrix for SUN was constructed as a
cross-correlation of these semantic attribute scores.

GEOM
Geometric class probabilities (Hoiem et al., 2007) for image
regions—ground (gnd), vertical (vrt), porous (por), sky, and all
were used. The probability maps for each class are further reduced
to 8 × 8 matrix, where each entry represents the probability of the
geometric class in a region of the image (Xiao et al., 2010). The
similarity matrix for GEOM for each subset definition (e.g., vrt)
was constructed as a cross-correlation of the probability scores for
each region of the picture.

GIST
GIST (Oliva and Torralba, 2006) captures spatial properties of
scenes (e.g., naturalness, openness, symmetry etc.) using low-
level filters. The magnitude of these low-level filters encodes
information about horizontal and vertical lines in an image, thus
encoding the global spatial structure. As a byproduct, it also
encodes semantic concepts like horizon, tall buildings, coastal
landscapes etc., which are highly correlated with distribution of
horizontal/vertical edges in an image. The GIST descriptor is
computed using 24 Gabor-like filters tuned to 8 orientations at
4 different scales. The squared output of each filter is then aver-
aged on a 4 × 4 grid (Xiao et al., 2010). The similarity matrix
for GIST was constructed as a cross-correlation of these averaged
filter outputs (512 dimensions).

HOG 2 × 2 (L0–L2)
Histogram of oriented gradients (HOG) (Dalal and Triggs, 2005)
divides an image into a grid of 8 × 8 pixel cells and computes his-
togram statistics of edges/gradients in each cell. These statistics
capture the rigid shape of an image and are normalized in differ-
ent ways to include contrast sensitive, contrast insensitive and tex-
ture distributions of edges. For HOG 2 × 2 (Felzenszwalb et al.,
2010; Xiao et al., 2010), the HOG descriptor is enhanced by stack-
ing spatially overlapping HOG features, followed by quantization
and spatial histograms. The spatial histograms are computed at
three levels on grids of 1 × 1 (L0), 2 × 2 (L1) and 4 × 4 (L2) (see
Xiao et al., 2010, for details). The similarity matrix for HOG 2 × 2
(L0–L2) was constructed as a cross correlation of these histogram
features at different image regions and spatial resolutions.

SSIM (L0–L2)
Self-similarity descriptors (Shechtman and Irani, 2007) capture
the internal geometric layout of edges (i.e., shape information)
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using recurring patterns in edge distributions. The descriptors
are obtained by computing the correlation map of a 5 × 5 patch
in a window with 40 pixels radius, followed by angular quantiza-
tion. These SSIM descriptors are further quantized into 300 visual
words using k-means (see Xiao et al., 2010, for details). The sim-
ilarity matrix for SSIM was constructed as a cross correlation of
these histograms of visual words at different spatial resolutions.

Finally, we included a variety of local image features based on
image gradient/texture and color. Following the standard Bag-of-
Words approach (vector quantization of features using k-means),
we generated a fixed-length representation for each image. We
used various dictionary sizes (k = 50, 250, 400, 1000) for each
feature. For implementation, (van de Sande et al., 2011) was
used for feature extraction and (Vedaldi and Fulkerson, 2010)
for k-means quantization of features. As suggested by Vedaldi
and Fulkerson (2010), we also L2 normalized each of the his-
tograms. The similarity matrix for each of the local image features
below was constructed as a cross correlation of these histograms
of visual words for each local feature. The local features used were
as follows:

• Hue histogram (50, 250, 400, 1000): A histogram based
on the hue channel 1 of the image in the HSV color
space representation. Roughly speaking, hue captures the
redness/greenness/blueness etc. of the color.

• SIFT (50, 250, 400, 1000): Scale invariant feature transform
(SIFT) (Lowe, 2004) characterizes each image based on local
edge features. For each point in the image, it captures the gradi-
ent distribution around it, generally by computing histograms
of edge feature in local neighborhood/patch and normalizing
these histograms to make the descriptor rotationally invariant
(even if the patch of pixels is rotated, the computed SIFT fea-
ture is the same). Standard SIFT works on grayscale images,
and we use dense-SIFT (see Xiao et al., 2010; van de Sande et al.,
2011).

• Hue-SIFT (50, 250, 400, 1000): SIFT computed only on the hue
channel of the HSV representation of the input image.

• RGB-SIFT (50, 250, 400, 1000): SIFT computed on each color
channel (R, G, and B) independently, and then concatenated.

CORRELATIONS ACROSS MEASURES
The similarity matrix arising from each method was converted
into a vector using data from one side of the diagonal. This
data were then fisher corrected for all analyses. First, a cross
correlation analysis was performed to acquire the Pearson’s r cor-
respondence between each method. The p-values in this cross
correlation are assumed to survive a Bonferroni correction cor-
recting for 4950 pairwise correlations of scenes (p < 0.00001).
For the regression analysis, p-values were corrected against 39
correlations (All ROIs, behavior, CV measures). To test the sig-
nificance between model fits, a bootstrapping method was imple-
mented. Testing across 1000 iterations of samples with replace-
ment, a 95% confidence interval between model fits (r2) was
defined. The confidence interval reflected a p < 0.05 correcting
for multiple comparisons. If the difference between the model
correlations exceeded the confidence interval, the models were

considered significantly different from each other (Wasserman,
2004).

RESULTS
We examined scene encoding in the human visual cortex by
defining ROIs in the brain that preferred scene stimuli to weak-
contextual objects and phase-scrambled scenes. This gives rise
to three ROIs: the PPA, RSC, and TOS where the BOLD sig-
nal was found to be significantly greater when viewing scenes as
compared to objects or phase-scrambled scenes. Additional two
brain regions were defined, an early visual region and a region
in the dorsolateral prefrontal cortex (DLPFC, see Materials and
Methods). These regions were chosen as control regions to com-
pare the scene ROIs (PPA, RSC, and TOS) to regions of the brain
involved in visual processing or in a cognitive task involving visual
stimuli, but that are not believed to be specific to scene process-
ing. Data for each of the 100 scenes were then extracted on a voxel
by voxel basis for each ROI. To examine the encoding of scenes
each pairwise correlation of the scenes was computed to deter-
mine how similar the patterns of activity across the voxels of an
ROI were from scene to scene. The resulting data were used to
create a similarity matrix describing the scene space in each ROI,
see Figure S3 for the similarity matrices of each ROI.

A separate behavioral study asking for an explicit judgment of
scene similarity was performed to examine the perceived similar-
ity between the 100 scenes. Using this data a similarity matrix was
derived that was representative of scene space as defined by per-
ceived similarity (see Figure S2). The data was split in half to test
reliability of the scores, and similarity measures across the two
halves correlated with an r = 0.84.

Finally, feature spaces defined through 30 different computer
vision (CV) techniques were used to construct a scene space for
each CV method. The features were cross-correlated for each pair-
wise correlation of the 100 different scenes to obtain a measure of
similarity, which resulted in each similarity matrix or scene-space.
Data were Fisher corrected, or log transformed (behavioral data),
and correlated across the different scene-spaces to determine the
similarity between these different scene representations (Figure 1;
Table 1).

One of the clearest results within the similarity matrix across
methods shown in Figure 1 is how much more similar the scene-
selective brain regions are to themselves as contrasted with any
other measure, and how similar subsets of the computer vision
methods are to themselves as contrasted with either the brain or
behavioral methods. One of the implications of this pattern is
that we still have a ways to go in accounting for the consistent
patterns of neural encoding for visual stimuli. This work-to-be-
done notwithstanding, the average correlation across scene ROIs
not including hemisphere correlate (e.g., LH PPA × LH RSC; LH
PPA × RH TOS) was r = 0.34, SD = 0.07. The greatest simi-
larities resulted from comparing across hemisphere of the same
region (e.g., LH PPA × RH PPA); mean r = 0.58, SD = 0.11. The
correlations between brain regions was considerably lower when
comparing a scene ROI with a control region, mean r = 0.16,
SD = 0.07, demonstrating the similarity specific to scene selec-
tive regions. CV measures were similar with themselves, r = 0.37,
SD = 0.29. And the least similarity was when comparing scene
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FIGURE 1 | Similarity matrix across different methods for constructing a

scene space. Each cell is the r -value computing the correlation between the
similarity of one scene space (e.g., voxel space in LH PPA) with another (e.g.,
attribute space in NEIL). Scene ROIs include the PPA, RSC, and TOS for each

hemisphere, and two control brain regions—an early visual region as well the
DLPFC. Computer vision methods are grouped according to their nominal
level of representation—e.g., GEOM is mid-level (purple); and HOG is
low-level (red).

brain ROIs with CV measures r = 0.04, SD = 0.06, however the
correlations did get as high as r = 0.22, p < 1.5 × 1048 found
between the RH PPA and the SUN measures. Similarity matrices
derived from low-level features such as SSIM and HOG were
either non-significant or negatively correlated with voxel space
from scene regions, but found to be positively correlated with the
early visual ROI. In general, the high-level CV methods (NEIL,
SUN) significantly correlated with the scene ROIs, where, the low-
level CV methods showed little correlation (although some did
reach significance, see Table 1). Suffice it to say, there is a great
deal of room for improvement in using CV measures to explain
brain encoding of scenes. Critically, this is not due to noise in the
signal—as already mentioned, there are strong correlations across
the scene-selective ROIs, supporting the assumption that there is
a meaningful code being used to process scenes, it just has yet to
be cracked. However, that we observe significant correlations with
some CV measures suggests we are making progress in explicat-
ing this code, and that the continued search for correspondences

between computer vision models and patterns of brain activity
may prove fruitful.

A more surprising result from our study is that correlations
with brain regions was stronger with CV models (especially those
with high- and mid- level features; average of SUN, NEIL, and
GEOM All r = 0.11, SD = 0.05) than with behavioral similarity
judgments (average r = 0.05, SD = 0.01). From these results we
infer that perceived similarity between scenes is based on different
visual and semantic parameters than those encoded in scene-
selective ROIs. From an empirical point of view, the fact that
our neurally-derived scene spaces do correlate more with some of
the scene spaces derived from CV models suggests that methods
drawn from computer vision offer a tool for isolating specific, and
perhaps more subtle, aspects of scene representation as encoded
in different regions of the human brain.

Beyond examining the general correspondence between CV
metrics and the neural encoding of scenes, we were interested in
the nature of the CV metrics offering the best correspondence and
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Table 1 | Pearson’s r-values for the correlations between similarity matrices.

Behavior LH+PPA RH+PPA LH+RSC RH+RSC LH+TOS RH+TOS Early+Visual DLPFC

Behavior 0.050 0.030 0.061 0.044 0.051 0.050 0.055 −0.044

NEIL 0.182 0.136 0.190 0.066 0.092 0.140 0.111 0.322 0.080

SUN 0.319 0.188 0.215 0.086 0.111 0.140 0.109 0.139 0.061

GEOM_All 0.107 0.067 0.085 0.055 0.070 0.089 0.077 0.111 0.042

GEOM_Gnd 0.078 0.038 0.048 0.045 0.059 0.053 0.054 0.133 0.015

GEOM_Por 0.094 0.079 0.115 0.043 0.067 0.058 0.060 0.100 0.054

GEOM_Sky 0.059 0.040 0.018 0.074 0.050 0.062 0.038 0.082 0.019

GEOM_Vrt 0.113 0.080 0.102 0.041 0.077 0.073 0.066 0.101 0.048

GIST 0.064 0.101 0.095 0.171 0.141 0.050 0.072 −0.057 0.032

SSIM_L0 0.182 −0.053 −0.071 0.005 0.006 −0.008 −0.028 0.088 −0.014

SSIM_L1 0.178 −0.070 −0.096 0.008 0.012 −0.019 −0.039 0.073 −0.024

SSIM_L2 0.175 −0.069 −0.093 0.011 0.018 −0.017 −0.036 0.087 −0.021

HOG_L0 0.201 −0.099 −0.131 −0.001 −0.015 −0.041 −0.074 0.108 −0.047

HOG_L1 0.193 −0.116 −0.151 0.014 0.000 −0.050 −0.075 0.085 −0.068

HOG_L2 0.198 −0.115 −0.157 0.025 0.005 −0.050 −0.072 0.072 −0.076

HueSIFT_50 0.151 0.105 0.105 0.013 0.038 0.083 0.066 0.154 0.025

HueSIFT_250 0.145 0.078 0.087 0.023 0.043 0.068 0.057 0.139 0.024

HueSIFT_400 0.151 0.096 0.100 0.028 0.045 0.076 0.064 0.128 0.021

HueSIFT_1000 0.153 0.087 0.090 0.035 0.049 0.066 0.057 0.116 0.014

RGBSIFT_50 0.156 0.007 0.029 0.011 0.033 0.009 −0.017 0.175 0.066

RGBSIFT_250 0.178 0.014 0.028 0.048 0.050 0.015 0.011 0.154 0.046

RGBSIFT_400 0.188 0.046 0.054 0.066 0.060 0.025 0.025 0.167 0.039

RGBSIFT_1000 0.188 0.077 0.087 0.083 0.076 0.046 0.052 0.153 0.048

SIFT_50 0.155 −0.002 0.025 0.018 0.043 0.006 −0.012 0.173 0.066

SIFT_250 0.173 0.018 0.037 0.045 0.048 0.010 0.005 0.136 0.058

SIFT_400 0.180 0.030 0.044 0.050 0.051 0.016 0.014 0.123 0.052

SIFT_1000 0.173 0.070 0.089 0.072 0.065 0.036 0.043 0.099 0.065

HueHist_50 0.137 0.061 0.055 0.001 0.029 0.068 0.045 0.093 0.003

HueHist_250 0.127 0.057 0.041 0.043 0.053 0.060 0.044 0.012 −0.017

HueHist_400 0.123 0.052 0.032 0.053 0.059 0.053 0.042 −0.012 −0.024

HueHist_1000 0.114 0.044 0.022 0.058 0.060 0.044 0.038 −0.033 −0.032

Gray values indicate p >0.05; and bolded values indicate survived correction for multiple correlations.

what this might reveal about the kind of information encoded in
scene-selective brain regions. Interestingly, we find that CV met-
rics that consider high-level visual attributes, that is, SUN and
NEIL, have the strongest correlation with the scene-selective ROIs
(Figure 2A). In general, the lower-level CV metrics performed
the worst (e.g., SSIM and HOG) and the mid-level features as
defined through the GEOM faired reasonably well and were sig-
nificantly correlated with scene-selective ROIs. This latter result
was not unexpected in that the GEOM feature space is designed
to divide a scene into those visual properties that define major fea-
tures of scenes (e.g., sky). Of particular note, GEOM Por, which
emphasizes material properties was significantly correlated with
the responses of the PPA, a result consistent with previous studies
in which it was found that the PPA is sensitive to both textures
and material information (Arnott et al., 2008; Cant and Goodale,
2011). GIST was the low-level CV model that most strongly cor-
related with scene ROIs—primarily RSC. This result in general
was not unexpected as GIST has previously been shown to be
correlated with scene ROIs (Watson et al., 2014) and with scene
recognition (Oliva and Torralba, 2006).

Helping validate the significance of our results, we note that
the hierarchy of correlations, with decreasing correlations pro-
gressing from high- to mid- to low-level visual features was
observed only in the scene-selective ROIs, but not in the two con-
trol regions (early visual and DLPFC; Figure 2A). More specif-
ically, although NEIL produced a strong correlation in both
control regions, the other high-level model, SUN, and mid-level
model, GEOM, were not the most significant correlations when
compared to low-level feature models (e.g., SIFT). That low-level
feature models resulted in higher-ranked correlations in early
visual regions as compared to high- and mid-level feature models
is consistent with the central role of these brain regions in early
visual processing.

To examine the consistency of this hierarchy of feature sen-
sitivity within the six scene-selective ROIs, we examined each
ROI separately and plotted the six CV metrics that showed the
best correlations (Figure 2B). Both SUN and NEIL (except for
the LH RSC) consistently resulted in close to the strongest cor-
relations with our neuroimaging data. To test the significance of
the model fits, a bootstrapping method was used to test for a
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FIGURE 2 | Strength of correlation between the similarity matrix of

computer vision (CV) metrics and the similarity matrix of patterns of

brain activity across voxels in each ROI. (A) The average correlation across
each CV metric and each of the scene ROIs is shown by the black bars. The
X-axis is ordered by the strength of this correlation. By way of comparison,
the correlations between the CV metrics and the two control regions are
illustrated by the light gray bars (early visual region) and the dark gray bars
(DLPFC). Error bars indicate standard error across the six scene ROIs (LH and

RH of the PPA, RSC, TOS). Note that font color indicates the approximate
level of featural analysis implemented in each specific CV metric: blue and
green are high-level; purple is mid-level; and red is low-level. Numbers
indicate the top 6 correlations in the early visual regions (light gray font,
above light gray bars) and in the DLPFC (dark gray front, above dark gray
bars). (B) The top-ranked 6 CV metrics that correlated with the
neurally-derived similarity matrix in each of the 6 scene-selective ROIs. The
Y-axis is Pearson’s r -value.
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p < 0.05 correcting for multiple correlations. For a full plot of all
correlations, see Figure S4. Only in the LH PPA did the SUN fea-
tures significantly account for more variance in brain data than
NEIL features, in the other ROIs they were statistically equiva-
lent. The PPA and the TOS both had SUN and NEIL fitting the
data the best, performing significantly better than behavior, low
level features such as HueHist, SIFT, RGBSIFT. In some cases the
variances accounted for by HOG and SSIM, which was negatively
correlated, did not significantly differ from SUN and NEIL (LH
PPA, RH PPA, RH TOS). However, it is hard to interpret the
significance of a negative correlation, so we provide this result
with caution. Interestingly, color also seemed to be an impor-
tant feature in encoding scene space. Hue SIFT, which takes into
account scale invariant local features with respect to different
hue maps, gave rise to scene spaces that were correlated with the
neural responses measured in both TOS and demonstrated sig-
nificance above a number of other models in the PPA. Although
numerically midlevel features—GEOM—correlated better than
low level features, significance was only reached for GEOM_por
and GEOM_sky in the RH PPA, and GEOM_all in the LH
TOS. On the other hand, the RSC had a different pattern of
correlations. GIST showed the strongest correlation with our neu-
roimaging data within the RSC, fitting significantly better than all
other models in the LH RSC, and all models except for the SUN
features in the RH RSC. This is consistent with previous results
demonstrating a correspondence for GIST with the responses
of this region (Watson et al., 2014). In the LH RSC and RH
RSC SUN features and RGB SIFT correlated at levels significantly
over other models, and within the RH RSC NEIL also correlated
significantly over and above other models. Overall, high-level
feature models produced the scene spaces most consistently cor-
related with the scene spaces derived from scene-selective ROIs
in the PPA and TOS, whereas GIST correlated the best, and
the high-level SUN and NEIL features correlated next best in
the RSC.

To investigate the reliability of this dataset we split the data
in two (one for each session) and tested the consistency of the
results. We found the correlations between the brain data with
the CV measures and behavioral judgments were very consistent
over the two sessions, resulting in an average r = 0.76, SD = 0.19;
where the strongest consistency was in the PPA and early visual
regions r = 0.94, SD = 0.02, and the lowest consistency was in
the RH RSC (r = 0.43) and the DLPFC (r = 0.63). In addition,
we examined the effect of including the trials that “jiggled” on
the analysis, until this point all analyses include the rotated trials.
We performed the analyses with and without the rotated trials,
showing very little effect of including all trials in the average, the
average r-value obtained across all ROIs with the CV measures
and behavioral data across the two analyses was 0.97, SD = 0.02.
The most notable difference in the analysis that did not include
the rotated trials was an increase in the correlation with GIST.
This result provides some insight into the nature of the correla-
tion between GIST and scene ROIs, one that may be less stable
than the others and therefore may not allow theoretical inference
about the nature of scene representations in these brain regions.

Finally, we were especially interested in examining the simi-
larity between NEIL-derived scene-space and our neuroimaging

data. The web-scale nature of how NEIL learns about regulari-
ties across scene categories is appealing in that it seems to best
capture both the evolutionary history of our visual systems and
the kind of neural statistical learning that seems to emerge over
a lifetime of experience. NEIL’s features capture the visual regu-
larities that give rise to semantic information, helping to define
the visual features that give rise to scene understanding. Table 1
shows that the scene space derived from NEIL’s attributes is sig-
nificantly correlated with our neurally-derived scene space within
each scene-selective ROI. However, the question remains about
how well does NEIL do over and above all the other CV mea-
sures. To address this, we ran a hierarchical regression for each
ROI (Figure 3). In this regression the first input was the low-level
CV metrics (Hue Histogram, SIFT, HOG, SSIM) and the second
input was to separately add GIST, to see what variance was left
over when the low-level visual features were removed. Next we
entered the GEOM metrics, followed by the SUN attributes, fol-
lowed by NEIL, and, finally, the last block being our behavioral
data. This regression demonstrates that NEIL accounts for a sig-
nificant amount of the variance in defining the neurally-derived
scene space over and above any of the other CV metrics in both
the PPA and the TOS, as well as in early visual regions. As such,
it appears as if NEIL is capturing something unique about scene
representation within the PPA, TOS, and early visual regions that
is not captured by any of the other models. The behavioral data
only accounted for unique variance above that already accounted
for in the LH RSC and the DLPFC.

DISCUSSION
We started with the challenge of specifying the “language” of mid-
and high-level features supporting object and scene recognition.
Given the large space of possible answers to this question, we
attempted to constrain the possible answers by applying a vari-
ety of computer vision models that make somewhat different
assumptions regarding the nature of this language. To evaluate
the effectiveness of these different assumptions, we explored the
degree to which each model accounted for patterns of neural data
arising from scene processing by scene-selective brain regions. We
found that:

• The NEIL and SUN models—both of which rely on mid-
and high-level visual features—were best at accounting for
variation in the neural responses of both the PPA and the
TOS. The fact that NEIL was equivalent to SUN indicates that
statistically-derived features offer a viable model of scene rep-
resentation that may, ultimately, reveal non-intuitive coding
principles for scenes.

• The GIST model—a model which relies on global spatial prop-
erties of scenes—was best at accounting for variations in the
neural responses of the RSC. Additional unique variance in the
RSC was accounted for by our behaviorally-obtained similarity
ratings.

• Given points (1) and (2), there is support for a model of scene
processing in which PPA and TOS are coding scene informa-
tion differently from RSC, with the former coding for the visual
attributes within scenes and the latter coding for higher-order,
scene categories.
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FIGURE 3 | Hierarchical regression. Data in the bottom row of the table is
the initial R-value yielded from the low-level CV measures. Each row above
indicates the change in R-value when the variables listed were added. Order
of blocks are (1) Low-level (HueHist, SIFT, HOG, SSIM, entered

simultaneously), (2) GIST, (3) GEOM (All, Gnd, Pos, Sky, Vrt, entered
simultaneously), (4) SUN, (5) NEIL, (6) Behavioral. ∗Denotes changes in R that
reached significance p < 0.05 corrected for multiple correlations; + denotes
changes in R that reached significance p < 0.05 uncorrected.

• The most effective computer vision models were better than
behaviorally-obtained ratings of scene similarity at accounting
for variance in our neural data.

Of note, we found that regions of the brain selective for scene pro-
cessing respond similarly to the same scenes, and treating, similar
scenes as defined in one ROI as similar in another ROI, and, dif-
ferent scenes as defined in one ROI as different in another ROI.
This pattern of results suggests that there is a stable encoding
pattern for scenes within scene-selective brain regions and that
voxel-to-voxel variation carries meaningful information regard-
ing commonalities and differences between scenes.

These results suggest that, as a first step, applying computer
vision models to neural data may allow us to better understand
how scene information is encoded in neural systems. In par-
ticular, we view the application of NEIL as having the most
promise in that its “vocabulary” of scene attributes does not
ultimately depend on intuition, but rather on those regulari-
ties that can be learned from scene data. By way of example,
NEIL includes visual features such as textures, color/shape com-
binations, and geometric configurations that do not readily cor-
respond to any typical part label, but that may help enable
NEIL’s ability to categorize scenes. More generally, models such
as NEIL offer better-specified theories of visual representation:
it is our contention that NEIL and other artificial vision models
offer meaningful—and testable—constraints at multiple levels of

visual processing. With respect to our present results, we can
now iterate toward more fine-grained tests of the most promising
models (NEIL, SUN, GIST).

Beyond the well-specified representational constraints inher-
ent in any functional model of computer vision, adopting multi-
ple models also allowed us to consider a range of feature repre-
sentations. In particular, the computer vision methods employed
here ranged from analyzing low-level features, such as orienta-
tion information and spatial frequency, to high-level features,
such as semantic categories. As expected, the low-level feature
spaces (e.g., SIFT) were best correlated with patterns of voxel
activity found in early visual brain regions, but were not highly
positively correlated with the patterns of activity arising from
scene-selective cortex. In contrast, as discussed, NEIL, SUN, and
GIST gave rise to feature spaces that were most strongly correlated
with the patterns of activity arising from scene-selective brain
regions. Moreover, we found that NEIL’s feature space, in partic-
ular, accounted for unique variance that could not be accounted
for by any of the other methods. Together, our results indicate
that the PPA, RSC, and TOS are involved in the processing of
mid- to high-level features of scenes. We should note also that
one curious result is the fact that NEIL accounted for signifi-
cant variance in early visual areas. However, without a map of
retinotopy for these early visual areas, it is difficult to say much
about what NEIL’s features may reveal about these processing
areas.
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Finally, we also observed that two models relying primarily on
low-level features were significantly correlated with certain scene-
selective brain regions. First, GIST correlated quite strongly with
the RSC, replicating previous findings demonstrating a connec-
tion between GIST and the RSC functional properties (Watson
et al., 2014). This suggests that the RSC may contribute to pro-
cessing an image’s spatial envelope or global scene properties
which are known to be involved in scene understanding (Oliva
and Torralba, 2006; Greene and Oliva, 2009). Moreover the RSC
has been shown to process a representation of the scene that is
abstracted from what is seen in the environment, typically pro-
cessing a broader environment that extends beyond the current
saccade (Epstein and Higgins, 2007; Park et al., 2007; Park and
Chun, 2009). One possibility is that the RSC may process the
low spatial frequencies or global properties of a scene that are
strongly indicative of scene category. In addition, RSC was found
to correlate with behavioral ratings of similarity, which was not
found in the PPA or the TOS. That the correlations with GIST and
behavior were unique to the RSC may suggest that RSC may pro-
vide a more categorical, or high-order representation of scenes.
The second low-level model proved to be important were SIFT
features in color domains that correlated strongly with multiple
scene-selective regions: Hue SIFT showed strong correlations with
the PPA and TOS, while RGB SIFT showed strong correlations
with the RSC. In earlier work, junctures within scenes, which
may be similar to SIFT features, were found to be important
for scene categorization (Walther and Shen, 2014). Our results
add to this finding by suggesting that key features but specifically
within different color domains also carry information regarding
scene categories. That is, scene-selective brain regions may rely on
color cues in scene understanding—a claim consistent with ear-
lier behavioral research on scene processing (Oliva and Schyns,
2000). At the same time, the lower correlations observed for the
Hue Histogram model as compared to the Hue SIFT and RGB
SIFT models suggest that it is not color per se that carries this
information, but rather information about scene categories arises
from an interaction of SIFT features within color domains. In par-
ticular, the perirhinal cortex—a region of the parahippocampal
gyrus adjacent to the PPA—has been shown to unitize properties
across an object; for example, that stop signs are red (Staresina
and Davachi, 2010). As such, this function may extend to the
parahippocampal region more generally being seen as unitizing
diagnostic features, with the PPA supporting this function within
scene processing.

In sum, we explored the visual dimensions underlying the neu-
ral representation of scenes using an approach in which models
derived from computer vision are used as proxies for any psycho-
logical theory. While this approach may seem somewhat indirect,
we argue that it is a necessary precursor in that extant psycho-
logical models have typically been somewhat underspecified with
respect to the potential space of visual features. Humans can
identify scenes effortlessly under a wide variety of conditions.
For example, we can name scenes with near-equivalent accuracy
when shown both photographs and line drawings, and with color
present or absent. There is, then, no single feature dimension
that drives the organization of scene-selective cortex. However,
some dimensions are likely to prove more effective than others.

Color is just one example of the many diagnostic cues that are
used to aid in scene perception. There are almost surely a range
of visual attributes and their associations within scenes that are
diagnostic as to their categories and to which we are sensitive
(Bar et al., 2008; Aminoff et al., 2013). Computer vision models,
to the extent that they make representational assumptions with
respect to scene attributes and their associations (i.e., models with
a less well-understood representational basis may not actually be
particularly informative), are, therefore, useful for better expli-
cating those featural dimensions involved in human visual scene
processing.
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Perception of natural visual scenes activates several functional areas in the human brain,

including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the

Occipital Place Area (OPA). It is currently unclear what specific scene-related features are

represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA

might represent at least three qualitatively different classes of features: (1) 2D features

related to Fourier power; (2) 3D spatial features such as the distance to objects in a

scene; or (3) abstract features such as the categories of objects in a scene. To determine

which of these hypotheses best describes the visual representation in scene-selective

areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of

1386 images of natural scenes. VM provides an efficient method for testing competing

hypotheses by comparing predictions of brain activity based on encoding models that

instantiate each hypothesis. Here we evaluated three different encoding models that

instantiate each of the three hypotheses listed above. We used linear regression to fit

each encoding model to the fMRI data recorded from each voxel, and we evaluated each

fit model by estimating the amount of variance it predicted in a withheld portion of the data

set. We found that voxel-wise models based on Fourier power or the subjective distance

to objects in each scene predicted much of the variance predicted by a model based on

object categories. Furthermore, the response variance explained by these three models

is largely shared, and the individual models explain little unique variance in responses.

Based on an evaluation of previous studies and the data we present here, we conclude

that there is currently no good basis to favor any one of the three alternative hypotheses

about visual representation in scene-selective areas. We offer suggestions for further

studies that may help resolve this issue.

Keywords: scene perception, fMRI, voxel-wise modeling, encoding models, neuroscience, vision

INTRODUCTION

fMRI experiments have shown that natural scene perception activates several distinct functional
areas in the human cerebral cortex. These include the Parahippocampal Place Area (PPA),
Retrosplenial Complex (RSC), and the Occipital Place Area (OPA, also known as the Temporal
Occipital Sulcus or TOS) (Aguirre et al., 1998; Epstein and Kanwisher, 1998; Maguire, 2001;
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Nasr et al., 2011; Dilks et al., 2013). Which specific scene-related
features are represented in these areas has been the subject of
substantial debate.

Several qualitatively different scene-related features have been
proposed to be represented in scene-selective areas. Some studies
have suggested that these areas represent simple 2D features
related to the Fourier power spectrum (Rajimehr et al., 2011; Nasr
and Tootell, 2012; Nasr et al., 2014; Watson et al., 2014). Others
have argued that PPA, RSC, and OPA represent features related to
3D spatial structure, such as expanse or openness (Kravitz et al.,
2011; Park et al., 2011), the distance from objects in a scene to an
observer (Amit et al., 2012; Park et al., 2015), or the size of objects
in a scene (Cate et al., 2011; Konkle and Oliva, 2012). A third
position is that scene-selective areas represent information about
the semantic categories of natural scenes or their constituent
objects (Walther et al., 2009, 2011; Huth et al., 2012; Stansbury
et al., 2013).

Previous studies have not resolved which of these hypotheses
provides the best account of the representation of natural scenes
in scene-selective areas. One reason that this has been a difficult
issue to resolve is that almost every previous study of scene-
selective cortical areas has used stimuli that were pre-selected or
manipulated to maximize variation in specific stimulus features
of interest. Consequently, different experiments use different
stimuli, and thereby sample different ranges of variation in
stimulus features. If the brain operated according to purely linear
mechanisms, this would not cause any problems for scientific
interpretation of the results. However, feature tuning in the
human visual system is conferred by nonlinear mechanisms that
operate at all levels of the visual hierarchy (Van Essen et al.,
1992). In such a nonlinear system, responses to a limited range of
stimulus variation cannot necessarily be used to infer responses
to stimulus variation outside that range (Wu et al., 2006; Gallant
et al., 2012). Thus, any experiment that constrains stimulus
variation may fail to characterize nonlinear tuning properties for
stimuli (or stimulus features) that fall outside the experiment’s
pre-selected stimulus set.

The most straightforward way to probe the visual system in an
ecologically valid range is to use a broad distribution of natural
images as stimuli. The human visual system is exquisitely tuned
to the statistical variance and covariance of features in natural
images (Field, 1987; Simoncelli and Olshausen, 2001). Thus, one
efficient way to determine what features are represented in scene-
selective areas is to record brain activity elicited by a wide range
of natural scenes, extract features from the stimulus images that
reflect the various hypotheses, and then determine which features
best account for the measured brain activity (Naselaris et al.,
2009, 2012; Nishimoto et al., 2011; Stansbury et al., 2013).

In this study, we analyzed BOLD fMRI responses to a large
set of natural photographs to determine which features of natural
scenes are represented in PPA, RSC, and OPA. We employed
a voxel-wise modeling (VM) approach in which we directly
compared predictive models based on three different classes
of scene-related features: 2D features derived from the Fourier
power spectrum of each scene, the distance to salient objects in
each scene, and semantic categories of the constituent objects
in each scene. For each class of features, we defined a feature

space to formalize each alternative hypothesis in quantitative
terms.

To estimate the relationship between each feature space and
measured BOLD responses, we used linear regression to fit each
feature space to the fMRI data recorded from each voxel in the
posterior part of the brain (encompassing the visual cortex).
Each feature space and its associated β weights constitute an
encoding model that maps a stimulus onto brain responses. We
evaluated eachmodel based on how accurately it predicted BOLD
responses in a separate validation data set. Finally, we applied
a variance partitioning analysis to determine whether different
models predict unique or shared variance in BOLD responses.

METHODS

The data used for this experiment came from previously
published studies from our laboratory. The four subjects in this
experiment are the same four subjects as in Stansbury et al.
(2013). Data for two of these subjects (subjects 1 and 2) were
originally collected for Naselaris et al. (2012). Here we provide
a brief description of the stimuli, subjects, data collection, and
image response estimation. For full details, see Stansbury et al.
(2013).

fMRI Data Acquisition and Preprocessing
All fMRI data were collected at the UC Berkeley Brain Imaging
Center using a 3 Tesla Siemens Tim Trio MR Scanner (Siemens,
Germany). Data were collected from each of four human subjects
(1 female) while they viewed 1386 natural images. The data
were collected over six or seven scanning sessions for each
subject, and the total scan time per subject was 4 h and 53min.
Voxels were approximately 2.25 × 2.25 × 2.99mm, and the
repetition time (TR) was approximately 2 s. The fMRI scan
protocol used for subject one was slightly different from the
protocol used for the others; see Stansbury et al. (2013) for
full details. Anatomical scans were acquired for each subject
using a T1-weighted magnetization-prepared rapid gradient
echo (MP-RAGE) sequence. All subjects gave their written
informed consent to participate, and the experimental protocol
was approved by the UC Berkeley Committee for the Protection
of Human Subjects.

Freesurfer was used to automatically extract cortical surfaces
from the T1-weighted scans (Dale et al., 1999). These surfaces
were manually edited to improve the match to the anatomical
data. Surface flattening and visualization were performed with
Freesurfer and custom python code (Gao et al., 2015; available
at http://github.com/gallantlab/pycortex).

Functional MRI data were preprocessed using custom Matlab
(R2014a, MathWorks) code and SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/). For each subject, data were motion
corrected and coregistered to the first volume collected. The
motion correction and coregistration transformations were
concatenated, and the data were re-sliced only once. Data
were divided into two separate subsets: one used for model
estimation and one used for model validation. The preprocessed
BOLD responses were de-convolved into a unique hemodynamic
response per voxel and a unique response amplitude per image
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per voxel. Response amplitudes for the validation data were
estimated slightly differently from the method in Stansbury et al.
(2013) in order to obtain an estimate of the noise in each voxel
(see Noise Ceiling Estimation section below).

Stimuli
The experimental stimuli consisted of 1386 photographs of
natural scenes. Most of the photographs used in this study were
selected first from a collection of 4000 labeled images curated
by the Lotus Hill Institute (Wuhan, China). The labels provided
by the Lotus Hill Institute were used to re-label all images
as containing (or not containing) each of four non-mutually
exclusive superordinate categories: animal, human, manmade,
and natural. Animals and humans were prioritized because
animacy was a principal feature of interest in Naselaris et al.
(2012). An additional 242 images were downloaded from Google
Images, in order to increase the number of scenes containing
both animals and humans. Finally, 1386 images were randomly
chosen from the full set of 4242 images, such that approximately
the same number of images had the labels animal and human,
and (independently) such that approximately the same number
of images had the labels natural and manmade. Thus, images
were not specifically selected based on the features of interest in
this study. All four subjects saw the same 1386 stimulus images.
Figure S02 shows all 126 validation images shown to all four
subjects.

Images subtended 20◦ × 20◦ of visual angle (500×500 pixels).
Each image presentation consisted of five brief flashes in 1 s,
followed by 3 s of isoluminant gray screen. The 1260 images in
the estimation data set were repeated twice each. The 126 images
in the validation data set were repeated 12 times each. During the
experiment subjects maintained steady fixation on a small (0.2◦ ×
0.2◦) square that changed colors at 3Hz. Subjects were instructed
to try to understand each scene as it was presented, but had no
explicit task besides maintaining fixation. Stimulus presentation
and all statistical analyses were conducted using custom Matlab
(R2014a, MathWorks) and python code.

Feature Spaces Used for Voxel-wise
Encoding Models
In voxel-wise modeling, a feature space is a quantification of
the features of a stimulus that are hypothesized to be related to
brain responses (Naselaris et al., 2011; Gallant et al., 2012). For
this study we created three different feature spaces: a Fourier
power feature space, subjective distance feature space, and an
object category feature space. Each feature space embodies a
different hypothesis about which features are represented in
scene-selective areas.

Fourier Power Feature Space
To parameterize variation in spatial frequency energy at different
orientations, we created a Fourier power feature space. First,
the color images were converted to Commission Internationale
de l’Éclairage L*A*B* color space, and the luminance layer
was extracted. A 2D Fourier transform was computed for each
luminance image. The amplitude spectrum for each image

was divided into eight bins: one high-frequency and one low-
frequency bin at each of four orientations (0, 45, 90, and 135◦).
The divide between high and low frequency bins was set at five
cycles/degree, as in Rajimehr et al. (2011) and Nasr and Tootell
(2012). A schematic of the Fourier domain bins is shown in
Figure 1C. Fourier power was averaged over each bin for each
image. To reduce correlations between Fourier power bins, each
bin in each image was divided by the L2 norm of all bins for
that image. The L2 norm itself was retained as a separate feature
reflecting the overall spatial frequency energy in each image.
Thus, the final Fourier power feature space consisted of nine
feature channels: one total spatial frequency energy channel (i.e.,
the L2 norm), four low spatial frequency channels, and four high
spatial frequency channels (One can think of each feature channel
as a separate column in a regression design matrix). To match the
range of variation in the Fourier power feature channels to the
range of the z-scored BOLD responses, each feature channel was
z-scored separately across all images.

Subjective Distance Feature Space
To parameterize distance in each scene, we created a subjective
distance feature space based on human distance judgments.
Human raters were instructed to estimate the distance to the
main content (the most salient or subjectively important objects)
in each of the 1386 stimulus images. The determination of the
main content of each image was left to the discretion of each
rater, so these distance ratings were inherently subjective. For
each image, raters chose one of five roughly logarithmically
spaced distance bins: (1) extreme closeup, ∼1–2 ft., (2) arm’s
length,∼3–4 ft., (3) nearby/same room, <20 ft., (4) semi-distant,
<100 ft., or (5) far away, >100 ft. Raters viewed each image
for 300ms before making each rating. These brief durations
approximated the brief image presentation time used in the fMRI
experiment. Raters had the option to repeat an image if they felt
they had not adequately understood it, but repeated viewing was
discouraged. Three different raters provided distance judgments.
Two of them were also subjects in the fMRI experiment.
The ratings produced by the three raters were consistent: the
correlations between the three raters’ distance ratings were
0.845, 0.857, and 0.861. The median distance rating for each
image across all three raters was used to code the features. The
final subjective distance feature space consisted of five mutually
exclusive binary feature channels (one for each distance bin).

Object Category Feature Space
To parameterize semantic variation in our stimulus images,
we used an object category feature space based on human-
assigned labels indicating the presence of objects or other scene
elements (such as land, water, and sky) in each image. This
feature space was originally created for an earlier study (Naselaris
et al., 2012). For a full description of the labeling process, see
the original paper. Briefly, 15 human raters assigned natural
language labels to each object in each image. These labels
were binned into 19 categories: creepy animal (e.g., insects,
snakes, and reptiles), bird, fish, water mammal, land mammal,
many humans, few humans, vehicle, artifact, text, prepared
food, fruit vegetable, other plants, furniture, sky, water, land,
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FIGURE 1 | Overview of the voxel-wise modeling (VM) procedure used in this study. (A) Human subjects were shown 1260 natural images while (B) fMRI data

were recorded. (C–E) These data were modeled as a function of three different feature spaces. Each feature space reflects a different hypothesis about which features

are represented in scene-selective areas. (C) For the Fourier power mode, the feature space was computed by taking the Fourier transform of each stimulus image

and then averaging the amplitude spectrum over the orientation and spatial frequency bins shown at right. (D) For the subjective distance model, the feature space

consisted of ratings from three humans who judged whether the main content of each stimulus scene was (1) <2 ft away, (2) <4 ft away, (3) <20 ft away, (4) <100 ft

away, and (5) >100 ft away. (E) For the semantic category model the feature space consisted of labels from three human raters who labeled the objects in each

stimulus image using 19 semantic labels. (F) Ordinary least squares regression was used to find a set of weights (β) that map the features in each model onto the

BOLD responses in each voxel. Each feature space and its associated β weights constitute a different encoding model. (G) In order to validate the models in an

independent data set, the same subjects were shown a different set of 126 images while (H) fMRI responses were collected. (I) To assess model accuracy, the β

weights estimated from the training data were used to predict responses in this withheld model validation data set. (J) To reveal patterns of tuning in the features

quantified by each different model, pre-specified t contrasts were computed between β weights in each model and projected onto the cortical surface, and β weights

were averaged over voxels in different regions of interest and plotted.

part of building, and edifice. These categories span several
superordinate categories known to be represented in higher-
order visual areas (animate/inanimate, large/small, human/non-
human). Thus, the full object category feature space consisted
of 19 non-exclusive binary feature channels, each indicating the
presence of a different object category in each stimulus image.
In previous work models based on this feature space have been
shown to provide accurate predictions of BOLD responses in
several higher-order visual areas (Naselaris et al., 2012). This
object category model also provides a simple approximation of
the WordNet (Miller, 1995) feature space used to model BOLD
data in Huth et al. (2012).

These three feature spaces were chosen as simple examples of
three broader classes of hypotheses regarding the representation
in scene-selective areas: that scene-selective areas represent
low-level, image-based features, 3D spatial information, and
categorical information about objects and scenes. Many other

implementations of these broad hypotheses are possible, but
an exhaustive comparison of all of the potential models
is impractical at this time. Instead, here we focus on just
three specific feature spaces that each capture qualitatively
different information about visual scenes and that are simple
to implement. We emphasize simplicity here for instructional
purposes, for ease of interpretation, and to simplify the model
fitting procedures and variance partitioning analysis presented
below.

Model Fitting and Evaluation
We used ordinary least squares regression to find a set of weights
(β) that map the feature channels onto the estimated BOLD
responses for the model estimation data (Figure 1H). Separate
β weights were estimated for each feature channel and for each
voxel. Each β weight reflects the strength of the relationship
between variance in a given feature channel and variance in the
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BOLD data. Thus, each β weight also reflects the response that a
particular feature is likely to elicit in a particular voxel. Themodel
β weights as a whole demonstrate the tuning of a voxel or an area
to specific features within the feature space for that model. The
full set of β weights for all feature channels for a voxel constitute
an encoding model for that voxel. Note that many previous fMRI
studies from our laboratory (Nishimoto et al., 2011; Huth et al.,
2012; Stansbury et al., 2013) have used ridge regression or another
regularized regression procedure to produce voxel-wise encoding
models that have the highest possible prediction accuracy.We did
not use regularized regression in the current study because the
use of regularization complicates interpretation of the variance
partitioning analysis described below. Furthermore, the number
of features in each model fit here was small relative to the
amount of data collected, so regularization did not improve
model performance.

Many studies describe the tuning of voxels across the visual
cortex by computing t contrasts between estimated regression
β weights for each voxel (Friston et al., 1994). To facilitate
comparison of our results to the results of several such studies,
we computed three t contrasts between β weights in each of our
three models. Each contrast was computed for all cortical voxels.
Using the β weights in the Fourier power model, we computed
a contrast of cardinal vs. oblique high-frequency orientations
(Nasr and Tootell, 2012). This contrast was specifically (+ high
freq 0◦ + high freq 90◦ – high freq 45◦ – high freq 135◦) (see
Figure 4 for feature naming scheme). Using the β weights in
the subjective distance model, we computed a contrast of far
vs. near distances (+ v. far + distant – near – closeup) (Amit
et al., 2012; Park et al., 2015). Using the β weights in the object
category model, we computed a contrast of people vs. buildings
(+ few people –0.5 edifice –0.5 part of building) (Epstein and
Kanwisher, 1998). Since these contrasts were computed for
every voxel in the brain, the p-values for each t contrast were
adjusted using False Discovery Rate (FDR) with an α level of 0.05
to correct for multiple comparisons (Benjamini and Yekutieli,
2001).

To evaluate the accuracy of each model, we used the model
fit to each voxel to predict BOLD responses of the same voxel
in the validation data set. Prediction accuracy was assessed by
computing Pearson’s product-moment correlation (r) between
the predicted response and the validation response estimated for
each voxel. To convert prediction accuracy to an estimate of the
variance explained, we squared the prediction accuracy (r) for
each model in each voxel value while maintaining its sign (David
and Gallant, 2005).

Noise Ceiling Estimation
Noise in the validation data set will nearly always bias prediction
accuracy downward, and the magnitude of this bias may differ
across voxels. This makes raw prediction accuracy difficult to
interpret: for any given voxel, imperfect predictions may be
caused by a flawed model, measurement noise, or both. To
correct this downward bias and to exclude noisy voxels from
further analyses, we used the method of Hsu et al. (Hsu et al.,
2004; Huth et al., 2012) to estimate a noise ceiling (γ ) for
each voxel in our data. The noise ceiling is the amount of

response variance in the validation data that could theoretically
be predicted by the perfect model.

Noise ceiling estimation requires repeated measurement of
responses to the same stimulus (Hsu et al., 2004). Thus, we
estimated 11 different responses to each of our validation stimuli
for each voxel. We split the validation data into 11 partially
overlapping blocks. Each block contained two presentations of
each stimulus image. The first block contained the first and
second presentations of each image, the second block contained
the second and third presentations of each image, and so
on. For each block, the BOLD data were de-convolved into a
unique hemodynamic response per voxel and a unique response
amplitude per image per voxel. This procedure resulted in 11
different estimates of the response to each of our validation
images for each voxel. These 11 validation image response
estimates were used to compute the noise ceiling (γ ) for each
voxel.

γ can be interpreted as a measure of signal repeatability.
If the same stimuli reliably elicit similar responses, γ is high
(near one); if not, it is low (near zero). To give a sense for this
metric, Figure 2 shows estimated responses for three voxels with
noise ceilings (γ -values) that are relatively high, average, and just
above chance. Estimated γ -values were used to select voxels for
all analyses presented in this paper. Voxels with noise ceilings
greater than γ = 0.04 [a value corresponding to bootstrapped
p(γ ) < 0.01 for a single voxel] were retained, and all others
were discarded before further analysis. In auditory cortex, where
the signal should not be strongly related to the stimuli in this
experiment, this threshold retains approximately five percent of
the voxels. Figure S01 shows the absolute number of voxels kept,
the percent of voxels kept, and the mean γ -value for each region
of interest for each subject.

The noise ceiling was also used to normalize prediction
accuracy in order to estimate the proportion of potentially
explainable response variance that is actually explained by
the models. The square root of the noise ceiling (γ 1/2) gives
the theoretical maximum correlation between predicted and
observed responses for each voxel. Following Hsu et al. (2004), all
estimates of prediction accuracy were divided by γ 1/2. Estimates
of variance explained were divided by γ . Note that very low noise
ceilings can result in divergent normalized correlation estimates.
For example, for γ = 0.0001 and r = 0.07, the normalized value
of r would be 0.07/0.00011/2 = 7. Our voxel selection criterion
allows us to avoid such divergent estimates, since all voxels with
low γ -values are discarded.

Model Comparison
To determine which features are most likely to be represented
in each visual area, we compared the predictions of competing
models on a separate validation data set reserved for this purpose.
First, all voxels whose noise ceiling failed to reach significance
[γ > 0.04, p(γ ) > 0.01 uncorrected] were discarded. Next, the
predictions of each model for each voxel were normalized by the
estimated noise ceiling for that voxel. The resulting values were
converted to z scores by the Fisher transformation (Fisher, 1915).
Finally, the scores for each model were averaged separately across
each ROI.
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FIGURE 2 | Response variability in voxels with different noise ceilings. The three plots show responses to all validation images for three different voxels with

noise ceilings that are relatively high, moderate, and just above chance. The far-right plot shows the response variability for a voxel that meets our minimum criterion

for inclusion in further analyses. Black lines show the mean response to each validation image. For each plot, images are sorted left to right by the average estimated

response for that voxel. The 11 gray lines in each plot show 11 separate estimates of response amplitude per image for each voxel. Red dotted lines show random

responses (averages of 11 random Gaussian vectors sorted by the mean of the 11 random vectors). Note that even random responses will deviate slightly from zero

at the high and low ends, due to the bias induced by sorting the responses by their mean.

For each ROI, a permutation analysis was used to determine
the significance of model prediction accuracy (vs. chance),
as well as the significance of differences between prediction
accuracies for differentmodels. For each feature space, the feature
channels were shuffled across images. Then the entire analysis
pipeline was repeated (including fitting β weights, predicting
validation responses, normalizing voxel prediction correlations
by the noise ceiling, Fisher z transforming normalized correlation
estimates, averaging over ROIs, and computing the average
difference in accuracy between each pair of models). This
shuffling and re-analysis procedure was repeated 10,000 times.
This yielded a distribution of 10,000 estimates of prediction
accuracy for each model and for each ROI, under the null
hypothesis that there is no systematic relationship between
model predictions and fMRI responses. Statistical significance
was defined as any prediction that exceeded 95% of all of the
permuted predictions (p = 0.05), calculated separately for each
model and ROI. Note that different numbers of voxels were
included in each ROI, so different ROIs had slightly different
significance cutoff values. Significance levels for differences
in prediction accuracy between models were determined by
taking the 95th percentile of the distribution of differences
in prediction accuracy between randomly permuted models
(p = 0.05).

Variance Partitioning
Estimates of prediction accuracy can determine which of several
models best describes BOLD response variance in a voxel
or area. However, further analysis is required to determine
whether two models each explain unique or shared variance
in BOLD responses. For example, consider two hypothetical
models A and B. Suppose that model A makes slightly more
accurate predictions than does model B for a given voxel.
One possibility is that the variance explained by model B is a
subset of the larger variance explained by model A. Another
possibility is that model B explains a unique and complementary

component of the response variance that is not explained by
model A (For example, even if model B is worse overall it
might make more accurate predictions than model A for a
subset of images). Figure 3B shows two simulated examples in
which competing models explain unique and shared response
variance.

We performed a variance partitioning analysis (Figure 3) to
determine the extent to which the three models in this study
predict unique or shared components of the response variance
in each scene-selective area. First, β weights were fit to each
feature space independently (Figure 1). Then, feature spaces
were concatenated in the features dimension (Figure 3A) for
each possible pair or trio of feature spaces (Fourier power
∪ subjective distance, Fourier power ∪ semantic categories,
subjective distance ∪ semantic categories, and Fourier power
∪ subjective distance ∪ semantic categories). For example,
the feature space matrix resulting from the concatenation
of all three models had 33 feature channels (nine from
the Fourier power model, five from the subjective distance
model, and 19 from the semantic category model). Each
concatenated feature space was fit to the data for each voxel,
and used to predict responses in the validation data for each
voxel. Prediction accuracy was converted to variance explained
by squaring the prediction correlation while maintaining its
sign.

For pairwise variance partitioning, the unique and shared
variance explained by each model or pair of models was
computed according to the equations in Figure 3C. Similarly
straightforward arithmetic was used to perform three-way
variance partitioning to compute each element of the Venn
diagram in Figure 9. For example, the unique variance explained
by the semantic category model was estimated as the difference
between variance explained by the full, 3-part concatenated
model (Fourier power∪ subjective distance∪ semantic category)
and the 2-part concatenation of the Fourier power and subjective
distance models (Fourier power ∪ subjective distance).
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FIGURE 3 | Overview of variance partitioning analysis. Variance partitioning determines what fraction of variance in BOLD responses is shared between two

models. (A) To estimate the amount of shared variance between each pair or trio of feature spaces, all pairs or trios of feature spaces were concatenated (in the

features dimension) and the resulting combined feature spaces were fit to the data and used to compute predictions of the validation data. (B) Two simulated models

that predict (1) independent variance and (2) shared variance. In (1), each model tends to make accurate predictions (o marks) where the other fails (× marks).

Consequently, the combined model (A∪B) performs well. In (2), both models succeed and fail for the same images (that is, the predictions are correlated).

Consequently, the combined model does not perform better than the individual models. The total variance explained by models A and B can be subdivided into the

partitions shown in the Venn diagram in (C). Each partition corresponds to variance explained by: (X) only model A, (Y) only model B, and (Z) both A and B (shared

variance). The variance explained by the combined model (r2A∪B) provides an estimate of the convex hull of the Venn diagram (shown by the orange border). Thus, X,

Y, and Z can be computed as shown. (D) Bar graphs of the values for X, Y, and Z computed for the two cases in (B).

Evaluation of Correlations between
Stimulus Features
One risk associated with the use of natural images as stimuli
is that features in different feature spaces may be correlated. If
some of the features in different feature spaces are correlated,
then models based on those feature spaces are more likely
to generate correlated predictions. And if model predictions
are correlated, the variance explained by the models will be
shared (see Figure 3). To explore the consequences of correlated
features, we computed the Pearson correlation (r) between all
features in the Fourier power, subjective distance, and object
category feature spaces. To determine whether the correlations
between features that we measure in our stimulus set are general
to many stimulus sets, we also explored feature correlations in
two other stimulus sets (from Kravitz et al., 2011 and Park et al.,
2015—see Supplementary Methods).

Non-zero correlations between a subset of the features in
different feature spaces may or may not give rise to models that
share variance. Two partially correlated feature spaces are most
likely to lead to models that share variance if the feature channels
that are correlated are also correlated with brain activity.

For example, imagine two simple feature spaces A and B, each
consisting of three feature channels. A and B are used to model
some brain activity, Y. Suppose that the first feature channel in
A (A1) is correlated with the first feature channel in B (B1) at
r = 0.5, and that the other feature channels (A2, A3, B2, and B3)
are not correlated with each other or with Y at all. If A1 and B1

are both correlated with Y, then a linear regression that fits A and
B to Y will assign relatively high β weights to A1 and B1 in the fit
models (call the fit models MA and MB). This, in turn, will make
the predictions of MA and MB more likely to be correlated. Thus,
MA and MB will be more likely to share variance.

Now, imagine a second case. Suppose instead that A1 and
B1 are correlated with one another but neither A1 nor B1 is
correlated with Y. Suppose that the other feature channels in A
and B are correlated with Y to varying degrees. In this case, A1

and B1 will be assigned small β weights when A and B are fit to
Y. The small β weights on A1 and B1 will mean that those two
channels (the correlated channels) will not substantially affect the
predictions of MA and MB. Thus, in this case, the predictions of
MA and MB will not be correlated, and MA and MB will each
explain unique variance. These two simple thought experiments
illustrate how the emergence of shared variance depends on
correlations between feature channels and the β weights on those
feature channels.

To illustrate how the correlations between features in this
specific study interact with the voxel-wise β weights for each
feature to produce shared variance across models, we conducted
a simulation analysis. In brief, we simulated voxel responses
based on the real feature values and two sets of β weights and
performed variance partitioning on the resulting data. First, we
used the concatenated stimulus feature spaces (X) and a set
of semi-random weights (β) to generate simulated voxel data,
according to the regression equation:
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Ysim = Xβ + ε (1)

ε is Gaussian noise ∼N(0,1). To assure that the simulated
data had approximately the same signal-to-noise ratio as the
fMRI data in our experiment, we modified the basic regression
equation to scale the noise according to a distribution of expected
correlations (ρ), thus:

Ysim = ρXβ + (1− ρ2)1/2ε (2)

We simulated the same number of voxels that we measured in all
the scene-selective areas in all four subjects (761 voxels). We used
the following procedure to assure that the simulation β weights
were plausible given the covariance structure of the different
feature spaces. First, we generated 761 different sequences of
Gaussian random noise. Then we used ordinary least squares
regression to fit β weights for each feature channel to the noise
sequences. This resulted in 761 sets of β weights that map the
feature spaces onto random data. Since ordinary least squares
regression uses the feature covariance matrix to estimate β

weights, the βweights generated by this procedure are guaranteed
to be plausible given the covariance of the feature channels.
Each set of semi-random β weights was then used to generate a
simulated voxel timecourse according to Equation (2) above. We
also created a second set of simulated data, based on the actual β
weights we estimated for each of the 761 voxels in the experiment.

To illustrate how the specific β weights (the real β weights
or the semi-random β weights) affected estimates of shared
variance, we applied the same variance partitioning analysis that
we applied to the fMRI data to both sets of simulated data. Note
that the results of the variance partitioning of the simulated
data based on the real β weights should match the results of
the variance partitioning of the BOLD data. We include these
results to show that our simulation procedure is operating as
expected, and to demonstrate that any difference between the
two simulations is a result of differences in the weights, and not
anything to do with the simulation procedure.

Functional Area Localizers
Visual areas in retinotopic visual cortex as well as functionally
defined category-selective visual areas were identified in separate
scan sessions using conventional methods (Spiridon et al., 2006;
Hansen et al., 2007). Scene-selective areas PPA, RSC, and OPA
were all defined by a contrast of places vs. objects. The Fusiform
Face Area (FFA) was defined by a contrast of faces vs. objects. The
boundaries of each area were hand drawn on the cortical surface
at the locations at which the t statistic for the contrast of places
vs. objects changed most rapidly.

RESULTS

To investigate how natural scenes are represented in scene-
selective areas in the human brain, we analyzed BOLD fMRI
signals evoked by a large set of natural images (These data were
collected for two studies from our laboratory that were published
previously: Naselaris et al., 2012 and Stansbury et al., 2013). We
tested three specific hypotheses about scene representation in

these areas that have been proposed in previous studies: that
scene selective areas represent Fourier power, subjective distance,
and object categories. To formalize each of these hypotheses,
we defined three feature spaces that quantified three classes of
features: Fourier power at different frequencies and orientations,
distance to the salient objects in each scene, and the semantic
categories of objects and other components of each scene. To
determine the relationship between each feature space and brain
activity, we used ordinary least squares regression to estimate sets
of β weights that map each feature space onto the BOLD fMRI
responses in the model estimation data set.

We present our results in four sections. First, we examine the
tuning revealed by the estimated model β weights in V1, the FFA,
the PPA, RSC, and the OPA. Second, we estimate the importance
of each feature space by predicting responses in a withheld data
set. Third, we evaluate whether each of these feature spaces
predicts unique or shared response variance in the fMRI data.
Finally, we investigate the correlations between features in the
Fourier power, subjective distance, and object category feature
spaces.

Voxel-wise Model β Weights Replicate
Tuning Patterns described in Previous
Studies
The voxel-wise model βweights for the features in eachmodel are
shown in Figures 4, 5. For each area, all voxels for each subject
that met our voxel selection criterion [γ > 0.04, p(γ )< 0.01—see
Methods] are shown. Overall, the tuning profiles revealed by the
βweights in each area appear to be broadly consistent with tuning
revealed by previous studies. We first describe the β weights in
two comparably well-understood areas (V1 and FFA), and then
describe the β weights for each model for all three scene-selective
areas.

In V1, the β weights for the Fourier power model
(Figures 4A–C) show that images containing high Fourier power
tend to elicit responses above the mean. This is consistent with
many studies showing that V1 responses increase with increasing
image contrast (Albrecht and Hamilton, 1982; Gardner et al.,
2005). The β weights for the subjective distance model show that
very distant scenes elicit responses below the mean in most V1
voxels. This is likely because the most distant scenes (such as
the image of the ocean in Figure 1A) have low overall Fourier
power. The β weights for the object category model show that
the images with labels for fruit and vegetable, prepared food,
and creepy animal all elicit responses above the mean. These
are also likely be related to different levels of Fourier power.
We analyze the correlations between Fourier power and specific
object categories, as well as other correlations between feature
channels in different models, in detail below.

In FFA, the β weights for the Fourier power model
(Figures 4D–F) show that images with high frequency energy
at 135◦ tended to elicit BOLD responses above the mean,
while high frequency energy at vertical and horizontal (90◦

and 0◦) orientations elicit responses below the mean. Several
previous studies have rigorously argued that FFA responds
to faces rather than low-level image features (Kanwisher and
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FIGURE 4 | Voxel-wise model β weights for all models for all voxels in V1 and FFA. (A) Model β weights for the Fourier power model for V1. The image in the

lower part of the panel shows the weight for every voxel in V1 that met our selection criterion [γ > 0.04, p(γ ) < 0.01, see Methods]. Voxels are separated by subject

(s1–s4), and the relative size of each subject’s section indicates the relative number of voxels selected in V1 for that subject. † marks indicate specific ROIs in specific

subjects with low signal quality (and thus few voxels selected for analysis). See Figure S01 for evaluation of signal across subjects. Each horizontal stripe through the

image shows the weights for a different voxel. Voxels are sorted within each subject by normalized prediction accuracy for the Fourier power model. Weights from the

model that produced the most accurate predictions in V1 are at the top. The solid white line across the image for each subject shows the chance threshold for

prediction accuracy (p < 0.05, FDR corrected). The bar graph at the top of the panel shows the mean β weights for all V1 voxels for all subjects. Each text label

corresponds to both the bar above it and the column of weights below it. Error bars are 99% confidence intervals across all voxels. These tuning patterns are

consistent with known response properties of V1, where voxel responses are related to the amount of Fourier power in each image. (B) Same plots as (A), for the

subjective distance model in V1. Voxels are sorted by normalized prediction accuracy for the subjective distance model. (C) Same plots as (A), for the object category

model in V1. Voxels are sorted by normalized prediction accuracy for the object category model. (D–F) Same plots as (A–C), but for FFA. These tuning patterns are

consistent with known response properties of FFA, where voxel responses are related to object categories associated with animate entities.

Yovel, 2006). Thus, the tuning for specific frequencies and
orientations is likely to reflect natural correlations between the
presence of humans or other animate entities and particular
spatial frequency patterns. The β weights for the subjective
distance model show that relatively nearby objects elicit BOLD
responses above the mean in FFA, while distant objects elicit
responses below the mean, and the nearest objects do not affect
responses in either direction. This is consistent with at least
one study that showed parametrically increasing responses in
FFA to scenes with increasingly nearby objects (Park et al.,
2015). Finally, the β weights for the object category model show
that images containing object categories relating to humans and
animals elicited BOLD responses above the mean, while images

containing categories related to structural features of scenes
(water, land, edifice, etc.) elicit BOLD responses below the mean.
These results replicate well-established tuning properties of FFA
(Kanwisher et al., 1997; Kanwisher and Yovel, 2006; Huth et al.,
2012; Naselaris et al., 2012), and are consistent across subjects
in voxels that have sufficient signal to model (See Figure S01 for
assessment of signal quality by subject and ROI).

Figure 5 shows the model β weights for all models and all
voxels in PPA, RSC, and OPA. Since the β weights in each of the
three models show similar tuning in all three areas, we describe
the tuning model by model in all three areas.

The β weights for the Fourier power model (Figures 5A,D,G)
show a somewhat variable pattern across subjects. In general,
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FIGURE 5 | Voxel-wise model β weights for all models for all voxels in PPA, RSC, and OPA. (A–C) Same plots as Figures 4A–C but for PPA, with

conventions as in Figure 4. (D–F) Same plots as Figures 4A–C but for RSC. (G–I) Same plots as Figures 4A–C but for OPA. † marks indicate specific ROIs in

specific subjects with low signal quality (and thus few voxels selected for analysis). See Figure S01 for evaluation of signal across subjects. For the Fourier power

model, the voxel-wise β weights are generally large for high frequency cardinal (vertical and horizontal) orientations, though this varies across subjects. For the

subjective distance model, voxel-wise β weights are large for distant objects and small for nearby objects across all subjects. For the object category model,

voxel-wise β weights were large for object categories related to the scene structure (e.g., edifice, land, and sky) and small for object categories associated with

animate entities (e.g., few people, land mammal, and water mammal). This pattern of β weights in the object category model was consistent across subjects and ROIs

with good signal. All these results are generally consistent with previous reports.

Fourier power at cardinal orientations tends to elicit BOLD
responses above the mean in voxels in PPA, RSC, and OPA, while
Fourier power at oblique orientations elicits BOLD responses

that are small or below the mean. This result is obvious in subject
1, but weaker in the other subjects. In subject 1, the β weights
are large for high frequency Fourier power and small for low
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frequency Fourier power, but this pattern also is weak in the other
subjects. We note that subject 1 had substantially better signal (a
higher average noise ceiling and more voxels retained) than the
other subjects (Figure S01). Thus, the slightly inconsistent tuning
across subjects may have been a result of differences in signal
quality. The pattern of responses we observe in subject 1 and
in the highest-signal voxels in the other subjects are qualitatively
consistent with the results of Nasr and Tootell (2012), who found
reliably larger responses to cardinal orientations vs. oblique
orientations in PPA (Note that in the Nasr and Tootell study,
some of the individual voxels within RSC and OPA also showed a
cardinal > oblique orientation effect, even though the ROIs as a
whole did not).

The β weights for the subjective distance model
(Figures 5B,E,H) show that images with distant salient objects
elicited BOLD responses above the mean in most voxels in PPA,
RSC, and OPA. Images that contain nearby salient objects elicit
BOLD responses below the mean in these same areas. These
results were consistent across subjects. Several other studies
have also found increased responses to distant scenes (vs. nearby
scenes) in scene-selective areas (Amit et al., 2012; Park et al.,
2015).

The β weights for the object category model (Figures 5C,F,I)
show that images containing buildings or vistas (i.e., images with
edifice,water, and/or land labels) elicit BOLD responses above the
mean in PPA, RSC, and OPA. Some voxels also respond above
the mean to images with sky and furniture labels. In contrast,
images labeled with animate categories (e.g., land mammal, water
mammal, and few humans) elicited BOLD responses below the
mean. These results were consistent across subjects. The low
weight for the fruit and vegetable category is likely due to a
bias in stimulus sampling. The stimulus set contained numerous
close-up images of fruits and vegetables, such as the top image
in Figure 1A. The overall pattern of responses in all three
areas is consistent with numerous previous studies that have
demonstrated increased responses to landscapes, buildings, and
other large, inanimate objects in scene-selective areas (Epstein
and Kanwisher, 1998; Huth et al., 2012; Naselaris et al., 2012).

To visualize the cortical extent of each of these patterns of
tuning independent of ROIs, we computed three different t
contrasts between the β weights in each of the models for each
voxel in the cortex.We used the βweights from the Fourier power
model, the subjective distance model, and the object category
model, respectively, to compute contrasts of cardinal vs. oblique,
far vs. near, and humans vs. buildings. Each of these contrasts
has been emphasized in previous work. Thus, we provide them
here for purposes of comparison with other studies that have
computed similar maps. However, note that these contrasts are
simplifications of the full tuning profile revealed by the weights,
particularly for the object category model, which contains many
categories besides humans and buildings.

Figures 6A–C show each of these contrasts for one subject,
projected onto that subject’s cortical surface. Figures S04–S06
show the same maps for the other three subjects. For all three
contrasts, many voxels with reliably large (p < 0.05, FDR
corrected) positive t-values are located in PPA, RSC, and OPA.
Relatively few voxels outside scene-selective areas have large

positive t-values (Some voxels in the posterior medial parietal
lobe also show large t-values in some subjects, particularly for
the near vs. far contrast). These contrasts are broadly consistent
with contrast maps reported in other studies (Rajimehr et al.,
2011; Amit et al., 2012; Nasr and Tootell, 2012; Park et al., 2015).
However, as in Figure 5, there is variability across subjects in
the weights in the Fourier power model. Thus, our replication of
tuning for cardinal orientations (as observed by Nasr and Tootell,
2012) is weaker than our replication of tuning for far distances
and categories associated with scene structure.

In summary, the voxel-wise models of Fourier power,
subjective distance, and object categories reveal three
qualitatively different patterns of tuning that are common
to all three scene-selective areas: (somewhat) stronger responses
to cardinal than to oblique orientations, stronger responses to
distant than to nearby objects, and stronger responses to object
categories associated with buildings and landscapes than to
categories associated with animate objects. However, the tuning
revealed by the voxel-wise model β weights does not reveal
which of the three models provides the best overall account of
the responses in each area. Furthermore, some of the tuning
results in V1 and FFA suggest that correlations between features
in different models may have affected the estimated tuning
for each model (For example, it seems unlikely that V1 truly
represents fruits and vegetables, as Figure 4 seems to indicate).
We address both of these issues below.

The Object Category Model Makes the
Best Predictions in Scene-selective Areas
To determine which model provides the best description of
BOLD responses in each area, we used each fit model to predict
responses in a separate validation data set (Figure 1). We then
computed the correlation between the predictions of each model
and the estimated BOLD responses in the validation data.
Correlations were normalized by the estimated noise ceiling for
each voxel.

Figures 6D–F show estimates of prediction accuracy for all
three models for one subject projected onto that subject’s cortical
surface. Figures S04–S06 show similar maps for the other three
subjects. All three models accurately predict brain activity in
PPA, RSC, and OPA. The object category model also makes good
predictions in the FFA, the Occipital Face Area (OFA), and the
Extrastriate Body Area (EBA), as reported previously (Naselaris
et al., 2012). This is likely because the object model contains labels
for the presence of humans and other animate categories.

Figure 7 shows estimates of prediction accuracy for all three
models, averaged across voxels in all four subjects within each of
several different ROIs. Figure S07 shows the same result for each
individual subject.

In area V1 the Fourier power model provides the best
predictions of brain activity (bootstrap p < 0.05). This suggests
that tuning in the Fourier power model (Figure 4A) is more
important than tuning in the subjective distance and object
categorymodels in V1 (Figures 4B,C). In FFA the object category
model provides the best predictions (all bootstrap p < 0.05). This
suggests that tuning in the object category model (Figure 4F) is
more important than tuning in the Fourier power or subjective
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FIGURE 6 | Maps of voxel-wise t contrasts and normalized prediction accuracy for subject 1. Figures S04–S06 show the same maps for the other three

subjects. For all maps, dashed lines indicate the horizontal meridian in the visual field, solid lines indicate the vertical meridian, and dotted lines indicate the boundaries

of regions of interest defined by functional contrasts. (A) t contrast computed for β weights within the Fourier power model (cardinal vs. oblique). t-values are scaled

from -7 to 7, black voxels indicate t-values below the chance threshold (t < 3.36, FDR-corrected p > 0.05) despite good signal [γ > 0.04, p(γ ) < 0.01]. Gray voxels

indicate poor signal [γ < 0.04, p(γ ) > 0.01] and thus no basis for comparing models. (B) t contrast for β weights within the subjective distance model (far vs. near). (C)

t contrast computed for β weights within the object category model (buildings vs. people). Voxels with significant t contrasts for each of the three models are located in

the same regions of the cortex. (D) Prediction accuracy for the Fourier power model. Prediction accuracy has been normalized by the noise ceiling. Black voxels

indicate correlations that are below the chance threshold (r < 0.21, FDR-corrected p > 0.05) despite good signal [γ > 0.04, p(γ ) < 0.01]. Gray voxels indicate poor

signal [γ < 0.04, p(γ ) > 0.01], and thus no potential to test predictions. (E) Prediction accuracy for the subjective distance model. (F) Prediction accuracy for the

object category model. All three models make accurate predictions in similar locations across the cortex, though the object category model makes more accurate

predictions in FFA, OFA, and EBA. Combined with the t contrast maps, this suggests that the three different models may each describe the same response variance in

scene-selective areas in a different way.

distance models in FFA (Figures 4D,E). Thus, in both V1 and
FFA, choosing the bestmodel based on prediction accuracy favors
themodels that aremost consistent with previous results for these
areas (Jones and Palmer, 1987; Kanwisher and Yovel, 2006; Kay
et al., 2008; Naselaris et al., 2009). These examples demonstrate
how assessing prediction accuracy can (and should) affect the
interpretation of tuning revealed by β weights.

In PPA, the object category model provides the best
predictions of brain activity (all bootstrap p < 0.05). This
suggests that tuning in the object category model is more
important than tuning in the Fourier power or subjective distance
models in PPA. In RSC, the object category model provides more
accurate predictions than those provided by the Fourier power
model (bootstrap p < 0.05), but the predictions of the object
category model are not significantly different from those of the

subjective distance model (bootstrap p = 0.14). This suggests
that tuning in the object category model is more important than
tuning in the Fourier power model, but it is unclear whether
the tuning in the subjective distance model or the tuning in the
object category model is more important. In OPA, the object
category model provides the best predictions of brain activity
(all bootstrap p < 0.05). Thus, as in PPA, tuning in the object
category model is more important than tuning in the Fourier
power or subjective distance models in OPA.

Among the options tested here, the representation in two of
three scene-selective areas (PPA and OPA) is best described in
terms of tuning for object categories. In RSC, tuning for object
categories is more important than tuning for Fourier power.
Thus, the object category model seems to be a good model for all
three areas. However, this conclusion is weakened by variability
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FIGURE 7 | Prediction accuracy (Pearson’s r) averaged across all

voxels and all subjects within several different regions of interest.

Predictions are normalized by the noise ceiling and only voxels with reliable

stimulus-evoked responses are included. Error bars are 99% confidence

intervals, asterisks indicate significant differences between models

(bootstrapped p < 0.05), and the dotted lines across the bottom indicate the

chance threshold (bootstrapped p = 0.05) for the mean correlation for each

ROI (Thresholds differ slightly across ROIs because of the differing number of

voxels in each ROI). The Fourier power model makes the best predictions in

V1, and the semantic category model makes the best predictions in all other

ROIs (except in RSC, where the subjective distance model and the semantic

category model are not reliably distinguishable). We note, however, that the

object category model was not reliably better than the Fourier power and

subjective distance models in all three scene-selective areas in all subjects

(see Figure S07 for individual subject results).

in relative prediction accuracy across individual subjects (Figure
S07). Furthermore, the fact that all three models make quite
accurate predictions in all three areas (across all subjects with
good signal) suggests that eachmodel may each describe the same
underlying representation in different ways.

The Fourier Power, Subjective Distance,
and Object Category Models All Explain
the Same Response Variance
The Fourier power, subjective distance and object category
models all provide accurate predictions of BOLD responses in
scene-selective visual areas. Given this result, an obvious question
arises: do the Fourier power and subjective distance models
explain the same BOLD response variance as is explained by the
object category model? That is, can tuning for Fourier power
and/or subjective distance almost fully account for category
tuning? This question cannot be answered by merely examining
prediction accuracy, because two models that make comparably
accurate predictions could describe either unique or shared
components of response variance (see example in Figure 3B).We
performed a variance partitioning analysis to determine whether
the three models explain unique or shared response variance in
the ROIs of interest here. Variance partitioning allocates variance
to each model based on whether twomodels can be combined for
a gain in variance explained. If they can, then eachmodel explains
unique response variance; if not, the variance explained by the
models is shared (see Figure 3 and Methods for an overview).

Figures 8, 9 show the results of the variance partitioning
analysis. In V1, only the Fourier power model explains any
unique variance that cannot be explained by the other two
models. All three models also share a small amount of variance

FIGURE 8 | Two-way variance partitioning analyses. All plots are based

on concatenated data for all four subjects. (A) Independent and shared

variance explained by Fourier power and subjective distance models. Dotted

lines at the bottom of the graph indicate chance levels (bootstrapped

p = 0.05) of variance explained, and asterisks indicate significant differences in

variance explained (bootstrapped p < 0.05). Error bars are 99% confidence

intervals across all voxels in a region. (B) Independent and shared variance

explained by Fourier power and object category models. (C) Independent and

shared variance explained by subjective distance and object category models.

In PPA, RSC, and OPA, all pairs of models share a substantial amount of

variance. Compared to the object category model, neither the Fourier power

model nor the subjective distance model explains any unique variance.

in V1. The shared variance is likely due to natural correlations
between specific features that affect responses in V1 and other
features. For example, images with distant objects often have low
overall contrast (and thus low Fourier power, as the image of the
ocean in Figure 1A); thus distance and Fourier power are likely
to be correlated (We analyze correlations between all features
in detail below). Since total Fourier power affects responses in
V1 (Figure 4A), this correlation could lead to the subjective
distance model and the Fourier power model providing similar
predictions (and thus explaining shared variance). Thus, it is
likely that the subjective distance and object categorymodels only
explain any variance in V1 (Figure 7) because of the variance that
they share with the Fourier power model.

In FFA, only the object category model explains any unique
variance. All three models also share a significant amount of
variance, and the subjective distance model and the object
category model share a significant amount of variance that is
independent of the Fourier power model. The unique variance
explained by the object category model is in keeping with
known response properties of FFA (Kanwisher and Yovel, 2006;
Huth et al., 2012; Naselaris et al., 2012). As in V1, the shared
variance between the object category model and the subjective
distance model may be due to natural correlations between
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FIGURE 9 | Three-way variance partitioning analysis. (A) Venn diagram

representing hypothetical relationships between the variance explained by the

three models, such that each explains a unique component of the variance.

(B) A different hypothetical relationship in which the semantic category model

explains a large fraction amount of independent variance, but the three models

all share small amounts of variance. (C) A third possible relationship in which

all three models explain shared variance, and the Fourier power and subjective

distance models account for most of the variance explained by the object

category model. (D) Three-way variance partitioning results obtained in our

experiment. This plot is based on concatenated data for all four subjects;

results for individual subjects are shown in Figure S08. Dotted lines at the

bottom of the graph indicate chance thresholds (bootstrapped p = 0.05) for

the amount of variance explained. Chance thresholds differ depending on the

number of voxels per ROI and the number of subtractions between fit models

necessary to compute each component of the variance. Error bars are 99%

confidence intervals across all voxels in a region. The pattern of results is most

consistent with the Venn diagram in (C).

features. For example, people and other animate categories
are more likely to be present at specific distances (in this
particular stimulus set, and also potentially in natural visual
experience in general). Interestingly, at least one other study
has found similar tuning for distance in FFA (Park et al., 2015).
However, this study may be subject to the same stimulus feature
correlations.

In scene-selective areas PPA, RSC and OPA, most of the
variance explained by the Fourier power, subjective distance,
and object category models is shared among all three models
(Figure 9). That is, most of the variance explained by any
one of the three models is explained by all three models.
Only the object category model explains any unique variance
in PPA, RSC, or OPA that cannot be explained by the other
two models (Figure 9). Thus, the Fourier power and subjective
distance models provide partial (but not complete) explanations
of variance explained by the object category model in scene-
selective areas.

The Fourier power and subjective distance models could
be favored on grounds of parsimony, since both models have
fewer feature channels than the object category model, and both
Fourier power and distance are presumably less complex to
compute than abstract category labels. However, neither simpler
model provides a more accurate description of BOLD responses
in scene-selective areas than that provided by the object category
model, and neither model predicts any variance that is not
already accounted for by the object category model.

Fourier Power, Subjective Distance, and
Object Category Labels are Highly
Correlated in Natural Images
The shared variance among the three models in PPA, RSC, and
OPA is likely due to correlations between features in the feature
spaces underlying the models. To investigate this possibility
we computed the correlations between all features in the
Fourier power, subjective distance, and object category feature
spaces. Figure 10 shows the resulting correlations. The highest
correlations are between the features within the Fourier power
feature space. This was expected, since correlations between
different spatial frequency bands are a well-known property of
natural images (Field, 1987). The average correlation magnitude
for features in different feature spaces is r = 0.11.

We found reliable relationships between several Fourier
power and subjective distance channels. For example, Figure 10B
shows that horizontal high frequency Fourier power is positively
correlated with far distances and negatively correlated with near
distances. These correlations may be a result of thin horizontal
horizon lines in distant images. Conversely, two low frequency
Fourier power channels (Low freq 45◦ and Low freq 135◦)
are positively correlated with near and medium distances and
negatively correlated with far distances. Vertical low frequency
Fourier power is also positively correlated with intermediate
distances and negatively correlated with far distances. The
correlations between most low frequency channels and near
distances could be a result of perspective projection: nearby
objects will fill more of the visual field, and thereby increase
low frequency Fourier power. Low frequency horizontal Fourier
power may not follow the same trend as other low frequency
orientations because the land/sky boundaries will increase both
high and low horizontal Fourier power in distant scenes.

To determine whether the relationships between Fourier
power and distance that we observe are general to other stimulus
sets as well, we computed the same Fourier power feature space
for the stimuli used in two previous fMRI studies of distance
representation (Kravitz et al., 2011; Park et al., 2015). In both
stimulus sets, we found the same relationships between Fourier
power and distance as in our stimuli (Figure 11; See Figures S09,
S10 for further analysis of these two data sets).

We also note that many of the features that elicit large
responses in scene-selective areas (Figure 5) have relatively high
correlations with each other. For example, the category label sky
is correlated with the subjective distance label Distant (<100′)
(r = 0.39), and horizontal high-frequency Fourier power
(Fourier power channel High freq, 0◦) is correlated with the
semantic labels vehicle, sky, and water (r = 0.19, 0.27, and
0.27, respectively). Each of these labels is fairly common in
the stimulus set (each occurs in at least 230/1326 images—see
Figure S03 for frequencies of all object category and distance
labels). Thus, the correlations between Fourier power feature
channels and the category labels vehicle, sky, and water are
reasonably likely to be representative of natural relationships
between features in the real world.

Other correlations between less common labels may reflect
sampling biases in this particular set of images. For example, the
correlation between the nearest distance label [Closeup (<2′)]
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FIGURE 10 | Correlations between all features in the Fourier power, subjective distance, and object category feature spaces. (A) Full correlation matrix.

White lines demarcate boundaries between feature spaces. Features that elicit responses above the mean in scene-selective areas [the Fourier power features labeled

High freq, 0◦ and High freq, 90◦; the subjective distance features labeled Distant (<100′) and V. far (>100′); and the semantic category labels Edifice, Part of building,

Water, Land, and Sky] tend to have high correlations between them. Panels (B,C) provide zoomed in views of the correlation values for the rows marked (B,C) in the

correlation matrix. (B) Bar graph of the correlations between the Fourier power channel High freq, 0◦ and all subjective distance features. High frequency horizontal

Fourier power is positively correlated with large subjective distances, potentially due to the presence of a thin horizon line and tiny objects in faraway scenes. (C) Bar

graph of the correlations between the subjective distance channel Distant (<100′) and all object category features. Distant scenes are tend to have the labels Vehicle,

Sky, Part of building, and Edifice. The high correlations between features with high β weights in scene-selective areas could be a consequence of all three models

attempting to parameterize the space of scene features.

and the object label Fruit/vegetable is 0.39. Fruit/vegetable only
occurs in 62 images, of which 32 are rated as Closeup (<2′).
The relative rarity of the Fruit/vegetable labels, combined with
the observation that fruits do not usually appear less than two
feet from one’s face, suggest that this correlation is potentially
spurious.

Whether feature correlations are due to natural statistics or
sampling biases, there is a risk that they will lead to biases in
estimation of weights, and thereby to models that spuriously
share variance. However, it is unclear whether correlations of the

magnitude that we observe will necessarily give rise to models
that share variance.

A Combination of Correlations between
Features and Voxel Tuning Produce Shared
Variance
We performed a simulation to illustrate how the feature
correlations and voxel-wise β weights in our experiment give
rise to models that explain the same variance. We generated

Frontiers in Computational Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 135 | 90

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lescroart et al. Competing models of scene-selective areas

FIGURE 11 | Correlations between distance and two Fourier power

channels in stimulus sets from other studies. (A) Mean low frequency

vertical and high frequency horizontal Fourier power for each distance bin for

images used in Experiment 2 of Park et al. (2015). Fourier power channels

were z-scored across all images in the stimulus set before averaging across

bins. Error bars are standard errors of the mean. (B) Low frequency vertical

and high frequency horizontal Fourier power for each image in Kravitz et al.

(2011), plotted against the behavioral distance ratings for each image obtained

in that study. In both stimulus sets, as in our stimulus set, low frequency

vertical (90◦) Fourier power is reliably associated with nearer scenes, and high

frequency horizontal (0◦) Fourier power is reliably associated with far-away

scenes.

two simulated data sets. The first was based on the stimulus
feature spaces and the β weights estimated from the fMRI data
for voxels in scene-selective areas, and the other was based on
the same feature spaces and a set of semi-random β weights
(see Methods for details). The two sets of β weights differed in
whether the features that were correlated across feature spaces
had relatively high β weights or not (the real weights did, but the
randomweights generally did not).We applied the same variance
partitioning analysis that we previously applied to the fMRI data
to both sets of simulated data.

Figure 12 shows the results of the simulation. When semi-
random β weights were used to generate the simulated data, the
variance partitioning still detected unique variance explained by
each model despite the correlations between some of the features
in the feature spaces. However, when the real β weights were
used to generate the simulated data, the variance partitioning
analysis found a large fraction of shared variance between all
three models. Thus, the simulation makes it clear that correlated
features in different feature spaces only lead to shared variance
if the correlated features also have relatively high β weights.

FIGURE 12 | Simulated variance partitioning. (A) Variance partitioning

conducted on simulated data generated based on the feature spaces for all

three models and a set of semi-random β weights (see Methods for details).

This shows that, despite the correlations between feature spaces, there are

many patterns of tuning that could result in estimates of unique variance

explained for each model. (B) Variance partitioning conducted on simulated

data generated based on the feature spaces for all three models and actual β

weights from voxels in scene-selective areas. This shows that the specific

pattern of tuning that we observed (with high weights on the most correlated

features) is likely to result in shared variance across these three models.

The β weights, which reflect the specific response properties of
PPA, RSC, andOPA, can selectivelymagnify correlations between
particular correlated features when predictions are computed,
which can lead to shared variance between the different models.

This suggests that new models of scene-selective areas are
more likely to explain unique variance to the extent that the
features they parameterize are not correlated with other features
known to be associated with responses in scene-selective areas.

DISCUSSION

Several areas in the human brain respond to visual scenes, but
which specific scene-related features are represented in these
areas remains unclear. We investigated three hypotheses that
have been proposed to account for responses in scene-selective
areas such as PPA, RSC, and OPA. Specifically, we investigated
whether these areas represent (1) information about the Fourier
power of scenes, (2) the subjective distance to salient objects in
scenes, or (3) semantic categories of scenes and their constituent
objects. We evaluated these three hypotheses by applying voxel-
wise modeling to a data set consisting of BOLD fMRI responses
elicited by a large set of natural images.We created and compared
the prediction performance of three voxel-wise encoding models,
one reflecting each of these alternative hypotheses.

We found that a voxel-wise model based on semantic
categories makes slightly more accurate predictions than a model
based on Fourier power (in PPA, RSC, and OPA) or subjective
distance (in PPA and OPA). However, a variance partitioning
analysis revealed that, in all three areas, the variance predicted by
these three models is mostly shared. The shared variance is likely
a result of a combination of the response patterns of voxels in
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scene-selective areas and high natural correlations between the
stimulus features in the feature spaces underlying each of the
models. We therefore conclude that any or all of these models
can provide a plausible account of visual representation in PPA,
RSC, and OPA.

Previous Studies Have Not Resolved which
Model Best describes Scene-selective
Areas
Several previous studies of PPA, RSC, and/or OPA have argued in
favor of each of the hypotheses tested here, or in favor of closely
related hypotheses (Walther et al., 2009; Kravitz et al., 2011; Park
et al., 2011, 2015; Rajimehr et al., 2011; Nasr and Tootell, 2012;
Watson et al., 2014). However, none have completely resolved
which features are most likely to be represented in scene-selective
areas. We briefly review three representative and well-designed
studies of scene-selective areas here, and assess their conclusions
in light of our results.

Nasr and Tootell argued that PPA represents Fourier power
(Nasr and Tootell, 2012). Specifically, they showed that filtered
natural images with Fourier power at cardinal orientations elicit
larger responses in PPA than do filtered images with Fourier
power at oblique orientations. In two control experiments,
they measured fMRI responses to stimuli consisting of only
simple shapes, and found the same pattern of responses. Thus,
their results suggest that Fourier power at cardinal orientations
influences responses in PPA independent of subjective distance
or semantic categories. This in turn suggests that the Fourier
power model in our experiment should predict some unique
response variance that is independent of the subjective distance
and semantic category models. We did find that the Fourier
power model gave accurate predictions in scene-selective areas.
However, we did not find any unique variance explained by the
Fourier powermodel. There are at least two possible explanations
for this discrepancy. First, the Fourier power model may explain
some unique variance, but we may have mischaracterized it as
shared variance because of stimulus correlations. Second, the
results of Nasr and Tootell’s study, which relied on filtered and
artificial stimuli, simply may not generalize to explain responses
to natural images. This is a known pitfall of using artificial or
manipulated stimuli (Talebi and Baker, 2012). In any case, the
data from the Nasr and Tootell study provide no information
about the strength of the relationship between Fourier power and
BOLD responses in scene-selective areas relative to the effects
of other features. Thus, their study cannot resolve the question
of which model is best, nor the question of how Fourier power
features are related to other features.

Park et al. (2015) argued that PPA and RSC represent scene
size. Their metric for scene size was based on human judgments,
and so is closely related to the subjective distance model that
we tested here. They measured BOLD responses to a large and
carefully chosen set of photographs of natural scenes, and found
that responses in PPA and RSC increased parametrically with
scene size. However, we found a strong relationship between
scene size and Fourier power in the images used in the Park
et al. study (Figure 11A, Figure S10). To try to avoid just

such confounds, Park and colleagues created a control stimulus
set in which high-frequency Fourier power was approximately
equalized across different scene sizes. We did not test this
control stimulus set directly, but since the differences in Fourier
power that we observed were specific to particular orientations,
it is unlikely that their control removed all Fourier power
differences between scenes. This suggests that differences in
particular Fourier power channels between different scene sizes
might account for the results reported in the Park study, just as
both the Fourier power and subjective distance models provide
equivalent descriptions of scene-selective regions in our data.
Finally, Park and colleagues did not assess whether the specific
semantic categories of objects in each of their scenes might have
affected BOLD responses. Without this comparison, it is unclear
whether the presence of different object categories in their scenes
may have also affected their results. For all these reasons, the
results reported by Park and colleagues cannot provide a basis
for choosing between the three models of scene-selective areas
that we consider.

Kravitz et al. (2011) argue that PPA and OPA represent
scene expanse (defined as the difference between open and
closed scenes) and relative distance (defined as the difference
between near and far scenes). They find that voxel patterns
in PPA and OPA distinguish both open scenes from closed
scenes and near scenes from far scenes better than the same
voxels distinguish natural from manmade scenes. However,
variation in Fourier power across their experimental conditions
complicates the interpretation of their results. They acknowledge
that the open and closed scenes in their stimulus set have
visibly different Fourier power spectra. When we processed their
stimuli with our Fourier power model, we found significant
differences between their open and closed scenes in several
Fourier power channels (Figure S09A). This suggests that the
different patterns of responses they observed to open and closed
scenes could be equally well explained by differences in Fourier
power between open and closed scenes. Kravitz et al. do not
report any differences between the Fourier spectra of the near and
far scenes in their stimulus set. Our analysis of their stimuli also
does not find any reliable difference in any Fourier power channel
between their near and far scenes (Figure S09B). However, their
Near and Far condition labels were based on relative distance
within each scene category, which means that the scenes in the
Near condition were not necessarily all the subjectively nearest
scenes. For example, half their images of beaches were labeled
as Near and half their images of hallways were labeled as Far,
regardless of whether the beaches were subjectively nearer than
the hallways. They did, however, obtain a measure of the relative
subjective distance of each scene.When we compared the Fourier
power features for each image to these distance ratings (instead
of to the near/far condition labels), we found reliable correlations
between Fourier power and relative subjective distance in their
stimulus set (Figure 11B and Figure S09C), just as in our stimuli
and in the Park et al. (2015) stimuli. Thus, the correlation
between subjective distance ratings and fMRI-based distance
scores reported in Kravitz et al. (2011) might be explained by
variation in Fourier power—specifically, by the presence of high
frequency horizontal Fourier power in distant scenes. In sum,
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our reanalysis of the stimuli from Kravitz et al. (2011) suggest
that their results cannot provide a basis for choosing between the
three models of scene-selective areas that we consider here.

Other Hypotheses Regarding
Scene-selective Areas
The Fourier power, subjective distance, and object category
feature spaces that we investigated broadly sample the space of
hypotheses regarding the representation in scene-selective areas.
However, three specific feature spaces obviously do not constitute
a comprehensive test of every hypothesis in the literature.

Several other feature spaces have been proposed that
parameterize variation in the same three broad domains that
our models do (low-level image features, 3D spatial layout,
and categorical or semantic information), but with different
parameters. For example, low-level image variation can be
parameterized using Gabor wavelets (Jones and Palmer, 1987;
Kay et al., 2008), scene gist (Oliva and Torralba, 2001; Watson
et al., 2014), or extended contours (Walther et al., 2011).
3D spatial variation can be parameterized according to scene
expanse (Kravitz et al., 2011; Park et al., 2011) or local scene
structure (Epstein and Kanwisher, 1998; Kornblith et al., 2013).
And categorical information about scenes can be parameterized
using hierarchical object labels (Huth et al., 2012) or labels for
categories of scenes rather than objects, including distinctions
between natural and man-made scenes (Naselaris et al., 2009;
Walther et al., 2009; Stansbury et al., 2013).

Previous studies have also proposed that scene-selective areas
may represent scene familiarity (Epstein et al., 2007), landmarks
(Janzen and van Turennout, 2004; Auger et al., 2012), or other
scene features relevant for navigation (Epstein, 2008; Morgan
et al., 2011). None of these hypotheses are obviously related to
the feature spaces we investigated.

Any of these feature spaces, if they were formalized and tested
in the voxel-wise modeling framework, could potentially yield
better or more unique models of BOLD responses than those we
tested. However, all these other feature spaces—particularly those
in the same broad categories of hypotheses as our models—may
be strongly related to each other in the same way that the feature
spaces we tested are. Our work provides a blueprint for how to
address the correlations between feature spaces in a quantitative
and principled way, and to assess which models explain unique
or shared variance.

Suggestions for Further Studies on
Representation in Scene-selective Areas
Our study suggests that the data available currently are not
sufficient to discriminate between the alternative hypotheses that
scene-selective areas represent information about Fourier power,
subjective distance, or object categories. It could be the case
that scene-selective areas represent all of these distinct feature
classes. Alternatively, it could be the case that scene-selective
areas represent only one of these three distinct classes of features,
but that the presence of stimulus correlations in our study and
missing controls and analyses in previous studies have precluded
identification of the most appropriate feature space. Is there any
way to resolve this issue?

The only way forward is to test the same models (and/or
related models) on different stimulus sets, and to search for
stimuli for which some models fail to make accurate predictions
of brain responses and other models succeed. However, new
stimuli must be chosen carefully to reduce the correlations
between stimulus features in different alternative models. Simply
removing problematic features (e.g., by Fourier bandpass filtering
the stimuli) is not a good solution because the visual system
is highly nonlinear (Carandini et al., 2005; Wu et al., 2006).
Spatial frequencies that are filtered out of a stimulus may be
reintroduced within the visual system by nonlinear processes
operating at any level. An analogous process occurs in themissing
fundamental phenomenon, which is well known in audition
(Wightman, 1973a,b).

Restricting feature variation in experimental stimuli to avoid
correlations between features is also not a good solution. This
approach might produce satisfying results within the range of
stimuli tested in an experiment, but the resulting model will be
unlikely to generalize to the larger range of stimuli encountered
in the natural world (Talebi and Baker, 2012). This is a lesson that
has been well learned in the visual neurophysiology community
over the past 20 years: if models are developed using filtered,
constrained or highly artificial stimuli, they tend to perform
poorly when tested on natural images (David et al., 2004; Talebi
and Baker, 2012).

We suggest that one useful way forward would be to create
natural stimulus sets that reduce the covariance of stimulus
features while maintaining a natural range of variance in as
many features as possible. It might be possible to generate
stimuli that satisfy these constraints parametrically. Alternatively,
it might be possible to develop an appropriate stimulus set
by sampling images from an extremely large online database
such as ImageNet (http://www.image-net.org/) or the Flickr
image database (https://www.flickr.com/creativecommons/). A
stimulus set that is designed specifically to minimize covariance
between features while maintaining natural variability will reduce
the amount of shared variance between models, and lead
to clearer conclusions as to which model is best for each
area.

Our suggestion that new stimulus sets should be developed
is not completely novel. The imperative to include a reasonable
amount of natural variation in a stimulus set seems to be an
implicit guiding principle in many studies (e.g., Kravitz et al.,
2011; Park et al., 2015). However, such implicit guiding principles
are imprecise and likely to vary across experiments. Thus, we
suggest that more effort should be devoted to defining stimulus
features quantitatively rather than operationally. Quantitative
definitions of features improve the ability to measure and
control feature coverage and feature covariance. One substantial
advantage of the voxel-wise modeling approach used here is
that it provides a very clear and quantitative picture of what
is known and what is not known. Stimulus properties can be
quantified and modeled directly. Correlations between features
within models and across models can also be quantified and
assessed. This approach provides an unambiguous view of where
the field is today, and it leads to clear recommendations for future
studies.
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Top-down attention has often been separately studied in the contexts of either optimal
population coding or biasing of visual search. Yet, both are intimately linked, as they entail
optimally modulating sensory variables in neural populations according to top-down goals.
Designing experiments to probe top-down attentional modulation is difficult because
non-linear population dynamics are hard to predict in the absence of a concise theoretical
framework. Here, we describe a unified framework that encompasses both contexts.
Our work sheds light onto the ongoing debate on whether attention modulates neural
response gain, tuning width, and/or preferred feature. We evaluate the framework by
conducting simulations for two tasks: (1) classification (discrimination) of two stimuli sa
and sb and (2) searching for a target T among distractors D. Results demonstrate that all of
gain, tuning, and preferred feature modulation happen to different extents, depending on
stimulus conditions and task demands. The theoretical analysis shows that task difficulty
(linked to difference � between sa and sb, or T , and D) is a crucial factor in optimal
modulation, with different effects in discrimination vs. search. Further, our framework
allows us to quantify the relative utility of neural parameters. In easy tasks (when � is large
compared to the density of the neural population), modulating gains and preferred features
is sufficient to yield nearly optimal performance; however, in difficult tasks (smaller �),
modulating tuning width becomes necessary to improve performance. This suggests that
the conflicting reports from different experimental studies may be due to differences in
tasks and in their difficulties. We further propose future electrophysiology experiments to
observe different types of attentional modulation in a same neuron.

Keywords: top-down attention, neural modulation, neural coding, gain, tuning width, feature selectivity

1. INTRODUCTION
Optimal neural coding, or efficient coding, suggests that sensory
systems have evolved to optimize the representation of the world
around us. Two seemingly different fields of study, neural coding
and visual search, have addressed neural modulation. The former
has mainly investigated the optimal tuning width for a population
of neurons (often one value for all neurons) in stimulus recon-
struction and discrimination tasks (e.g., Zhang and Sejnowski,
1999; Jazayeri and Movshon, 2006; Berens et al., 2011; Wang
et al., 2012). For example the question of whether sharpening
or broadening a neuron’s tuning might improve performance has
attracted significant interest (e.g., Pouget et al., 1999; Zhang and
Sejnowski, 1999). Computational studies of top-down biasing of
visual search, on the other hand, have primarily addressed opti-
mal gain modulation (e.g., Navalpakkam and Itti, 2007; Scolari
and Serences, 2009, 2010; Scolari et al., 2012). Optimal neu-
ral modulation, in general, is a complex optimization problem
since several variables such as statistics of stimuli, task vari-
ability, limitations of neural systems (e.g., number of neurons
and parameters, metabolic cost, noise), and coupled nonlinear
dynamics are involved. Here, we present a reconciled and abstract
account of optimal neural modulation by solving for the best set
of gain, tuning width and preferred feature of individual neu-
rons to maximize classification and visual search performance.

We use terms attention and optimal neural modulation inter-
changeably since the term “attention,” as currently used in the
literature, refers to a highly heterogeneous class of phenomena.
Characteristics of these phenomena vary significantly depending
on the specific context in which the nervous system is operating
(e.g., different time scales, tasks, environments, etc.).

1.1. OVERVIEW OF ATTENTIONAL MODULATION
Finding a friend amidst several hundred passengers at an air-
port can be a nightmare. Yet, our brain handles the explo-
sion of information efficiently by filtering out irrelevant or
distracting stimuli, and by drawing our gaze to salient and rel-
evant visual stimuli, through a process known as visual atten-
tion (Treisman and Gelade, 1980; Tsotsos, 1992; Desimone and
Duncan, 1995; James, 2011). Specifically, visual attention is
believed to help in at least two ways: goal-driven top-down atten-
tion (Yarbus, 1967; Corbetta and Shulman, 2002; Borji and Itti,
2014) might help in focusing on relevant image regions that
resemble our friend’s appearance, thereby accelerating our search,
and stimulus-driven bottom-up attention (Koch and Ullman,
1985) might alert us to salient image regions like moving cars,
pedestrians or dollies in our way, thereby avoiding accidents
(Itti and Koch, 2001). Together, top-down and bottom-up atten-
tion help us select a few relevant and salient image regions for
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further processing, including recognition, representation, aware-
ness and action (Desimone and Duncan, 1995; Crick and Koch,
1998). Please see Itti and Koch (2001), Hayhoe and Ballard
(2005), Macknik et al. (2008), Eckstein et al. (2009), Baluch
and Itti (2011), Carrasco (2011), Eckstein (2011), Kowler
(2011), Nakayama and Martini (2011), Schütz et al. (2011), Tatler
et al. (2011), and Borji and Itti (2013) for recent reviews of
attentional mechanisms at behavioral, computational, and neural
levels.

There exists at least three types of attention – spatial (Posner
et al., 1980; Moran and Desimone, 1985; Kastner et al., 1999;
Womelsdorf et al., 2006; Talsma et al., 2007), feature-based (Treue
and Trujillo, 1999; Saenz et al., 2003; Sohn et al., 2005; Maunsell
and Treue, 2006; Serences and Boynton, 2007; Jehee et al., 2011)
and object-based attention (Duncan, 1984, 1996; Roelfsema et al.,
1998; Kanwisher and Wojciulik, 2000; Reynolds et al., 2003; Chen,
2012; Cohen and Tong, 2013), depending on whether the basic
unit of attentional deployment is a spatial location/region (e.g.,
the attentional “spotlight” Treisman and Gelade, 1980; Crick,
1984; Brefczynski and DeYoe, 1999), visual feature (e.g., color,
orientation), or an object.

Attention offers several behavioral advantages. It is known to:

• Improve processing of stimuli at the attended location (Posner
et al., 1980),

• Improve detection of faint stimuli and to lower contrast thresh-
olds (Carrasco et al., 2000; Baldassi and Verghese, 2005),

• Improve feature discrimination (Lee et al., 1999),
• Increase spatial resolution (He et al., 1996; Yeshurun and

Carrasco, 1998),
• Reject unwanted stimulus noise (Lu and Dosher, 1998; Ling

et al., 2009),
• Increase the rate of visual processing (Carrasco and McElree,

2001),
• Affect appearance (Liu et al., 2006).

In effect, attention filters out irrelevant stimuli from the visual
input and enables neural resources to be focused on the relevant
locations, features and objects (Zhang et al., 2011).

Attentional modulation is widespread in the brain and has
been observed in multiple areas along the cortical hierarchy
including:

• V1 (Motter, 1993; Watanabe et al., 1998; Martinez et al., 1999;
Huk and Heeger, 2000; Saenz et al., 2002; Verghese et al., 2012),

• V2 (Motter, 1993; Luck et al., 1997),
• V4 (Haenny and Schiller, 1988; Spitzer et al., 1988; Motter,

1993; Connor et al., 1997; Luck et al., 1997; McAdams and
Maunsell, 1999; Williford and Maunsell, 2006; David et al.,
2008; Ipata et al., 2012),

• MT (Treue and Maunsell, 1996; O’Craven et al., 1997; Treue
and Trujillo, 1999; Saenz et al., 2002; Sohn et al., 2005),

• Lateral Intra-Parietal cortex (LIP) (Bushnell et al., 1981; Colby
et al., 1996; Gottlieb et al., 1998; Bisley and Goldberg, 2003),

• Frontal Eye Fields (FEF) (Bichot and Schall, 2002; Moore and
Fallah, 2004; Bichot et al., 2005),

• Subcortical structures like Lateral Geniculate Nucleus
(LGN) (O’Connor et al., 2002) and Superior Colliculus
(SC) (Munoz et al., 1991; Fecteau and Munoz, 2006).

Attentional effects are task-dependent. In separate studies, atten-
tion to color/shape has been shown to enhance BOLD activity
in V4, while attention in a speed discrimination task increases
activity in MT, and attention in a contrast discrimination task
increases activity in V1 (Corbetta et al., 1990; Beauchamp et al.,
1997; O’Craven et al., 1997; Huk and Heeger, 2000; Verghese et al.,
2012). In fact, simply instructing observers to pay attention to
different aspects of a same stimulus on different blocks of tri-
als triggers different observable attentional modulation effects,
in distinct anatomical and functional cortical areas. For exam-
ple, Watanabe et al. (1998) showed, using one stimulus with
superimposed translating and expanding fields of dots, differen-
tial attentional modulation of BOLD activation, depending on
whether the task was to attend to the translating or the expanding
feature of the stimulus.

Although different neural mechanisms for attention have
been reported, the physiology literature presently appears to be
divided. Attention to a neuron’s preferred location or feature
could:

• Cause a leftward shift in the neuron’s contrast response func-
tion thus increasing the effective contrast of the stimulus
(Reynolds et al., 2000; Martinez-Trujillo and Treue, 2002),

• Increase the response gain of the neuron a.k.a multiplicative
scaling (McAdams and Maunsell, 1999; Treue and Trujillo,
1999; Womelsdorf et al., 2008; Boynton, 2009; Reynolds and
Heeger, 2009; Saproo and Serences, 2010; Scolari and Serences,
2010; Scolari et al., 2012),

• Decrease the neuron’s tuning width a.k.a bandwidth scal-
ing (Moran and Desimone, 1985; Haenny and Schiller, 1988;
Spitzer et al., 1988),

• Increase neuron’s baseline or spontaneous activity a.k.a addi-
tive scaling (Luck et al., 1997; Chelazzi et al., 1998; Chawla
et al., 1999; Kastner et al., 1999),

• Shift neurons tuned to nearby locations toward the attended
location (Connor et al., 1996; Womelsdorf et al., 2006; David
et al., 2008; Ipata et al., 2012),

• Modulate neuronal interactions through neuronal synchro-
nization (Fries et al., 2001; Womelsdorf and Fries, 2007;
Womelsdorf et al., 2007).

Note that the underlying mechanisms responsible for these
observed effects at the single-unit level may be more complex,
for example involving biasing or winner-take-all (WTA) com-
petitions among neurons in a local population (Desimone and
Duncan, 1995; Lee et al., 1999), or through gain modulation
of upstream neurons (McAdams and Maunsell, 1999). Figure 1
illustrates four possible types of attentional modulation of a neu-
ral population. Here, we discard the additive scaling since it has
been argued that uniform translation of a tuning function does
not affect the coding precision of that tuning function (Cover and
Thomas, 1991) (but see Saproo and Serences, 2010), Paragraph
4 in the Discussion section and hence information content of a
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FIGURE 1 | This illustration depicts four possible attention-induced

modulations of a neural population to a given visual task (here

classification and visual search). Attention theoretically can: (A) Increase
the gain of some important neurons a.k.a multiplicative scaling. This
modulation selectivity increases the gain of the neurons that are more
useful to find the target in visual search (or two classes in the classification
and discrimination tasks). (B) Enhance response amplitudes in a
feature-nonspecific manner a.k.a additive scaling. (C) Increase the
selectivity of a neuron by modulating its tuning width (here sharpening)
a.k.a bandwidth scaling, and (D) Shift tuning curves of neurons around to
concentrate on important regions of the feature space (or shifting physical
spatial receptive field of a neuron). Faint tuning curves correspond to the
neural population before modulation, dotted black curve is the neuron under
investigation, and the solid black curve is the modulated tuning curve. Here,
we discard case (B) to make our simulations easier and tractable. Further, it
has been argued that this case does not affect information decoding much.

neural population. Further, this simplification makes our analysis
easier and tractable.

1.2. OPTIMAL ATTENTIONAL MODULATION
To gain better insight into above-mentioned discrepancies, we
propose a unified account for optimal modulation of neural activ-
ity over two tasks: (1) stimulus classification (which of two stimuli
was presented on the basis of the neural response pattern) and
(2) visual search (i.e., enhancing the representation of the tar-
get stimulus, thus making search easier). Target selection often
comes up in the context of a real world task such as visual search
where the observer may be looking for a particular target, or for
an unknown target that is the odd-ball. Our proposed frame-
work can extend to additional tasks, including match-to-sample
(as a neuron’s response to the matching stimulus is enhanced
while response to any non-matching stimulus is suppressed),
discrimination, and stimulus reconstruction.

Let p(r|sa) and p(r|sb) be probability distributions of popu-
lation activity r to two stimuli sa and sb. The goal of optimal

population modulation is to find the best set of parameters for
each of n sensory neurons (i.e., θi = [gi, σi, μi] including gain,
tuning width, and feature selectivity) such that:

φ∗ = arg max
φ

f (p(r(φ)|sa), p(r(φ)|sb)), φ = [θi = 1...n] (1)

where f denotes the task objective function. For classification and
discrimination tasks, f can be the mutual information between
neural activity and behavioral response, or classification accuracy
(e.g., linear discrimination error). Here we choose to maximize
the inverse of minimum discrimination error (MDE) as the opti-
mality criterion for the classification task. It has been shown that
MDE has several advantages over other criteria such as Fisher
Information (Berens et al., 2011). For visual search tasks, we
choose to maximize signal to noise ratio (SNR). The concept
of SNR has been suggested by psychophysicists as measured by
the amount of overlap between target (=“signal”) and distractor
(=“noise”) response distributions. If the purpose is reconstruc-
tion (i.e., estimate the true value of the presented stimulus on
the basis of the noisy neural response r: ŝ = arg maxs p(s|r) ∝
arg maxs p(r|s)p(s)), then f can be the inverse of the mean squared
error (MSE) between estimated stimulus (by means of a decoding
method such as maximum-likelihood or population vector) and
the actual input stimulus.

Optimizing above objective functions is a complex and time
consuming process. For the brain this would be an optimization
across many (usually thousands of) neurons, involving many dif-
ferent parameters which seems to be very daunting. Note that this
does not happen instantly, rather it is a slow process of an organ-
ism learning to perform a task. Further, the stimulus distribution
is also not available at once and demands the organism to inter-
act with the environment and observe sensory data over time.
Indeed, previous work by Baluch and Itti (2010) has shown that
human observers become increasingly more efficient at biasing
their visual system toward search targets in a triple conjunction
search task. This suggests that humans learn over time how to bias
the setting of their neural parameters so as to maximize task per-
formance. Navalpakkam and Itti (2007) proposed a three-phase
mechanism for learning top-down attentional modulation. In the
first phase, bottom-up and top-down cues (learned previously)
are applied to render some visual items salient. In the second
phase, distributions of target and distractor features are learned
through past trials, preview of picture cues, verbal instructions,
etc. and in the third phase, optimal top-down gains (as well as
other parameters) are computed (see Figure 2 in Navalpakkam
and Itti, 2007). These gains will be later recalled and applied
during future search trials.

2. THEORETICAL PERSPECTIVE
We formalize, in the Bayesian sense, how attention may modu-
late neural activity to optimize task performance. In classifica-
tion tasks, the goal is to distinguish between a stimulus from
class C = 1 [defined by a distribution of features P(s|C = 1) in
some dimension such as orientation] from a stimulus from class
C = −1 [defined by a distribution of features P(s|C = −1)]. In
visual search, class C = 1 is considered the target T that is to be
found among distractors D (C = −1).
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We assume that the incoming visual display is processed by
a population of n neurons tuned to different features. We fur-
ther assume that all neurons have idealized and homogeneous
tuning functions. Let r(s) = [r1(s), r2(s), . . . , rn(s)] denote the
population vector of responses to input stimulus s. Assuming
independent neurons, the probability distribution of response to
a single stimulus s is:

Lr(s) = p(r|s) =
n∏

j = 1

p(rj|s) (2)

2.1. CLASSIFICATION
In classification tasks, a Bayesian ideal observer needs to estimate
Ĉ = arg maxC P(C|r) = arg maxC P(r|C)P(C)/P(r) where Ĉ rep-
resents the estimated class (out of m classes). This equation means
that the classifier chooses the class that was most likely to have
caused the observed response pattern r on the basis of the stimu-
lus conditional response distributions. For a two-class problem,
the optimal neural decision variable depends on distributions
of neural response to classes P(r|C = 1) and P(r|C = −1), each
defined as:

p(r|C) =
∫

p(r|s)p(s|C)ds =
∫

Lr(s)p(s|C)ds (3)

Thus, to maximize classification performance, the MDE objective
function (the error of the ideal observer model) tries to mini-
mize the overlap between neural response distributions to the two
classes:

MDE(C = 1, C = −1) = 1

2

∫
min

(
p(r|C = 1), p(r|C = −1)

)
dr

(4)
Discrimination is a special case of classification, with
p(s|C = 1) = d(s − sa) and p(s|C = −1) = d(s − sb),
where d denotes the Dirac delta function. In Berens et al. (2011),
authors have used MDE to solve for the optimal tuning width of
a neural population in reconstruction and discrimination tasks.

2.2. VISUAL SEARCH
Assuming that attention during visual search is guided to loca-
tions of high neural activity, search performance can be optimized
by maximizing the strength of the signal (expected total neural
response to the target C = 1) relative to the noise (expected total
neural response to the distractors C = −1). Thus, using the above
formulas, SNR can be written as:

SNR(C = 1, C = −1) =
∑

i E(ri|C = 1)∑
i E(ri|C = −1)

=
∑

i

∫
rip(ri|C = 1)dri∑

i

∫
rip(ri|C = −1)dri

=
∑

i

∫ ∫
rip(ri|s)p(s|C = 1)dsdri∑

i

∫ ∫
rip(ri|s)p(s|C = −1)dsdri

(5)

A closed-form solution for optimal gain modulation using SNR
has been previously proposed in Navalpakkam and Itti (2007).
Please note that here we attempt to solve visual search in feature

space, irrespective of spatial organization of items in the search
array. The SNR formulation has been shown to be capable of
explaining a large number of psychophysics findings in the visual
search literature (Verghese, 2001; Navalpakkam and Itti, 2007;
Scolari and Serences, 2009, 2010; Jehee et al., 2011; Scolari et al.,
2012). In addition, it has been shown that feature-based attention
occurs independently of spatial attention (David et al., 2008), and
feature-based attention changes activity globally throughout the
visual-field representation (McAdams and Maunsell, 1999; Treue
and Trujillo, 1999; Saenz et al., 2002; Maunsell and Treue, 2006;
Serences and Boynton, 2007). In other words, attentding to a spa-
tial location all features in that location are enhanced (McAdams
and Maunsell, 1999; Boynton, 2009; Ling et al., 2009; Reynolds
and Heeger, 2009). Conversely, attention to a specific feature
results in global biases to that feature across the entire visual
field (Treue and Maunsell, 1996; Treue and Trujillo, 1999; Saenz
et al., 2002; Serences and Boynton, 2007).

3. SIMULATION RESULTS
We run two numerical simulations to investigate the optimal
coding quality of a population of neurons under a range of
stimulus conditions. The goal of this analysis is to reveal pat-
terns or profiles of modulations depending on tasks and stimuli.
Understanding how different patterns arise in different condi-
tions can help design future experiments to pinpoint the neural
basis of attentional modulation. In the first simulation, for sim-
plicity and tractability, we choose a neural population of size 6
and we exhaustively search the parameter space for optimal solu-
tions. We then run a second, larger simulation with 60 neurons
on the most interesting cases. To illustrate our simulations, we
consider the feature dimension of stimulus orientation, although
our results apply interchangeably to other features such as color,
spatial location, or direction of motion.

3.1. SMALL-SCALE SIMULATION
We assume a conventional model of neural response, where the
i-th neuron (i ∈ [1 n], in a population of n = 6 equi-spaced
uncorrelated neurons in [0 180]) has a bell-shaped tuning
function:

fi(s) = gi ×
(

λ1 + λ2

(
1

2
+ 1

2
cos(s − μi)

)20σi
)

;

p(r|s) = 1√
2πυ2

i

e
− (r − fi(s))2

2υ2
i (6)

where s is the scalar stimulus feature (here orientation) and μi is
the preferred feature of neuron i. The parameter gi is the multi-
plicative gain. The parameter σi controls the width of the tuning
curve. Large σ corresponds to steep tuning curves with small
width. The parameters λ1 and λ2 set the baseline rate to 5 Hz
and the maximal rate (amplitude) to 50 Hz. The firing activ-
ity of each neuron is assumed to follow a Gaussian distribution
with Poisson-like noise, where variance is identical to mean spike
count [i.e., υ2

i = r̄i(s) = 10fi(s)]. We estimate MDE and SNR
(Equations 4, 5) using Monte Carlo techniques, by iteratively
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sampling from p(s|C), and, for each s, many times from p(r|s) to
finally estimate p(r|C) (similar approach as in Berens et al., 2011).

We consider two types of constraint regimens on neural
parameters. The first regimen constrains each free parameter to
change only within a restricted window, to adhere to biophys-
ical constraints. Note that, otherwise, in visual search, a trivial
solution to optimize SNR would be for every neuron to shift its
preference to the target feature, change its tuning to infinitely nar-
row, and enhance its gain infinitely. However, such unbounded
changes would likely consume enormous energy (every spike is
costly), would prevent neurons from adapting to dynamically
changing environments, and are implausible given the electro-
physiological observations described in the Introduction. Thus,
to prevent indiscriminate changes leading to this mathemati-
cal singularity, we constrain each free parameter to change only
within a restricted window. We set bounds for gi to [0.5 2], for
σi to [0.5 3], and for μi to [−0.2 0.2] (in radian, ∼ 11.46◦).
A default value of 1 for gi and σi, and 0 for μi means no
change.

Constraint regimen one imposes constraints at the single cell
level. Another possibility is to consider constraints at the popula-
tion level as suggested by Navalpakkam and Itti (2007) where the
sum of each parameter over the neural population is constrained
(Our second regimen,

∑
gi = 2,

∑
σi = 3, and

∑
μi = 2). This

type of constraint needs more complex mechanisms to impose
than constraint type one, for example by means of another neural
network or a low-level molecular process. Similar to regimen one,
regimen two leads to efficient spending of resources and energy
but has more selective pressure as several solutions in regimen one
may have equal objective function but in regime two optimization
favors most informative neurons. Eventually, our treatment here
is theoretical and further biological research is needed to discover
which constraint is really implemented in the brain.

We also set the minimum value of gi and σi to be 0.1 to pre-
serve baseline activity. We employ real-valued Genetic Algorithms
to exhaustively search the parameter space, in each individ-
ual dimension (i.e., g alone), for g + σ , as well as all three 3
parameters, to maximize SNR and MDE−1. It is worth noting that
the qualitative conclusions derived from our simulations do not
depend on the exact values of bounds.

Figure 2 shows simulation results obtained by modulating gi,
σi, and μi in the above manner for two arrangements of stim-
ulus classes: (1) an easy task where two classes are far apart
(C = 1 at 45◦ and C = −1 at 135◦), and (2) a difficult task
where two classes are close to each other and thus more simi-
lar (C = 1 at 80◦ and C = −1 at 100◦). We investigate two levels
of uncertainty (low σs = 5◦ and high σs = 20◦) on stimulus dis-
tributions. For some cases in which solutions are not unique,
we also show other good answers in insets. To further study the
influence of stimulus distributions and initial parameterization,
in Figure 3 we illustrate solutions to some additional cases: (1)
when only knowledge about one class is known, (2) three classes
of stimuli (two targets and one distractor; See Supplementary
materials for heterogeneous search, i.e., one target among two
distractors), and (3) narrow default tuning curves (σi = 5). In
each test case, we first describe results for classification, then
search.

3.1.1. Response gain
In classification, under constraint regimen one, all neurons attain
the maximum allowed gain, in both easy and difficult tasks.
In regimen 2, all gains are concentrated around one of two
classes, since both classes are equally important. Interestingly,
and possibly counter-intuitively, if we were to distribute the gains
equally around both stimulus classes, or equally among all neu-
rons, the MDE would rise (i.e., worse classification). In visual
search, SNR optimization shows that neurons tuned near the
target feature undergo gain enhancement, while neurons tuned
near the distractor feature undergo gain suppression (aligned
with Treue and Trujillo, 1999 and Navalpakkam and Itti, 2007).
While in regimen 2, only neurons at the target feature show gain
enhancement, in regimen 1 neurons around the target are also
enhanced. Interestingly in regimen 2, when target and distrac-
tor are very close and overlap is high (Figure 2F, T = 80◦, D =
100◦, σs = 20), in accordance with Navalpakkam and Itti (2007)
and Scolari and Serences (2009), we also observe higher gain
for the exaggerated neuron (at 45◦) than for the neuron best
tuned to the target (at 75◦). However, unlike Navalpakkam and
Itti (2007), baseline activity is sustained in our simulation, which
agrees with electrophysiology findings (Chelazzi et al., 1998;
Chawla et al., 1999; Kastner et al., 1999; David et al., 2008).
Supporting single-unit evidence comes from feature-based atten-
tion tasks (McAdams and Maunsell, 1999; Treue and Trujillo,
1999; Martinez-Trujillo and Treue, 2004; David et al., 2008; Jehee
et al., 2011).

3.1.2. Tuning width
Maximum classification accuracy, in the easy task and in regimen
1, is obtained when all neurons widen their tuning as much as
possible. In other cases (difficult task, regimen 1, and both tasks
in regimen 2), optimization leads to sharpening near both stimuli
and widening elsewhere (see also Figure 3). In visual search, our
results suggest that attention causes both narrowing and widen-
ing of tuning width, and the choice depends on the difficulty
of the task. In regimen 1, in the easy task, neurons at and near
the target feature are maximally widened while neurons near
the distractor feature are maximally sharpened. In regimen 2,
in the easy task, we observe widening of neurons both at tar-
get and distractor, which was unexpected. Since neurons tuned
near the distractor feature already respond strongly to the dis-
tractor (due to our bounds), sharpening would indeed only boost
the distractor and lower SNR; however, widening for these neu-
rons represents a “better worst-case scenario,” as it will make
them respond to both distractor and target, resulting in slightly
higher SNR compared to sharpening. When we made the task
even easier (Figure 3∗), we then observed that neurons at dis-
tractor sharpened. Over the difficult task in both regimens, we
observe a sharpening at the target and widening near the dis-
tractor, which is the opposite of the easy task in regimen 1.
When p(s|T) and p(s|D) do not overlap much (i.e., low uncer-
tainty), and/or tuning curves are narrow and far apart, neural
tuning widens near the target and sharpens near the distractor.
The opposite happens when p(s|T) and p(s|D) highly overlap
or the population is very dense. Note that parameter setting
is important in the optimal answers. While exact values might
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FIGURE 2 | Optimal attentional modulation for classification (MDE; top

row) and visual search tasks (SNR; bottom row). The lower the MDE, the
better (opposite is true for SNR). Left and right columns correspond to two
parameter regimens for 2 classes of stimuli: (1) coarse classification (or easy
search) C = 1 (target; solid line) at 45◦ and C = −1 (distractor; dashed line) at
135◦, 2) fine classification (or hard search) C = 1 at 80◦, and C = −1 at 100◦,
each at two uncertainty levels (σs = 5◦ and σs = 20◦). (A) MDE, g, regimen
1: gains should be maximized for all neurons in both tasks. The red tuning
curves represent the default tunings (σ = 1). (B) MDE, g, regimen 2: All gain
is allocated to one of the two classes. (C) MDE, σ , regimen 1: all neurons in
easy task should be widened. In other cases, neurons at 2 classes should be

sharpened while the rest should be widened. (D) MDE, μ: neurons should be
moved to locations of classes in all cases. (E) MDE, g + σ and g + σ + μ has
the superposition of individual effects. (F) SNR, g, regimen 1: gains of
neurons nearby target should be enhanced. In regimen 2, gain at the target
should be amplified in easy task. (G) In difficult search (σs = 20◦), the gain of
the exaggerated neuron should be amplified more than the neuron at the
target. (H) SNR, σ , easy task: neurons nearby target should be widened
while neurons near distractor should be sharpened (see text). In difficult
search task, neurons near target should be sharpened while neurons near
distractor should be widened. (I) SNR, μ: neurons should be moved toward
the target and away from the distractor.

differ for different parameter settings, we believe that patterns
will stay the same (e.g., dependency of results to task difficulty).
For experimental works, when biophysical properties of a neu-
ral population are known, it is easy to run a simulation (with
our shared code) and verify a hypothesis. Supporting evidence
for sharpening at the target comes from single-unit studies of
orientation (Spitzer et al., 1988) and spatial tuning (Moran and
Desimone, 1985).

3.1.3. Preferred feature
In classification, optimization moves neurons toward either of
the two classes as much as possible, in both regimens over both
tasks. The optimal answer in visual search is to move neurons

toward the target and away from the distractor. Supporting
evidence for tuning shifts comes from single-unit studies in
feature-based (David et al., 2008; Ipata et al., 2012) and spatial
attention (Connor et al., 1996; Womelsdorf et al., 2006).

3.1.4. All parameters
Comparing results obtained for the joint optimization of all
parameters and the separate optimization of g, σ , and μ, we
empirically find that the superposition of optimal answers to each
individual parameter is always a good answer (although we do
not have a theoretical guarantee on the optimality or unique-
ness of such answer). For example, optimizing gain and tuning
width jointly in easy visual search, regimen 1 (See Figure 2∗),
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FIGURE 3 | Optimal neural modulation of g, σ and μ for additional

cases mentioned in the text (small-scale simulation). Columns from left
to right: unknown target (here modeled as a very wide distribution with
σs = 100 shown with the dotted blue curve) and known distractor at 135◦
with σs = 5 (solid red curve), known target at 45◦ and unknown distractor,
visual search for two targets at 30◦ and 150◦ and a single distractor at 90◦
with σs = 5, easy search for a target at 45◦ with a narrow distribution

(σs = 1) and a distractor at 135◦. In each column/setting, the left side
shows the original neural population with 6 neurons and below that are
the optimal parameters. The right side in each column shows the neural
population after modulation. The top rows shows results for regimen 1
while the bottom one corresponds to regimen 2, for both classification
(MDE) and visual search tasks (SNR). The panel with ∗ shows the optimal
σ in an easy visual search task.

leads to maximal gain amplification and widening of neurons
around the target, while minimizing gains of neurons selective
to the distractor. Note that tuning width modulation of neu-
rons near the distractor is not important here since their gain
has already been minimized. When optimizing all three param-
eters, in addition to the joint answer of gain and tuning width,
neurons are also shifted toward the target and away from the
distractor (See Figure 2∗∗). Our results also show that modula-
tion of multiple parameters always yields better performance than
optimizing only one or two parameters. This suggests that bio-
logical top-down attention may also affect multiple parameters,
although most previous reports have focused on one parameter
at a time.

Optimal neural modulation in heterogeneous visual search
(i.e., one target among two distractors and vice versa) and
optimizing g, σ , and μ with 12 neurons shows the same pat-
terns as in Figure 2. These results are shown in Supplementary
materials.

Figure 4 shows the optimal MDE and SNR values (in regi-
men 1) as a function of target-distractor dissimilarity for g, σ ,
and g + σ (averaged over T ∈ {30◦, 40◦, 50◦, 60◦} and D = T +
{10◦, 20◦, 30◦, 40◦, 50◦, 60◦}). Increasing the distance between
the two classes leads to decrease in MDE and a ramp up in
SNR. This qualitatively matches with human performance as a
function of task difficulty (Duncan and Humphreys, 1989). Over
both MDE and SNR, modulating both g and σ wins over single
parameters. The tuning width is more effective than gain in clas-
sification, as seen by lower MDE values of σ than MDE values
using g. The opposite occurs in visual search using SNR. One rea-
son why SNR values for σ are small might be because neurons
in this simulation are not allowed to sharpen beyond a certain
limit.

3.1.5. Note on noise correlation
In our simulations so far, we considered optimal modulation
of an uncorrelated neural population for the sake of simplicity
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FIGURE 4 | Dependency of objective functions to dissimilarity between

two classes for the small-scale simulation with 6 neurons for g, σ , and

g + σ (averaged over T ∈ {30◦, 40◦, 50◦, 60◦} and D = T + {10◦, 20◦,
30◦, 40◦, 50◦, 60◦}). Left: MDE for classification and Right: SNR for visual
search. MDE decreases as two classes become more separate from each
other while SNR raises which means that in both cases task becomes
progressively easier.

(i.e., uncorrelated noise). But, noise in the brain is correlated and
this might influence the amount of information a neural popula-
tion conveys (Averbeck et al., 2006) (See also Seriès et al., 2004
and Bejjanki et al., 2011). Here, we analyze the role of corre-
lations (correlated noise) in optimal modulation of parameters
for visual search (i.e., maximizing SNR) on our small scale neural
population with 6 neurons.

Following Berens et al. (2011), we model the stimulus-
conditional response distribution as a multivariate Gaussian:

p(r|s) = N (r̄(s),�(s)) (7)

In above equation, r̄(s) = (r̄1(s), r̄2(s), . . . , r̄6(s)) and �(s) rep-
resent average spike counts and covariance matrix, respectively.
This allows us to inject Poisson-like noise correlations into our
simulation (See Berens et al., 2011 and their supplement for more
details on adding correlated noise). Results are shown in supple-
mentary materials for optimal answers of searching a target at 80◦
and distractor at 100◦ with σs = 5◦ (see Figure 2). We consider
10% noise correlation in our simulations. As it can be seen pat-
terns of results are similar to those shown in Figure 2 for both
constraint regimens and all three neural parameters. This could
be because the effect of noise is vanished when averaging the neu-
ral activity, to targets and to distractors in SNR computation. For
future research we encourage a more detailed look at noise corre-
lations (e.g., non-uniform correlations) and how they may affect
optimal solutions on larger neural populations.

3.2. LARGE-SCALE SIMULATION
The previous analysis revealed different patterns of modula-
tion depending on task and stimulus conditions. Importantly, it
revealed that joint optimization of all parameters always yields
better performance than optimizing only one parameter. This
prompts us to study the relative utility or contribution of mod-
ulating each parameter as part of a joint optimization. To fur-
ther investigate this, we focus on visual search in a larger-scale,
more detailed simulation. We simulated a population of n = 60
equi-spaced, broad, overlapping Gaussian neurons with preferred

stimulus feature μi, tuning width σi, amplitude λ2, gain factor gi,
and baseline firing rate λ1:

fi(s) = gi ×
(
λ1 + λ2e−(s − μi)

2/2σi
2
)
, i = 1, . . . , n;

p(r|s) = e−fi(s)fi(s)r

r! (8)

with default tuning width of 10◦, default gains at unity, spacing
between preferred orientations of adjacent neurons 3◦ spanning
0–180◦ in orientation space (Figure 5). In addition, we consider
the noise in neural response (to repeated presentations of a same
stimulus) to have Poisson variability (used to numerically com-
pute the expectations in the Equation 5). Here, we set λ1 = 0, for
simplicity.

We jointly maximized SNR wrt. gi, μi, and σi using a multi-
start Nelder-Mead simplex algorithm (Nelder and Mead, 1965)
(genetic algorithm was too slow in this larger-scale test). We used
multiple initial conditions to avoid converging into local optima
(20 different initial conditions, each with a random jitter in gi,
μi, and σi of up to 50% from default values), and considered the
solution with maximum SNR. Here, attention can modulate gi

by up to ±50% of its default unity value, and σi and μi by up
to ±50% of the default tuning width (corresponding to regimen 1
and to avoid numerical instability).

Figure 5 shows how neural parameters may be optimally
modulated in an easy search (with an orientation difference
between target and distractors of 5σ0 = 50◦), and a difficult
search task (smaller orientation difference of σ0 = 10◦). After
modulation, the expected neural response to the target is much
higher than the distractor (Figure 5C) compared to before mod-
ulation (Figure 5B). This effect is more clearly seen in the difficult
task, where the initial population response to the target and dis-
tractor are similar (Figure 5B, 2nd column, hence a low SNR),
but different after modulation (Figure 5C, 2nd column), leading
to an improvement in SNR. Optimization results here are aligned
with our smaller-scale simulation (Figure 2). Interestingly, since
here target and distractor are well separated in the easy task,
neurons around the target widen while those tuned near the dis-
tractor sharpen. In contrast, neurons sharpen near the target and
widen near the distractor in the difficult task.

3.2.1. Analysis of tuning curve overlap
How much is SNR dependent on the degree of neural overlap?
Over our population of 60 neurons, we change σ from 6◦ to 35◦
and task difficulty from 10◦ to 100◦ and then find the optimal
solutions for g, σ , and μ. Figure 6 shows that increasing the over-
lap between neurons reduces SNR for all parameters regardless
of task difficulty. This impairment is more profound in difficult
tasks than in easy tasks. In easy tasks, irrespective of the degree
of overlap, SNR values using gain are higher than SNR due to
σ and μ. SNR using gain increases as the difference between
target and distractor increases. Interestingly, there is an interac-
tion between overlap and task difficulty when optimizing for σ

and μ (non-monotonic curve shapes in Figure 6).
The analysis of SNR changes as a function of tuning over-

lap suggests explicit qualitative predictions that could be made
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FIGURE 5 | Attentional modulation in easy and difficult visual search.

(A) The input stimuli. Rows (B,C) show the expected response of neurons
(tuned to different features) before and after modulation. The solid red line
is the expected response to the target, while the dotted blue line
represents the expected response to the distractor. (D) The optimal shift in
response gain is shown by the solid black line. Neurons tuned near the
target increase their gain, while others tuned near the distractor undergo
suppression. (E) The optimal shift in neuron’s tuning width (σ ) is shown

here in the solid black line. In the difficult task, neurons tuned to the
target feature decrease their tuning width, while nearby neurons widen
their tuning width. (F) The optimal shift in preferred features μ is shown
by the solid black line. A positive shift (�μi > 0) indicates neurons shifting
to the right, and vice versa. The blue star shows the neuron’s preferred
feature after the modulation. Neurons shift toward the target feature and
away from the distractor feature (as seen by the lack of blue stars near
the distractor). (G) The optimal tuning curves.
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when looking across cortical areas (given that orientation tun-
ing inherently broadens as one ascends the visuocortical hierar-
chy). Moving along the hierarchy, neurons become broader (thus
higher overlap among neurons) which eventually causes lower
SNR. Also note that the peak of the curves in Figure 6 shifts to
the right suggesting that maximum separability happens for more
dissimilar stimuli.

3.2.2. Behavioral utility of neural modulation
How useful is the modulation of each neural parameter? To
answer this question, we computed a utility statistic u(p) for a
parameter p ∈ {g, σ, μ} as the ratio of benefit to SNR obtained
by modulating p alone vs. modulating everything. Higher utility
values indicate that more performance is achieved by modulating
p compared to other parameters, i.e., p is a high-yield parame-
ter to modulate in the particular task and stimulus studied. As
seen in Figure 7, u(g) and u(μ) both decrease with increasing task
difficulty, but u(σ ) does not. Thus, in easy tasks (where the tar-
get and distractor differ by � ≥ 40◦) modulating g or μ is more
useful, but becomes less useful in difficult tasks. On the other
hand, while modulating σ is not very beneficial in easy tasks,
it becomes necessary in difficult tasks (� ≤ 25◦). Furthermore,
in easy tasks, simulation predicts that the combined modulation

of μ and g is sufficient to yield close to best behavioral perfor-
mance, but their combined utility decreases with increasing task
difficulty.

4. DISCUSSION AND CONCLUSION
Results of two consistent simulations reveal that:

1. In classification, when two classes are well separated, all neu-
rons should be widened and gains should be boosted,

2. In classification, when two classes are close in feature space,
neurons selective to both should be sharpened and their gains
should be increased,

3. In easy search, the optimal solution is to widen and boost
gain at the target, and sharpen and reduce gain around the
distractor (the opposite is seen for tuning width in difficult
search),

4. Only in constraint regimen 2 and in difficult search, maxi-
mum gain is allocated to the exaggerated neuron as predicted
by Navalpakkam and Itti (2007) and seen by Scolari and
Serences (2009),

5. Feature selectivity of neurons should be biased toward tar-
get features (the two classes in classification) and away from
distractors,

FIGURE 6 | Analysis of tuning curve overlap (σ from 6 to 35◦; spacing

between neurons is 3◦). The x axis shows task difficulty due to
target-distractor dissimilarity (measured by increasing orientation difference
between the target and distractor: for j = 1 : 10, T = 60◦ − j × 5,

D = 60◦ + j × 5). The y axis shows the best SNR achieved by optimizing each
parameter. Curves from top to bottom indicate higher overlap between
neurons. Increasing the neural overlap impairs the SNR due to optimal σ and
μ more than SNR by g.
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FIGURE 7 | Utility of attentional modulation. The x axis shows task
difficulty due to target distractor similarity. The y axis shows simulation
predictions of utility of modulating preferred features (μ), tuning width (σ ),
response gains (g), or any combination of these parameters. For easy tasks,
we predict that modulating preferred features and gains are useful and
sufficient (yielding 0.97 × the best performance). But their combined utility
decreases with decreasing orientation difference between the target and
distractors (u = 0.49), rendering them less useful in difficult tasks. On the
other hand, modulating tuning width is more useful and necessary in
difficult tasks. A similar trend is observed in separately modulating gains or
preferred feature vs. tuning width.

6. Optimizing multiple parameters is better than optimizing a
single one and joint solutions seem to be combinations of
constituent ones,

7. Increasing overlap among neurons worsens SNR, which is
more harmful in difficult than in easy search,

8. Uniform noise correlation did not affect our conclusions but
more detailed analysis of different noise conditions is encour-
aged,

9. Task difficulty is a key factor in determining the utility of a
neural parameter.

Our theoretical investigation sheds new light on the ongoing
controversy of attentional modulation, by indicating that the
reported discrepancies in the literature may be due to differences
in task difficulty (Figure 7). For instance, previous physiological
studies that reported gain modulation (McAdams and Maunsell,
1999; Treue and Trujillo, 1999) used easy tasks: McAdams and
Maunsell used an angular difference of 45◦ or 90◦ between target
and distractor, while Treue and Martinez-Trujillo used either no
distractor or one 180◦ from the target. Previous studies that found
preferred feature modulation also used easy tasks: (Womelsdorf
et al., 2008) used a spatial attention task where monkeys attended
to a target location in the absence of distractors. In such easy tasks,
as predicted by our theoretical analysis, modulation of gains and
preferred features (which is most useful) is observed, while tun-
ing width modulation (not useful) is not observed. One of the
few previous studies (Spitzer et al., 1988) that reported tuning
width modulation, observed it in more difficult discrimination

tasks (smaller angular difference of 22.5◦). Nevertheless, as tun-
ing width modulation remains a controversial issue (e.g., Treue
and Trujillo, 1999), our main goal here it to show how tun-
ing width modulation is an optimal strategy when the task is
difficult.

It is difficult to disentangle the effect of gain and tuning
width modulation behaviorally (see Ling et al., 2009). We suggest
neurophysiology experiments for this purpose by systematically
controlling for task difficulty. An ideal task for testing tuning
width modulation would be when the monkey attends to a tar-
get feature in the presence of flanking distractor (e.g., attend
to a 45◦ oriented moving random dot pattern (RDT) among
50 and 40◦ oriented RDTs). In such a task, modulating pre-
ferred features or gains will not suffice as neurons responding
to the target will also respond to similar distractors. Instead,
sharpening the tuning curve will help the target-sensitive neu-
rons by decreasing interference from distractors, hence better
resolving the difference between target and distractor. In con-
trast, when the target and flanking distractor are very different
(e.g., more than 45◦ apart), modulating tuning widths is not use-
ful, and thus modulation of preferred features and gains should
be observed.

Our model generalizes over previous gain-only models: guided
search theory (Wolfe et al., 1989), feature-similarity gain prin-
ciple (Treue and Trujillo, 1999; Martinez-Trujillo and Treue,
2004), and optimal gain theory (Navalpakkam and Itti, 2007).
The guided search theory revises the feature integration the-
ory (FIT) and suggests that top-down attention acts as a lin-
ear weighted combination of multiple features which in effect
makes an object of interest more salient among distractors and
decreases the search time. However, similar to FIT, this theory
only attempts to explain the behavior of the organism. In the
the feature similarity gain model, gain modulation is a func-
tion of similarity between the neuron’s preferred feature and the
target feature. This theory does not consider target-distractor
similarity. The optimal gain theory, combines information from
both the target and distracting clutter to maximize the rel-
ative salience of the target. Interestingly, this model predicts
that it is sometimes optimal to enhance the non-target features
(e.g., Figure 2G). Here, we considered three neural parame-
ters and showed how distribution of target and distractors can
be used to optimally tune all these parameters and make the
target salient.

In addition to gain, our model offers testable predictions
for tuning width modulation and shifts in selectivity (seen
by David et al., 2008 and Ipata et al., 2012 in area V4). Our
model differs from the well-established normalization model
of attention (Reynolds and Heeger, 2009) in one main aspect:
the normalization model commits to explain low-level atten-
tional mechanisms, while our model offers a high-level theoretical
account for optimal attention over a population of neurons, con-
sidering task difficulty, and stimulus statistics. Obviously, our
model has limited prediction power. It may need to be fur-
ther expanded to account for optimal spatial attention, when
deployed jointly with feature-based attention in hybrid spa-
tial/feature tasks. We encourage future neurophysiology studies,
with our theoretical framework in hand, to further explore such
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tasks, which will give new insights for developing unified models
of spatial and feature-based attention.

In summary, we investigated three attentional mechanisms,
namely attentional modulation of neural response gain, tuning
width and preferred feature. Reports from different laborato-
ries differ on whether attention modulates tuning width or gain
or preferred feature. We have proposed a simple computational
model that reconciles the above differences by predicting that
task-difficulty (due to target-distractor similarity) plays a critical
role in determining attentional modulation. Our model predicts
that gain and preferred feature modulation is useful in easy tasks,
while tuning width modulation is useful in difficult tasks – a pre-
diction that is in good qualitative agreement with reported data.
This unified model illuminates the similarities and differences in
reported data from various laboratories, and provides guidelines
for future experiments.
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Numerous findings indicate that spatial phase bears an important cognitive information.

Distortion of phase affects topology of edge structures and makes images

unrecognizable. In turn, appropriately phase-structured patterns give rise to various

illusions of virtual image content and apparent motion. Despite a large body of

phenomenological evidence not much is known yet about the role of phase information

in neural mechanisms of visual perception and cognition. Here, we are concerned with

analysis of the role of spatial phase in computational and biological vision, emergence of

visual illusions and pattern recognition. We hypothesize that fundamental importance of

phase information for invariant retrieval of structural image features and motion detection

promoted development of phase-based mechanisms of neural image processing in

course of evolution of biological vision. Using an extension of Fourier phase correlation

technique, we show that the core functions of visual system such as motion detection

and pattern recognition can be facilitated by the same basic mechanism. Our analysis

suggests that emergence of visual illusions can be attributed to presence of coherently

phase-shifted repetitive patterns as well as the effects of acuity compensation by

saccadic eye movements. We speculate that biological vision relies on perceptual

mechanisms effectively similar to phase correlation, and predict neural features of visual

pattern (dis)similarity that can be used for experimental validation of our hypothesis of

“cognition by phase correlation.”

Keywords: vision research, visual illusions, motion detection, pattern recognition, saccades, acuity, phase

correlation, association cortex

1. Introduction

Continuous evolution of biological systems implicates a common origin of different func-
tions and mechanisms that emerged as a result of successive modification of one particularly
advantageous basic principle. Electrophysiological findings (Hubel and Wiesel, 1968) and psy-
chophysical experiments (Campbell and Robson, 1968) indicate that visual system relies on
the basic principle of frequency domain transformation of the retinal image in visual cortex
which was initially believed to resemble a crude Fourier transformation (Graham, 1981). Even
though, more recent mathematical models of sparse image coding revised the assumption of
global Fourier transformation in favor of locally supported Gabor- (Marcelja, 1980), Wavelet-
Mallat, 1989, Wedge-, Ridge- or Curvelet-functions (Donoho and Flesia, 2001), the concept of
neural image representation in the frequency domain by phase and amplitude remained valid.
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Since pioneering works of Hubel and Wiesel (1962, 1968),
Campbell and Robson (1968), Blakemore and Campbell (1969),
Blakemore et al. (1969), and Thomas et al. (1969) it is known
that different groups of neurons in the visual cortex show selec-
tive response to spatial-temporal characteristics of visual stimuli
and operate as spatially organized filters (receptive fields) that
extract particular image features (i.e., spatial frequency, orien-
tation) within a certain range (bandwidth) of their sensitivity.
Numerous subsequent studies dealt with experimental investi-
gation and theoretical modeling of visual receptive fields and
analysis of their amplitude-transfer (ATF) and phase-transfer
functions (PTF). The existing body of evidence resulting from
four decades of research on this field includes

• existence of frequency-selective V1 neurons operating as
bandpass filters (Graham, 1989; De Valois and De Valois,
1990),

• coding of phase information using quadrature pairs of band-
pass filters (Pollen and Ronner, 1983),

• odd-/even-symmetric filters in visual cortex (Morrone and
Owens, 1987),

• linear ATF and PTF of simple striatic neurons (Hamilton et al.,
1989),

• computation of complex-valued products in V1 neurons
(Ohzawa et al., 1990),

• computation of magnitudes (energies) in complex V1 cells as
a sum of squared responses of simple V1 cells (Adelson and
Bergen, 1985),

• divisive normalization of neuronal filter responses (Heeger,
1992; Schwartz and Simoncelli, 2001),

• motion detection (Fleet and Jepson, 1990; Nishida, 2011),
• edge detection (Kovesi, 2000; Henriksson et al., 2009),
• stereoscopic vision (Fleet, 1994; Fleet et al., 1996; Ohzawa et al.,

1997),
• 3D shape perception (Thaler et al., 2007),
• assessment of pattern similarity (Sampat et al., 2009; Zhang

et al., 2014),
• triggering of diverse visual illusions (Popple and Levi, 2000;

Backus and Oru, 2005).

Altogether, these findings support the concept of neural trans-
formation of retinal images into frequency domain characteris-
tics (i.e., phase and amplitude) that, in turn, serve as an input
for subsequent higher-order mechanisms and functions of visual
perception and cognition.

Despite recent advances in understanding of the overall
topology and hierarchy of visual cortex (Riesenhuber, 2005; Pog-
gio and Ullman, 2013), little is known yet about the underly-
ing wiring schemes of phase/amplitude information processing
in visual cortex. In particular, the observation that small
cells of V1 show phase-sensitivity (Pollen and Ronner, 1981)
while complex cells do not (De Valois et al., 1982) lead to
controversial discussion about the role of spatial phase in
visual information processing (Morgan et al., 1991; Bex and
Makous, 2002; Shams and Malsburg, 2002; Hietanen et al.,
2013).

In what follows we aim to address the following basic
questions:

• What are the driving forces behind the evolutionary
development of biological vision?

• What properties of spatial phase (further in this manuscript
denoted as phase) make it an important feature for visual
information processing?

• What is the origin of various phase-related visual phenom-
ena including illusions of apparent motion, stereograms and
virtual image context?

• How can phase information be used for motion detection and
(dis)similarity cognition, and how can theoretical models be
evaluated experimentally?

Our manuscript is organized as follows. First, we recapitulate the
role of environmental constraints in development of biological
vision in course of evolution. We review theoretical properties
of phase using an extension of the Fourier phase correlation
technique and demonstrate how phase information can be used
for edge enhancement, motion detection, and pattern recogni-
tion. We show that saccadic strategy of image sampling naturally
emerges within this concept as an algorithmic solution which
improves the confidence of visual pattern discrimination and
recognition. Further, we apply the concept of phase shift and
correlation to analysis of different visual illusions and hypothe-
size about involvement of phase-basedmechanisms in perception
of motion and visual pattern (dis)similarity. In conclusion, we
make suggestions for experimental evaluation of our theoretical
predictions.

2. Invariants of Ecological Environment
and Evolution of Vision

The evolutionary principle implies that remarkable abilities of
biological vision result from adaptation of species to the envi-
ronmental constraints that ancestors had to cope with in the
past. It is generally recognized that progressive sophistication of
vision is driven toward more efficient representation, processing
and, probably, also modeling of the physical reality which stands
behind the retinal images (Walls, 1962; Marr, 1982; Hyvärinen
and Hoyer, 2001; Graham and Field, 2006). In addition to the
basic optosensory function, the core tasks of visual perception in
macroscopic organisms include orientation in the physical envi-
ronment, which premises ability to detect obstacles and relative
motion, as well as recognition of essential patterns related to
food, threat and communication. Further, we recollect that bio-
logical organisms are composed of condensed matter and have
to mainly take care about the objects of the physical world that
also have rigid constitution and conservative shape. In contrast,
highly deformable media such as gasses and liquids are biologi-
cally neutral which implicates that perception of non-rigid trans-
formations did not fall under the early evolutionary pressure.
Important is the notion that visual perception of rigid bodies
with a preserved shape has to be independent on relative spa-
tial position and orientation which means that it has to rely on
some invariants (Ito et al., 1995; Booth and Rolls, 1998; Palmeri
and Gauthier, 2004; Lindeberg, 2013) that are not given per se
but have to be derived by subsequent processing of the raw reti-
nal image. As a dimensionless quantity, phase bears topological
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information independently on the level of illuminance and con-
trast. Affine transformations in the image domain do not change
the relative phase structure, but merely shift it as a whole. These
properties of phase are of advantage for survival of the fittest
and can be assumed to be “discovered” in course of the evolu-
tion of biological vision. Different features of visual perception
emerge at evolutionarily distant time points and, thus, rely on
different intrinsic invariances. Early forms of life are originated
in the marine environment where movements are slowed down
by viscosity of water, effects of gravitation are diminished and
changes in the relative spatial position and orientation are more
probable as it is the case in terrestrial environment with its sta-
ble gravitational axis and unresisting atmosphere. The ability to
recognize abstract shapes (i.e., animal silhouettes) independently
on their relative motion, orientation, and distance was essen-
tial to survival of species and probably originated already with
the first marine animals. However, the translation-, rotation-,
scaling-independent (i.e., TRS-invariant) perception of abstract
shapes (Gladilin, 2004) does not apply to all kinds of visual stim-
uli. A prominent example of dependency of visual perception
on changing environmental constraints is the Thatcher-Illusion,
which consists in poor recognition of upside-down faces (Psalta
et al., 2014). Comparative experiments with different primates
demonstrate that perception of facial expression is a relatively
new feature in biological vision (Weldon et al., 2013). Sensi-
tivity of human face perception to rotations has obviously to
do with the fact that the neuronal machinery of face recogni-
tion is relatively new cognitive feature which emerged in the
terrestrial environment where primates encountered each other
predominantly in the upright posture. In general, visual illu-
sions can be attributed to optical stimuli that mislead evolu-
tionarily conservedmechanisms of visual information processing
based on a built-in knowledge of properties of the physical
world (Ramachandran and Anstis, 1986). The ability to irritate
or escape common cognitive schemes is, in turn, of evolution-
ary advantage. The fact that many animals use camouflage pat-
terning, swarm motion or body morphing as a reliable survival
strategy indicates that repetitive patterns and non-TRS trans-
formations represent a principle challenge for biological vision
which is evolutionarily predetermined to rely on TRS-invariants
of the condensed matter world, see Figure 1.

3. The Role of Phase from the Viewpoint of
Computer Vision

In this section, we elucidate the role of phase information for
detection of image motion and pattern recognition from the

viewpoint of computer vision. Readers who are not familiar with
Fourier analysis may skip over math-intensive parts that will be
concluded subsequently.

3.1. Image Representation in Spatial and
Frequency Domains
In spatial domain, 2D images are represented by a matrix Ax,y

of N × M scalar intensity values on an Euclidian image raster
(x ∈ [0,N − 1], y ∈ [0,M − 1]). Complex Fourier transfor-
mation maps an image Ax,y onto the complex frequency domain
αu,v:

αu,v = F(Ax,y) = Re(αu,v)+ i Im(αu,v) (1)

or in a more explicit form for a discrete 2D case:

αu,v =
1

√
MN

N− 1∑
x= 0

M− 1∑
y= 0

Ax,y e
−2π i( uxN +

vy
M ). (2)

The inverse Fourier transformationmapping αu,v onto the spatial
domain is given by

Ax,y = F
−1(αu,v) =

1
√
MN

N−1∑
u= 0

M− 1∑
v= 0

αu,v e
2π i( xuN +

yv
M ). (3)

Further, we recollect that the complex conjugate of αu,v is
defined as α∗u,v = Re(αu,v)− i Im(αu,v).

3.2. Importance of Phase and Amplitude:
Theoretical Perspective
The relative importance of Fourier phase and amplitude for
retrieval of structural image features has been debated in sev-
eral previous works (Oppenheim and Lim, 1981; Lohmann et al.,
1997; Ni and Huo, 2007). The basic notion is that the phase bears
topological information about image edges whereas amplitude
encodes image intensity. To demonstrate the effect of amplitude
and phase distortion, we perform reconstruction of the origi-
nal image from amplitude-only and phase-only of its Fourier
transform, see Figure 2. Here, the amplitude-only reconstruc-
tion (Figure 2 (middle)) is computed as the Fourier inverse
of the following amplitude-preserving and phase-eliminating
transformation:

Re(αu,v) →
(
Re(αu,v)

2 + Im(αu,v)
2
)1/2

,

Im(αu,v) → 0 ,

(4)

FIGURE 1 | Repetitive patterns, swarm motion, and body morphing disrupt detection of unique invariant features (i.e., rigid animal silhouettes).

Examples of natural images are acquired from public Creative Commons sources (http://search.creativecommons.org/).
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FIGURE 2 | Comparison of the effects of amplitude and phase distortion on image reconstruction. From left to right: the original Lenna image vs.

amplitude-only and phase-only image transforms. The phase-only transformation works as an edge-enhancing filter resembling the Marr’s Primal Sketch (Marr, 1982).

and the phase-only reconstruction (Figure 2 (right)) is calcu-
lated as the Fourier inverse of the following phase-preserving and
amplitude-normalizing transformation:

Re(αu,v) →
Re(αu,v)

(Re(αu,v)2+Im(αu,v)2)
1/2 ,

Im(αu,v) →
Im(αu,v)

(Re(αu,v)2+Im(αu,v)2)
1/2 .

(5)

This example demonstrates that the relative phase appears to be
more significant for retrieval of cognitive image features (i.e.,
edges) that get completely lost in the amplitude-only transforma-
tion. Remarkably, the amplitude-normalizing phase-only recon-
struction seem to effectively work as an edge-enhancing filter
which generates a feature-preserving image sketch resembling
the Marr’s concept of the Primal Sketch generation in visual
cortex (Marr, 1982).

3.3. Detection of Uniform Image Motion using
Phase Correlation
The Fourier phase correlation (PC) is a powerful technique which
has been originally developed for detection of affine image trans-
formations such as uniform translational motion, rotation and/or
scaling (De Castro and Morandi, 1987; Reddy and Chatterji,
1996). Phase correlation between two images Ax,y and Bx,y, is
computed as a Fourier inverse of the normalized cross-power
spectrum (CPS):

PCx,y = F
−1(CPSu,v) , (6)

where

CPSu,v =
αu,v β

∗
u,v

|αu,v β
∗
u,v|

(7)

and

αu,v = F(Ax,y)

βu,v = F(Bx,y)
(8)

are the complex Fourier transforms of the images Ax,y and Bx,y,
respectively. According to the Fourier shift theorem, relative
displacement (1x,1y) between two identical images, i.e.,

Bx,y = Ax−1x,y−1y , (9)

corresponds to phase-shift in the frequency domain

βu,v = e−2π iϕ αu,v , (10)

where ϕ = ( u1x
N +

v1y
N ). Consequently, the cross power spectrum

between two identical images shifted with respect to each other in
the spatial domain describes the phase-shifts of the entire Fourier
spectrum in the frequency domain:

CPSu,v =
αu,v e

2π iϕα∗u,v

|αu,v e2π iϕα∗u,v|
= e2π iϕ . (11)

For two identical images with the relative spatial shift (1x,1y),
the inverse Fourier integral of Equation (11), i.e., the phase cor-
relation Equation (6), exhibits a single singularity at the point
(x = 1x, y = 1y) and is given by

PCx,y = δ(x−1x, y−1y) . (12)

Thus, phase correlation of two identical images has a sin-
gle maximum-peak which coordinates in the spatial domain
yield the relative image translation1 (x = 1x, y = 1y), see
Figure 3A.

3.4. Phase Correlation in the Presence of Noise
In the presence of additive statistical or structural noise, the
cross power spectrum between two non-identical images takes
the form:

CPSu,v = e2π iϕ + εu,v , (13)

where εu,v is a frequency-dependent perturbation-term whose
properties depend on particular type of image differences. Con-
sequently, the inverse Fourier integral of Equation (13), i.e., the
phase correlation between two non-identical images, becomes
different from the Dirac delta peak of the identical image shift
Equation (12):

PCx,y = F
−1

(
e2π iϕ + εu,v

)
6= δ(x−1x, y−1y) , (14)

1Reformulation of phase correlation in polar coordinates results in detection of the

image scaling and rotation (Reddy and Chatterji, 1996).
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FIGURE 3 | Examples of phase correlation (right column) between the

source (left column) and the target image (middle column). Target

images (A2-E.2) represent the following transformations of the source

image: (A2) uniform displacement, (B2) uniform displacement superimposed

with 70% statistical noise, (C2) uniform displacement superimposed with

70% statistical and structural noise, (D2) uniform displacement

superimposed with 20-pixel Y-motion-blur, (E2) superposition of four different

uniform displacements (i.e., 4× fold repetition). (F) shows phase correlation

between two significantly different images. Arrows point to the location of the

absolute maximum peak of the PC. Visualization of the entire PC is

performed using the following grayscale mapping:

PCx,y → 255(PCx,y − MIN(PCx,y ))/(MAX(PCx,y ) − MIN(PCx,y )).

which manifests in flattening of the maximum peak and over-
all more noisy PC, see Figures 3B,C. However, as long as the
target pattern do not exhibit similarities with the background
structures, phase correlation between two images remains a
single-peak distribution. Remarkably, even a significant struc-
tural distortion does not affect the detection of the target pat-
tern within the noisy visual scene, see Figure 3C. This example
demonstrates that the height of maxima and the overall shape
of the PC distribution can serve as quantitative characteristics of
image (dis)similarity, i.e., the more sharp (Dirac-like) is the PC
distribution, the more similar are the structures in the underly-
ing images. An increasingly dispersed PC distribution indicates
lower image similarity.

In the case of non-affine image transformations, phase corre-
lation loses its exceptional properties and becomes a multi-peak
distribution. Figure 3D shows the phase correlation of the orig-
inal image with its blurred and displaced copy. Uncertainty of
the 20-pixel Y-motion-blur applied in this example reflects in
the horizontal line of peaks in PC that correspond to possible
alignments between the original image with its transformed copy.

If the target pattern is multi-present or exhibits structural sim-
ilarity with the surrounding structures, multiple peaks occur in
PC. Figure 3E shows phase correlation between the target pat-
tern and the image containing its four displaced copies. Finding
the right correspondence in such visual scene becomes difficult

or impossible. Camouflage textures and behavioral strategies of
swarm animals generate repetitive patterns that irritate cogni-
tive mechanisms of predators based on detection of unique target
features, see Figure 1.

With increasing structural differences between each two
images, PC becomes a random distribution with the significantly
lower maximum peaks, see Figure 3F.

3.5. Phase Correlation in the Case of
Non-Uniform Image Motion
Non-uniform motion means that displacements of image pix-
els differ in directions and/or magnitude. Consider time-series of
images Ax,y(t) that are composed of two non-uniformly moving
regions:

Ax,y(t) = Px,y(t)+ Bx,y(t) , (15)

where Px,y stands for a particular image pattern which has to
be tracked in consecutive time steps, and Bx,y is the background
region. Let Px,y and Bx,y in the subsequent time step Ax,y(t + 1)
undergo different translations:

Ax,y(t + 1) = Px,y(t + 1)+ Bx,y(t + 1) , (16)
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where

Px,y(t + 1) = Px+1xp,y+1yp (t) ,

Bx,y(t + 1) = Bx+1xb,y+1yb (t) .
(17)

Considering the linearity of Fourier transformation, one obtains
for F

(
Ax,y(t)

)
and F

(
Ax,y(t + 1)

)

αu,v(t) = ρu,v + βu,v

αu,v(t + 1) = e−2π iϕ ρu,v + e−2π iψ βu,v ,

(18)

where ϕ = (
u1xp
N +

v1yp
N ) and ψ = (

u1xb
N +

v1yb
N ), respec-

tively. Consequently, the cross power spectrum between Ax,y(t)
and Ax,y(t + 1) takes the form

CPSu,v =
αu,v(t)α

∗
u,v(t+1)

|αu,v(t)α∗u,v(t+1)|
= 1

|αu,v(t)α∗u,v(t+1)|

(ρu,v e
2π iϕ ρ∗u,v + ρu,v e

2π iψ β∗u,v +

βu,v e
2π iϕ ρ∗u,v + βu,v e

2π iψ β∗u,v )

(19)

or in a more compact form

CPS = CPS
p
p′ + CPS

p

b′
+ CPSbp′ + CPSbb′ , (20)

where CPS∗∗ denote self- and cross-correlations between the
Fourier transforms of the pattern and background regions in two
consecutive time steps, respectively. Primed indexes are intro-
duced to distinguish Fourier transforms of previous (t : p, b) and
subsequent (t + 1 : p′, b′) time steps. By applying the inverse
Fourier transformation to Equation (20), one obtains the phase
correlation between A(t) and A(t + 1):

PC = F
−1(CPS) = PC

p
p′ + PC

p

b′
+ PCb

p′ + PCb
b′ . (21)

3.6. Saccades-Enhanced Phase Correlation
Phase correlation between two non-uniformly shifted image
regions Equation (21) contains four terms:

• self-correlation of the target pattern (PC
p
p′ ),

• self-correlation of the background region (PCb
b′
) and

• two cross-correlation terms (PC
p

b′
, PCb

p′ ).

In order to detect the shift of the target pattern P, PC
p
p′ has

to become the most dominant term of the total PC. Obviously,
this condition is not automatically fulfilled,—other terms may
have stronger weight in Equation (21). If the pattern and back-
ground regions do not exhibit similarities, i.e., if the pattern P
is uniquely present in the image, cross-correlation terms (PC

p

b′

and PCb
p′ ) should be smaller in comparison to self-correlation

terms (PC
p
p′ and PCb

b′
). Thus, the major difficulty for detection

of the target image pattern is caused by self-correlation of the
background region (PCb

b′
) which properties are a priori unknown.

Obviously, a single-step phase correlation between two images is
not sufficient for detection of a particular image region. In order
to maximize the weight of PC

p
p′ and, correspondingly, to mini-

mize the weight of other terms in Equation (21), one can con-
struct a cumulative phase correlation by iteratively composing PC
between the (fixed) target pattern with differently shifted back-
ground. Due to formal similarity of such strategy with back-and-
forth image sampling by saccadic eye movements (see Figure 4),
we termed this procedure saccades-enhanced phase correlation
(Gladilin and Eils, 2009). To show why this strategy appears to be
promising, we write the average phase correlation of N recom-
binations between the target pattern and non-uniformly shifted
background images:

PC =
1

N

N∑
i= 1

PCi = PC
p
p′ + PC

p

b′
+

1

N

N∑
i= 1

PC
bi
p′ +

1

N

N∑
i= 1

PC
bi
b′
.

(22)
Since first two terms in Equation (22) are independent on back-
ground variations (bi), their absolute values remain unchanged.
Further, it can be shown that the last two terms decrease with
increasing N, and, thus, their weight in the average phase cor-
relation can be arbitrarily decreased after sufficiently high num-
ber of saccadic iterations N >> 1. Without providing a precise

FIGURE 4 | Examples of saccadic eye movements from Yarbus (1967). Left the eyes of the observer exhibit remarkable back-and-forth movements between

different regions of interest (i.e., eyes, mouth) and the image background. Right saccadic trajectories seem to follow the shape contours and edges.
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proof, we can give the following plausible comment: for dif-
ferent shifts of the background region, positions of maxima in
cumulative phase correlation differ as well. Consequently, the
sum over different bi remains bounded, and the average value
of the last two terms in Equation (22) decreases as N−1, i.e.,

limN→∞

(
1
N

∑N
i= 1 PC

bi
b′

)
→ 0. As a result of saccadic image

composition, self-correlation of the target pattern PC
p
p′ becomes

the most dominant term and the shift of P can be determined
from the coordinate of the absolute maximum of Equation (22).

The less structured is the target pattern and the more sim-
ilar it is to the image background, the more difficult becomes
the virtual separation of target and background regions using
saccades-enhanced phase correlation. Consequently, analysis of
poorly structured visual scenes requires more saccadic iterations
for detection and recognition of the target pattern. Remarkably,
experimental findings seem to confirm this theoretical predic-
tion: the strategy of saccades by observation of unstructured tex-
tural images exhibits increasing frequency of target-background
eye movements (He and Kowler, 1992).

3.7. Consideration of Visual Acuity
The foveal and peripheral areas of the retinal image are known
to exhibit significant differences in acuity that have to be con-
sidered by construction of Fourier transforms and phase corre-
lations of target and surrounding images. With approximately
3◦ of high-acuity foveal cone-projection (Osterberg, 1935), the
observer’s eye can sharply resolve only an area with the cross-
section dimension of D ≈ 0.1 L, where L denotes the distance
from observer to the focus plane. For a L = 50 cm far com-
puter screen, it makes a D = 5 cm wide spot. The remaining
peripheral area is progressively blurred with the distance from
the focus. Consequently, a more natural representation of the
retinal and higher-lever neural images is the composition of the
central pattern surrounded by the low-pass smoothed periph-
ery. For calculation of saccades-enhanced phase correlation this,
in turn, means that not only the position of the focus but also
spectral characteristics of the central and peripheral areas have to
be appropriately filtered anew for each saccadic fixation image.
Repetitive target-background sampling by saccades will, obvi-
ously, lead to enhancement of small details (i.e., high-frequent
components) of more frequently focused regions and low-pass
smoothing of less frequently sampled, peripheral areas. As a con-
sequence, one can expect saccadic analysis to better discriminate
images that show distinctive spectral differences between central
and peripheral areas. Visual examination of images with similar
spectral characteristics of pattern and background regions can be,
in turn, associated with intensification of back-and-forth saccadic
eye movements.

4. Psychophysical Evidence of Phase
Involvement in Visual Information
Processing

In this section, we review some psychophysical findings indicat-
ing the involvement of phase in visual information processing

and analyze them from the perspective of theoretical concepts of
phase-based motion and pattern detection.

4.1. Importance of Phase and Amplitude:
Psychophysical Perspective
From theoretical considerations in Section 3.2, phase appears
to be more essential for retrieval of structural information than
amplitude. Psychophysical findings in Freeman and Simoncelli
(2011) and Zhang et al. (2014) suggest, however, a combined
phase-amplitude mechanism of pattern perception with higher
weight of phase information near the fixation point and increas-
ing importance of amplitude on the periphery of the visual field.
On the other hand, one should consider that conscious fixa-
tions inhibit saccades which results in progressive low-pass blur-
ring of peripheral image. Unconstrained image observation is
always associated with saccadic eyemovements that acquire high-
frequency phase information from different image areas and,
thus, substantially increase the real weight of phase information
in image perception and (re)cognition.

4.2. On the Role of Phase and Saccades in Visual
Illusions
Seemingly different visual illusions have a common feature to be
triggered by coherently phase-shifted repetitive patterns. Below
we briefly review three groups of visual illusions2 that generate
effects of (i) virtual depth (Tyler and Clarke, 1990), (ii) apparent
motion (Kitaoka and Ashida, 2003), and (iii) non-local image tilt
(Popple and Levi, 2000). Tight resemblance in stimulus configu-
ration of different visual illusions has been supposed in previous
works (Kitaoka, 2006). Though, a unified concept of underlying
neural mechanisms that drive different perceptual illusions is still
missing.

4.2.1. Virtual Depth Illusions

Stereogram images such as shown in Figure 5 cause perceptual
illusions of virtual depth and hidden 3D content. Stereograms
are composed of repetitive patterns which retinal projections
in the left and right eyes exhibit a relative spatial shift in the
image domain and a corresponding phase-shift in the frequency
domain. Accordingly, two basic models of binocular disparity
based on position- and phase-shift receptive fields have been dis-
cussed in the literature in the last two decades (Arndt et al., 1995;
Fleet et al., 1996; Ohzawa et al., 1997; Parker and Cumming,
2001; Chen and Qian, 2004; Goutcher and Hibbard, 2014). Anzai
et al. (1997) conclude that “binocular disparity is mainly encoded
through phase disparity.” Fleet (1994) suggests a model of binoc-
ular disparity computation using the Local Weighted Phase Cor-
relation which combines the features of phase-shift and phase
correlation approaches. If phase correlation is, in fact, involved
in binocular disparity calculation, the underlying neural mecha-
nisms of virtual depth detection can be expected to depend on a
certain threshold of neuronal activity, i.e., the strength of phase
correlation, which, in turn, should be dependent on structural
image properties. In particular, as we have seen above one can
expect that structured (i.e., edge-rich, phase-congruent) patterns

2All examples of visual stimuli were taken from the “Illusion Pages” of A. Kitaoka

http://www.psy.ritsumei.ac.jp/akitaoka/cataloge.html.

Frontiers in Computational Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 45 | 116

http://www.psy.ritsumei.ac.jp/akitaoka/cataloge.html
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gladilin and Eils On the role of spatial phase

FIGURE 5 | Examples of virtual depth illusions (stereograms) based on structured (left) and diffuse textural (right) patterns (courtesy A. Kitaoka).

such as shown in Figure 5 (left) produce stronger phase corre-
lation signals and, thus, trigger virtual depth illusions easier re.
faster than diffuse textural pattern such as Figure 5 (right). Fur-
ther experimental investigations are required to test this pure
theoretical prediction.

4.2.2. Apparent Motion Illusions

Apparent motion illusions induce perception of dynamic image
changes while observing static visual stimuli. Notably, the inten-
sity of apparent motion illusions depends on spectral charac-
teristics (i.e., low/high frequent image content) and the relative
phase-shift of repetitive patterns.

4.2.2.1 The Rotating Snake
patterns from Kitaoka and Ashida (2003) induce a remarkably
strong illusion of apparent rotational motion, see Figures 6A,B.
The low-pass smoothed Rotating Snake in Figures 6C,D exhibit
a reduced intensity of apparent rotational motion. Backus and
Oru (2005) explain emergence of illusory motion of the Rotat-
ing Snakes by the difference in the temporal response of visual
neurons to low- and high-contrast. This difference leads to mis-
interpretation of the temporal phase-shift as a spatial phase-
shift (“phase advance”) at high contrast. The effect of low-pass
smoothing, authors attribute to reduction of differences between
high- and low-contrast regions. Recent findings indicate that sig-
nals of illusory motion in V1 and MT cortical areas can be also
triggered by update of the retinal image as a result of saccadic
eye movements or blinkers (Conway et al., 2005; Troncoso et al.,
2008; Otero-Millan et al., 2012; Martinez-Conde et al., 2013).
Consequently, conscious suppression of saccades inhibits illu-
sions of apparent motion that are based on phase-advancing con-
trast patterns. To dissect the structural principle of the Rotating
Snake in more detail, we performed its polar-to-rectangle trans-
formation into the Translating Snake, see Figures 6E–H. This
transformation changes the relative spatial orientation of repet-
itive patterns while preserving their local contrast structure. We
observe that a pair of parallel Translating Snake patterns does

not induce any significant perceptual effects, see Figures 6E,F.
In contrast, antiparallel Translating Snakes patterns generate a
weak illusion of translational motion, see Figures 6G,H. From
this observation, we conclude that phase advancement due local
contrast gradient is required but not sufficient for generation of
apparent motion illusion. The sufficient condition consists in dif-
ferent spatial orientation of repetitive motion patterns: equally
oriented motion patterns of the Translating Snake do not induce
any illusory motion, while non-uniformly organized contrast
gradients of the Rotating Snake do, see Figures 6I,J. Thus, we
conclude that apparent motion signals are triggered not only
by phase advancement at high contrast alone but by the dif-
ference in phase advancement between each two image regions
subsequently fixated by saccades.

4.2.2.2 The Anomalous Motion
from Kitaoka (2006) is another example of apparent motion
illusion which is induced by contrarily oriented contrast-
gradient patterns, see Figure 7 (left). In Figure 7 (right), cen-
tral and peripheral contrast-gradient patterns were aligned in
the same direction. As a result, the illusion of apparent motion
disappears. Only the combination of patterns with contrarily ori-
ented contrast-gradients (i.e., the relative phase shift) is capa-
ble to generate a stable illusion of apparent relative motion, see
Figure 7 (left). Similar to the Rotation Snake, the Anomalous
Motion illusion requires saccadic eye movements. Suppression of
saccades by conscious point fixation stops the illusion of apparent
motion.

4.2.3. Non-Local Tilt Illusion.

Figure 8 shows the virtual tilt illusion from Popple and Levi
(2000) and Popple and Sagi (2000) which seems to be triggered
without local cues. The particularity of this stimulus consists in a
way it is constructed by horizontal lines of patterns that exhibit
a relative vertical phase-shift. Consequently, the horizontal lines
appear to have a vertical tilt which direction depends on the
sign of the phase-shift. Based on our previous analysis of motion
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FIGURE 6 | Apparent motion illusions. (A,B) A pair of the Rotating Snake

patterns from Kitaoka and Ashida (2003). (C,D) The low-pass filtered Rotating

Snakes exhibit slower rotation. (E,F) Parallel patterns of the polar-to-rectangle

transformation of the Rotating Snake, i.e., the Translating Snake, does not

produce any motion illusions. (G,H) Antiparallel patterns of the Translating

Snake generates a weak illusion of apparent translational motion. (I,J)

Visualization of the Rotating and Translating Snake pattern shows that motion

elements of the Rotating Snake exhibit a relative phase-shift to each other,

while the Translating Snake elements are parallel and do not have any relative

phase shift.

illusions, we presume that also the virtual tilt illusion is driven by
saccadic eye motions along the horizontal lines of patterns. Con-
sequently, the virtual tilt illusion is, nevertheless, based on local
cues that are established by successive saccadic fixations.

Another puzzling property of this stimulus is the dependency
of the tilt intensity on spectral image characteristics. Remarkably,
the low-pass smoothed stimulus seems to exhibit stronger tilt as
the unsmoothed version with high-frequent components. One

possible explanation for this observation is that phase correlation
of low-pass smoothed patterns results in a wide and blurry shift
signal, cf. Figure 3. Another hypothetic assumption is that the
strategy of saccadic eyemovements differs for low-pass smoothed
and unsmoothed stimuli. If, for instance, saccadic sampling of
blurry images turns out to be associated with faster and/or
more distant jumps,—this can effectively lead to stronger shift
perception in comparison to unsmoothed stimuli.

5. Pattern Recognition using Phase
Correlation

As we have seen above, pattern recognition and motion detec-
tion are closely related tasks in the frequency domain. In fact,
detection of pattern motion using phase correlation premises the
knowledge of complete spectral characteristics of a pattern, i.e.,
pattern recognition. The tight relationship between pattern’s cog-
nitive characteristics and motion can be seen as an exclusive fea-
ture of frequency domain techniques such as phase correlation,
which differs them, for example, from gradient-based optical flow
methods (Barron et al., 1994). The existing body of neurophys-
iological and psychophysical evidence do not allow to make a
conclusion about the nature of neural mechanisms of pattern
recognition. However, from the literature it is known that (i)
the retinal images are frequency-coded, filtered and processed in
visual cortex by several layers of specialized cells in a hierarchi-
cally organized manner (Mesulam, 1998; Kruger et al., 2013), (ii)
recognition takes place in higher levels of this hierarchy, i.e., the
association cortex, where high confidence pattern recognition has
been related to activity of single cells (Quiroga et al., 2005), and
(iii) saccades are involved in acquisition of the information for
rapid scene recognition (Kirchner and Thorpe, 2006). By putting
these findings together with our theoretical and experimental
investigations, we hypothesize here that phase correlation (or an
effectively similar mechanism) is involved in neural machinery of
pattern recognition. The basic statements of this hypothesis are as
follows:

• Images are coded in the neural network by their frequency
domain features (i.e., phases and amplitudes).

• Phase correlation between neural images is performed by
a special layer of cells [further termed as association layer
neurons (ALN)].

• Similarity between each two visual stimuli is sensed by the
spatial-temporal pattern of ALN activity in analogy to PC of
two images, cf. Figure 3.

Figure 9 depicts the principle scheme of this hypothetic mecha-
nism which postulates integration (phase correlation) of source
and target images in association cortex and predicts the neural
activity patterns related to perception of image (dis)similarity.
According to this hypothesis, the physiological expression of
high-confidence recognition of a visual stimulus is a coherent and
persistent activity of a relatively small number of ALN (theoreti-
cally, even one single neuron as it has been observed in Quiroga
et al. (2005)). In contrast, low similarity between visual stimuli
would result in a diffuse and uncorrelated pattern of ALN activity.
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FIGURE 7 | The Anomalous Motion (courtesy A. Kitaoka) induces an illusion of apparent translational motion (left). Manipulated equidirectional stimulus

(right) do not trigger any significant motion illusions.

FIGURE 8 | Dependence of the non-local tilt illusion on low/high-frequent image content. From left to right: the low-pass filtered vs. unfiltered Popple illusion

(courtesy A. Kitaoka).

FIGURE 9 | Scheme of the hypothetic mechanisms of visual

pattern recognition. Persistent activity of a small number of neurons in

association cortex is a feature of high image similarity. In the ideal case,

similarity is detected by a single neuron. In contrast, a more disperse

and stochastic pattern of neural activity indicates a low degree of image

similarity.
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FIGURE 10 | Example of pattern recognition using phase correlation.

From left to right: (i) the target smiley, (ii) multi-smiley image, phase correlation

between (i) and (ii). The green frame indicates the correct location of the target

pattern in the image, the red frame shows the wrong match which

corresponds to the absolute maximum of the noisy phase correlation.

Consideration of visual acuity improves the recognition score. Phase

correlation between the target smiley and the images with three different acuity

foci peaks out the right pattern location with the maximum height of PC =

7.93E+3.

Furthermore, missing similarity between images can be expected
to provoke intensification of saccadic eye movements.

An example of repetitive pattern discrimination/recognition
using phase correlation is shown in Figure 10. The task consists
in finding a particular smiley within a group of similar patterns.
Since phase correlation of noise-free images will immediately
match the right location of the target smiley, the search is com-
plicated by adding a large amount of high-frequency noise which
substantially corrupts small image features (such as smiley’s
eyes). Single-step phase correlation between substantially noised
images results in selection of the wrong pattern location (see yel-
low framed smiley in Figure 10). Due to high-level of noise, the
peak of phase correlation corresponding to the correct pattern
(green framed smiley) has the lower height. Remarkably, consid-
eration of visual acuity (i.e., peripheral blurring) helps to improve
the recognition score. Phase correlation between the target smiley
and three images with different visual foci manages to peak out
the right pattern location which corresponds to the highest peak
of PC = 7.93E+ 3.

Another example of remarkable features of phase correlation
as a pattern recognition tool is detection of the virtual image
content in visual completion illusions. Figure 11 demonstrates
detection of virtual geometrical patterns (i.e., triangle, circle)
in the completion illusions from Idesawa (1991) and Kanizsa
(1995). The correct location of the virtual figures corresponds
to the absolute maximum of phase correlation. This examples

demonstrate that phase correlation is capable to retrieve even
extremely subtle pattern correspondences.

6. Discussion

Here, we merge existing phenomenological findings, compu-
tational analysis and theoretical hypotheses to dissect the role
of image phase in diverse phenomena of visual information
processing, illusion and cognition. We argue that fundamental
importance of phase for detection of structural image features
and transformations is of clear evolutionary advantage for sur-
vival of species and can be assumed to promote the develop-
ment of phase-based mechanisms of neural image processing. A
large body of neurophysiological and psychophysical evidence
seems to confirm the assumption that biological vision relies
on frequency domain transformation, filtering and higher-order
processing of retinal images in the visual cortex. Hence, the emer-
gence of efficient phase-based neural mechanisms in course of
evolution appears to be plausible. We show that the concepts
of phase shift, amplitude-normalizing phase-only transforma-
tion and phase correlation provide a qualitative description for
a number of puzzling visual phenomena including

• preservation of cognitive features in the image sketch (in the
sense of the Marr’s Primal Sketch),

• robustness of pattern detection with respect to substantial level
of noise and structural distortion,

• “eye exhaustion” by observation of repetitive and blurry
scenes,

• advantages of saccadic strategy of iterative target-background
sampling for pattern discrimination,

• dependency of saccadic eye movements on structural image
properties (i.e., target-background similarity and spectral
characteristics),

• advantages of differences in foveal and peripheral acuity for
visual pattern recognition,

• dependency of the delay time by perception of virtual depth
illusions on phase properties of stimuli,

• coherent phase shifts in contrast-gradient patterns of apparent
motion illusions,

• driving role of saccades in apparent motion and tilt illusions,
• recognition of virtual patterns in completion illusions using

phase correlation.
• singular pattern of neural activity in the association cortex by

recognition of similar visual stimuli.

Although, straightforward projections of theoretical concepts
onto biological systems can, in general, lead to too far-reaching
extrapolations, some of our hypothetic predictions, such as
dependency of saccades strategy on structural image properties
and singular response of association cortex to structurally similar
visual stimuli, can be, on principle, tested in experiment.

There is a tight resemblance between the concepts of
amplitude-normalizing phase-only transformation and phase
correlation we used in our work and energy models (Morrone
and Owens, 1987; Morrone and Burr, 1988; Fleet et al., 1996)
re. phase congruency detectors (Morrone et al., 1986; Kovesi,
2000). Both concepts take advantage of two basic principles:
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FIGURE 11 | Detection of the virtual image content using phase

correlation. From left to right: (i) hidden patterns of illusion stimuli (i.e.,

triangle, circle), (ii) visual completion illusion from Kanizsa (1995) (top row)

and Idesawa (1991) (bottom row), (iii) phase correlations between (i) and (ii)

(maximum is indicated by the arrow), registration of (i) onto (ii) according to

the maximum of (iii).

(i) amplitude-normalization, which effectively performs edge
enhancement (i.e., image sketchification) and makes scene anal-
ysis independent of the level of illuminance and contrast, and
(ii) calculation of the cognitive checksum by building an inte-
gral over the entire frequency spectrum, which, on one hand,
makes the cognition extremely robust with respect to noise and,
on the other hand, allows distributed storage of information in
neural networks. Otherwise, there is a basic difference between
these two concepts: phase congruency can be seen as an extended
amplitude-normalizing, edge-enhancing filter, while phase corre-
lation is constructed to detect the relative transformation and/or

structural (dis)similarity between each two images. Furthermore,
phase congruency is presumably performed by V1 neurons, while

phase correlation can be expected to take place in a higher level
of visual cortex hierarchy, i.e., association cortex. Finally, taking

into consideration potential redeployment of the brain areas
(Anderson, 2007), one can expect that the suggested principle

of pattern recognition by phase correlation is not restricted to
the visual system and could also play a role in other cognitive

functions.
Within the general framework of recent hierarchical bottom-

up top-down models of visual cortex (Lee and Mumford, 2003;
Epshtein et al., 2008; Poggio and Ullman, 2013), our find-
ings provide a theoretical explanation for what Marr called

“early non-attentive vision” (Marr, 1976, 1982). In particular,

our above results suggest that phase-only transformation in V1

with subsequent phase correlation in association cortex represent
bottom-up neural mechanisms of Primal Sketch generation and
perception, respectively. However, differently from the canonical
edge operators that are based on derivatives (i.e., edge-mask con-
volution) of the image intensity function, edge information in the
frequency domain is given implicitly by the relative phase struc-
ture and can be assessed for the entire image in a non-iterative

and non-local manner. The ability of phase correlation to capture
global structural information “on-the-fly” makes it to an ultimate
tool for rapid bottom-up processing of the focused image con-
tent. The temporal focus of the observer is, in turn, controlled
by higher-order cortical centers that integrate bottom-up streams
and define conscious and unconscious strategies of visual scene
sampling.

While the focus of our present work is on the role of image
phase in visual information processing, it should be stated that
phase does not exclusively bear cognitive features of visual stim-
uli. Findings in Freeman and Simoncelli (2011) and Zhang et al.
(2014) suggest that amplitude information is also involved in
visual (re)cognition and can be even overweight in peripheral
vision or by perception of textural images. It is a subject of
future research to reveal how phase and amplitude are weighted
and merged to an integrated whole in association cortex upon
structural properties of visual stimuli.
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Modeling human aesthetic perception of visual textures is important and valuable

in numerous industrial domains, such as product design, architectural design, and

decoration. Based on results from a semantic differential rating experiment, we modeled

the relationship between low-level basic texture features and aesthetic properties

involved in human aesthetic texture perception. First, we compute basic texture features

from textural images using four classical methods. These features are neutral, objective,

and independent of the socio-cultural context of the visual textures. Then, we conduct

a semantic differential rating experiment to collect from evaluators their aesthetic

perceptions of selected textural stimuli. In semantic differential rating experiment, eights

pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural

context of the selected textures and to human emotions. They are easily understood

and connected to everyday life. We propose a hierarchical feed-forward layer model of

aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers.

Finally, we describe the generation of multiple linear and non-linear regression models

for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic

properties of visual textures as dependent and independent variables, respectively. Our

experimental results indicate that the relationships between each layer and its neighbors

in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted

well by linear functions, and the models thus generated can successfully bridge the gap

between computational texture features and aesthetic texture properties.

Keywords: visual texture, aesthetic emotion, texture analysis, psychological experiment, dimension reduction,

perception modeling, layered model architecture

INTRODUCTION

Texture is ubiquitous. It contains important visual information about an object and allows us to
distinguish between animals, plants, foods, and fabrics. This makes texture a significant part of the
sensory input that we receive every day. In the visual arts, texture is the perceived surface quality
of a work of art. It is an element of two- and three-dimensional designs and is distinguished by
its perceived visual and physical properties (Graham and Meng, 2011). From the research point
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of view, textures are classified into tactile and visual textures. The
former, also known as actual textures or physical textures, are
actual surface variations (Elkharraz et al., 2014), including, but
not limited to, fur, wood grain, sand, and the smooth surfaces of
canvas, metal, glass, and leather (Skedung et al., 2013). Physical
texture is distinguished from visual texture by a physical quality
that can be felt by touch (Manfredi et al., 2014). Visual texture is
the illusion of physical texture. Every material has its own visual
texture. Photographs, drawings, and paintings use visual texture
to portray their participant matter both realistically and with
interpretation (Guo et al., 2012). Above all, visual scientists have
realized that the rich resource they are provided with by artists in
the form of textures is worthy of scientific study (Zeki, 2002).

The challenge in aesthetic perception of visual textures and
art is to understand the aesthetic emotion and judgment that
are evoked when we experience beauty. To evaluate and explain
beauty in science, models of aesthetic perception and judgment
have been proposed in cognitive psychology and information
science. According to the information-processing stage model of
aesthetic processing, five stages-perception, explicit classification,
implicit classification, cognitive mastering, and evaluation are
involved in aesthetic experiences (Leder et al., 2004).

To discriminate between aesthetically pleasing and displeasing
images, Datta et al., employed support vector machines
and classification trees to perform explicit classification, and
applied linear regression to polynomial terms of features to
infer numerical ratings of aesthetics (Datta et al., 2006).
Additionally, Datta et al., developed multi-category classifiers to
recognize coarse-grained aesthetic categories and used support
vector machines to predict fine-grained aesthetic scores (Datta
et al., 2006). Jiang et al. used two model built algorithms
to study automatic assessment of the aesthetic value in
consumer photographic images (Jiang et al., 2010). Cela-
Conde et al. pointed out that investigating the cognitive and
neural underpinnings of aesthetic appreciation by means of
neuro-imaging has yielded a wealth of fascinating information
(Cela-Conde et al., 2011). Toet et al. explored the effects
of various spatiotemporal dynamic texture characteristics on
human emotions (Toet et al., 2011). Using structural equation
modeling, Leder et al. explored aesthetic perception by analyzing
expertise-related differences in the aesthetic appreciation of
classical, abstract, and modern artworks (Leder et al., 2012).
Simmons explored the relationship between color information
and the emotions they induced by measuring along two affective
dimensions, namely pleasant-unpleasant, and arousing-calming
(Simmons, 2012).

In their research, Cela-Conde et al. discussed adaptive and
evolutionary explanations for the relationships between the
default mode network and aesthetic networks, and offered
unique input to debates on the interaction between mind and
brain (Cela-Conde et al., 2013). Reviewing from definitional,
methodological, empirical, and theoretical perspectives of human
aesthetic preferences, Palmer et al. concluded that visual aesthetic
response can be studied rigorously and meaningfully within
the framework of scientific psychology (Palmer et al., 2013).
The research of Bundgaard addressed the phenomenology of
aesthetic experience, which showed why and how aesthetic

experience should be defined relative to its object and the tools
for meaning-making specific to that object and not relative to
the feeling (Bundgaard, 2014). Chatterjee andVartanian reviewed
recent evidence that approves aesthetic experiences emerge from
the interaction between sensory–motor, emotion–valuation, and
meaning–knowledge neural systems (Chatterjee and Vartanian,
2014). In experiment, Elkharraz et al. designed andmanufactured
3D tactile textures with predefined affective properties, and used
mixing algorithms to synthesize 48 new tactile textures that were
likely to score highly against the predefined affective properties
(Elkharraz et al., 2014).

However, surprisingly little funded research has been
conducted on the emotional qualities and expectations associated
with specific textures. In 2007, the project named “Measuring
Feelings and Expectations Associated with Texture” (SynTex)
was supported by the European Commission within the sixth
framework program. SynTex was coordinated by Profactor
GmbH and conducted in collaboration with six other research
institutes in the European Union. In fact, SynTex is the only
project to have ever attempted to measure, model and predict
the psychological effects of texture. Thumfart et al. summarized
the outcomes of this project (Thumfart et al., 2011). A further
outcome is in the work of Groissboeck, which focused on
synthesizing textures for predefined, desired emotions described
by a numerical vector in aesthetic space (Groissboeck et al.,
2010). We build upon this research, but go a step further in
terms of significantly enhanced texture analysis, feature selection,
and layered model-building for better interpretability, while
achieving improved accuracy in the prediction of several core
adjectives that define the aesthetic space. Expanding the aesthetic
space used in Thumfart et al. (2011), we introduced two new
adjectives in our experiments.

After reviewing related work in Section Introduction, we
present the four different categories of low-level features that
were extracted to objectively represent the visual textures in
Section Materials and Methods. Further, we describe feature
selection using Laplacian Score to reduce the complexity of
the aesthetic perception model. Section Results and Discussion
summarizes the semantic differential rating experiment, in which
we collected aesthetic perceptions from participants with selected
textural stimuli. We describe the modeling approaches in Section
Results and Discussion; Section Conclusions conclude the paper.

MATERIALS AND METHODS

Selected Textural Stimuli
The visual texture database of stimuli used in our experiment
consists of 151 selected high-resolution textural images, which
are also the experiment materials used in SynTex project. This
database is the Supplementary Material of the paper published
by Thumfart et al., in the proceedings of the 13th international
conference on Computer Analysis of Images and Patterns (CAIP
2009) (Thumfart et al., 2009). The project SynTex is by far
outdated and the link that provides the visual texture database has
been closed. The used visual textures for our study can be sent to
readers upon request via email or dropbox exchange. Readers can
contact us by using the email addresses given in the affiliations.
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It includes natural, artificial, regular and stochastic textures in
the textural stimuli, which were selected from various texture
databases. In detail, 73 textures were chosen from the Brodatz
texture album, 69 from the Outex texture database, 25 from
the UIUCTex database, 12 from the USC-SIPI image database,
and 64 from the VisTex database. Since the original sizes of the
textures selected from different database varied, they were resized
to a resolution of 480 × 480 pixels. Some examples of visual
textures from the SynTex database are shown in Figure 1.

In the SynTex database, some textures are artificial and
synthetic, some others are natural. So a nice diversity of different
sorts and types of textures is given.

Texture Analysis
Texture analysis refers to the characterization of image regions
by their textural content (Karu et al., 1996). Texture analysis
attempts to quantify intuitive qualities described by terms such
as rough, smooth, silky, and bumpy as functions of the spatial
variations in pixel intensities (Guo et al., 2012). Texture analysis
is used in a variety of applications, and can be helpful when
objects in an image are better characterized by their textures than
by intensity or traditional thresholding techniques (Bharati et al.,
2004).

In our experiment, four different texture analysis methods are
employed to extract statistical characteristics from visual textures,
which were then categorized into color and statistical features,
and perceptual and frequency-domain energy-based features. In
total, we initially derived a set of 106 features for each texture
image.

Color Characteristics
Colors play an important role in deciding what we like or dislike,
because they evoke complex psychological reactions and give
rise to relevant feelings (Ou et al., 2004a,b). In addition to
the studies of Simmons (2012) mentioned in the introduction,
there is growing interest in the understanding of human feelings
in response to seeing colors and colored objects, which are
also called “color emotions” in psychology (Lucassen et al.,
2011). Experimental results show that the emotional responses to
warm/cool, heavy/light, and active/passive are consistent across
cultures, but that the like/dislike scale exhibits some differences
(Ou et al., 2012). Visual perception of some emotions can
be linked to different colors (Augello et al., 2013). Regression
analysis is usually applied before product color design to reveal
the relationships between human responses on these scales and
the underlying color appearance attributes, such as lightness,
chroma, and hue (Hanada, 2013; Man et al., 2013).

Six color features were computed from HSV (hue-saturation-
value) space to describe each visual texture as the ones used in
the work of Romani et al. (2012). In detail, average, and standard
deviation of the HSV color matrix elements were calculated after
conversion of each texture image from RGB to HSV color space.

Gray Level Co-occurrence Matrix Characteristics
If texture is the dominant information in a small area, then this
area has statistically a wide variety of discrete textural features
(Baraldi and Parmiggiani, 1995). The simplest texture analysis
method uses statistical features computed from histograms.

Haralick et al., went a step further and proposed a gray-level
co-occurrence matrix (GLCM) in which the relative positions
of pixels with respect to each other are considered as well
(Haralick et al., 1973; Roberti et al., 2013). Given a spatial
relationship between pixels in a texture, such a matrix represents
the joint distribution of gray-level pairs of neighboring pixels
(Davis et al., 1979). Thus, a considerable amount of information
can be obtained by modifying the orientation θ or distance d
between pixels, where d specifies the distance between the pixel
of interest and its neighbor, and θ gives the direction from the
pixel of interest to its neighbor. If either θ or d is set, one GLCM
is generated. From each GLCM, four statistical characteristics
called contrast, correlation, energy, and homogeneity can be
calculated.

To research the effect of distance and orientation on statistical
features, we extracted 16 GLCMs, choosing the distance from
the set d = {2, 4, 6, 8} and the orientation from θ =

{0◦, 45◦, 90◦, 135◦}. Use of these orientation angles, restriction
to 135◦ is inspired by Haralick et al. They have been employed
in many published statistical representations of textures and
are deemed to provide sufficient information for building gray-
level co-occurrence matrices. In total, we extracted 64 statistical
features for each computed GLCM.

Tamura Texture Features
In color emotion research, an object usually has a uniform color.
However, this is rarely the case for real-life objects. Therefore, the
effect of texture on color emotion should be extended. Tamura,
Mori, and Yamawaki found in psychological studies that humans
respond best to coarseness, contrast, and directionality, and to
lesser degrees to line-likeness, regularity, and roughness (Tamura
et al., 1978). In most cases, only the first three Tamura features
capture the high-level perceptual attributes of a texture well and
are useful in visual art appreciation (Castelli and Bergman, 2002).
Thus, in contrast to statistical data measures, Tamura texture
features seem well suited to capture the emotional perception
of visual textures. In our experiment, coarseness, contrast, and
directionality were calculated as characteristics that represent the
psychological responses to visual perception.

Wavelet-based Energy Texture Features
Wavelets have been successfully used as an effective tool
to analyze texture information, as they provide a natural
partitioning of the image spectrum into multi-scale and
oriented sub-bands via efficient transforms (Brooks et al., 2001).
Furthermore, wavelets are used in major image compression
standards and are prominent in texture analysis (Dong and
Ma, 2011). Wavelet-based energy features can be extracted as
frequency features in conjunction with other spatial features to
capture visual texture information. The basic idea underlying
the wavelet energy signature is to generate textural features
from wavelet sub-band coefficients or sub-images at each scale
after wavelet transformation (Liu et al., 2011). Assuming that
the energy distribution in the frequency domain identifies
texture, we used L1 and L2 norms as measures in our work.
More specifically, we calculated L1 and L2 norms from the
high-frequency sub-bands of the first four levels that were
proposed by Do and Vetterli (2002). To describe the quality of
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FIGURE 1 | Some examples of visual textures from the SynTex collection.
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the information included in each sub-image to be reconstructed
with the corresponding wavelet coefficients, we also calculated
the Shannon entropy of each high-frequency sub-band.

When a texture image is decomposed at level j using a 2D
discrete wavelet base, 3 j sub-bands are generated. Then 6 j
energy signatures and 3 j entropy signatures are extracted. Since
we decomposed each texture image into 4 levels, we extracted 36
wavelet signatures from each texture image.

Feature Selection Using the Laplacian
Score
The goal of feature selection is to select the best features from a
set of features that not only achieve the maximum prediction rate
but can also reduce the complexity of model building (Vapnik,
1998). All feature selection approaches can be applied in either
supervised or unsupervised mode (Chandrashekar and Sahin,
2014). In supervised mode, each training sample is described
by a vector that consists of feature values with a class label.
The class labels are used to guide the search process toward
the optimal feature subset. In unsupervised mode, the training
samples are not labeled, and thus feature selection is more
difficult (Tabakhi et al., 2014). However, this mode provides more
general information which can be used by an arbitrary model
architecture.

Predicting aesthetic emotions linked to visual textures is a
typical example of data mining, where the inputs are low-level
texture features and the outputs are aesthetic properties of visual
textures. The aesthetics properties used as outputs for modeling
are not labeled by strings or 1-0 codes (class labels), as is usual
in classification problems, but by discrete real decimal numbers.
Ideally, as discussed above, the feature selection method should
be independent of the chosen model architecture and also
of the hierarchical layered structure (Breiman et al., 1993).
Furthermore, we sought to optimize the information content of
the feature space while reducing its complexity, with the aim
of obtaining one unique reduced set with good interpretation
capability.

In a kind of filter selection stage, we thus focused on an
unsupervised feature selection scheme called Laplacian Score
(LS). LS is a relatively recent unsupervised method for selecting
top features (He et al., 2005). It is able to reduce truly redundant
and correlated information content of the extracted features—
note that only truly redundant features can be discarded without
significant information loss (see Guyon and Elisseeff, 2003).
In detail, firstly a nearest-neighbor graph was constructed for
the original feature set. Secondly, the Laplacian scores for all
features in the original feature set were computed using the LS
algorithm. Thirdly, the features were ranked according to their
Laplacian scores in ascending order. Finally, the last d features
were discarded, and the feature set was updated with only the
remaining features.

Psychological Experiments and Perception
Modeling
Aesthetic experiences are very common in modern life, even
we don’t deliberately care about them. There is yet no

scientifically comprehensive theory that explains what constitutes
such experiences. As mentioned in the Introduction section,
several scientific methods have been used to explore the
complex systems that involve in aesthetic experiences. Except
for measurements of physiological signals using bio-sensors,
psychological experiments are also important tools in exploring
cognitive challenges of aesthetic experience and judgments. This
section describes the semantic differential rating experiment that
was conducted to collect their aesthetic perceptions of visual
textures from 10 male and 10 female subjects. The aesthetic
properties were assigned to three different layers of the proposed
aesthetic perception model.

Definitions of the Aesthetic Properties
Before the semantic differential experiment, we had to select
and define the aesthetic properties. Which types of aesthetic
properties should be defined and how many pairs of aesthetic
antonyms should be selected are hot research topics in semantic
analysis. The definition of the eight core adjectives as shown
in Table 1 has been derived from the findings in Levinson
(2006) which emphasized that six of these define the aesthetic
core space. The two additional ones (dark-light and disordered-
harmonious) were considered because of the contents of the
textures selected for experiment and the suggestions coming
from the 20 subjects.

Before the semantic differential experiments, we explained the
meaning of each pair of aesthetic antonyms to the 20 participants
and showed them some typical samples. In experiment, we
emphasized that these samples were not their only references.We
further suggested that knowledge about and preference for—or
even prejudice against—some types of visual texture they would
encounter should also be considered.

As shown in Table 1, the 8 pairs of aesthetic antonyms are also
assigned to three emotion layers defined in Thumfart’s work. In
fact, the 8 pairs of aesthetic antonyms are assigned to effective,
judgment or emotional layer by the 20 subjects after surveying
100 persons in 3 days. The logic relationships between these
emotion layers are explained in Section Aesthetic Perception
Model of Visual Textures.

Semantic Differential Experiment
Semantic differential experiments are commonly used to explore
perceptual and emotional dimensions of visual art and music. In
our case, a semantic differential experiment was carried out—
with the approval of the ethical committee of Jiangnan University
for experiments with human participants—to collect participant
ratings for the eight aesthetic properties defined in Table 1.

TABLE 1 | Eight pairs of aesthetic properties are divided into three layers.

Aesthetic property Emotion layer Aesthetic property Emotion layer

Warm-cold Affective layer Inelegant-elegant Judgment layer

Rough-smooth Affective layer Simple-complex Judgment layer

Dark-light Affective layer Artificial-natural Judgment layer

Disordered-harmonious Judgment layer Like-dislike Emotional layer
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In the semantic differential experiment, 20 highly motivated
Jiangnan University undergraduate students (aged 19–23) served
as participants to rate 151 visual textures in terms of eight
aesthetic antonyms. Before experiment, we introduced our
research purpose, experimental procedures, and how long it takes
to participate to all participants, and provided a written informed
consent form to each participant.

After signing a written informed consent form, each
participant enrolled for at least 5 daily sessions of 2 h and
received payment. The purpose of the experiments was concealed
from all participants, and they were trained to use a program
we developed called Texture Aesthetic Annotation Assistant to
rate the defined aesthetic properties. In each test, participants
briefly (300ms) viewed one visual texture, which was followed
immediately by a perceptual mask (200ms) presented at the same
location. The viewing distance was 75 cm (screen to participant).
After training, the 20 participants participated in the semantic
differential experiment in our lab at their own leisure.

The participants operated the Texture Aesthetic Annotation
Assistant which automatically displayed the texture and stored
the ratings in a e. A visual texture and a rating bar were shown in
the center and at the bottom of the display. The subject could drag
the scrollbar to rate the texture according to the labeled aesthetic
antonyms (placed at opposite ends of the scrollbar), and the eight
pairs appeared sequentially as listed in Table 1. Rather than the
seven point rating scale, we used a continuous rating scale within
the interval [−100, 100] (Chuang and Chen, 2008). This kind of
rating method is useful to build a continuous regression model
with sufficiently fine granularity.

In the semantic differential experiment, each participant
randomly evaluated each texture five times, and the ratings
for each texture were stored in a text file. After completion
of the semantic differential experiment, the ratings for each
visual texture evaluated by the 20 participants (i.e., 100 ratings
per texture) were averaged and used as final ratings to build a
prediction model for aesthetic emotions (see below).

As the aim of this research was to gain general insights
and explore potential relationships between human texture
perception and low-level features of visual textures, we did not
use individual experimental data to build an individual model
for each subject, but created a general model that may be valid
for a wider range of applications and purposes and reduces
development costs.

Aesthetic Perception Model of Visual Textures
Axelsson summarized five theoretical models that are most
important for the development of psychological aesthetics: (1)
Berlyne’s Collative-Motivational Model, (2) the Preference-for-
Prototypes Model, (3) the Preference-for-Fluency Model, (4)
Silvia’s Appraisal-of-Interest Model, and (5) Eckblad’s Cognitive-
MotivationalModel (Axelsson, 2007). However, these fivemodels
were developed in theoretical psychology and can hardly be
explained in information-processing and mathematical terms
because the input factors are specific human emotions that
cannot be quantified. The hierarchical layer structure of these
models, however, provides a reference for our work, and some
aesthetic properties involved there are also helpful to us.

Achievements in neuroaesthetics are the most important basis
for building a hierarchical structure of aesthetic perception,
especially the research of Ishizu and Zeki provides powerful
support (Ishizu and Zeki, 2013). Also, Thumfart et al. applied
a similar hierarchical layer structure, in which we extended
with two additional properties, “dark-light” and “disordered-
harmonious.” The structure of the hierarchical feed-forward
model of aesthetic texture perception is shown in Figure 2.

In the hierarchical feed-forward model, the function of the
affective layer is to complete the descriptions of the general
and primary physical properties of the visual texture. Thus, the
aesthetic antonyms selected for the affective layer are used to
capture the primary emotions when we first skim the visual
textures. In the judgment layer, the selected aesthetic antonyms
should describe higher-level and more aggregate properties
that are in part anchored in the subconscious, especially those
induced after statistical and logical judgment. The emotions
we feel when interacting with the textures are described in
the emotional layer. The aesthetic antonyms selected for the
emotional layer should describe the overall feelings people have
and wish to express.

Building an Aesthetic Perception Model
Traditional machine learning techniques such as neural
networks and support vector regression are useful prediction
tools. However, they become completely impractical when
interpretability of the implicit relations between low-level
features and core adjectives is desired, because they are black
boxes and cannot provide any meaningful and understandable
insights. Hence, we propose a hierarchical feed-forward layer
model of aesthetic texture perception with high interpretability
that combines neuroaesthetics and information processing
theory. In the layered structure model, each layer has a set of
interpretable aesthetic antonyms.

As illustrated in Figure 2, there are three perception channels
similar to neural circuits in neuroscience. In the first channel,
the low-level texture features are used to model the aesthetic
properties of the affective layer. In the second channel, the
properties of the judgment layer are modeled using low-level
features and aesthetic properties of the affective layer. Finally, the
properties of the emotional layer are built accordingly by inputs
from all previous layers and low-level features.

We set Mp =

{
A

p
i ,B

p
j ,C

p

k
, . . .

}
as the low-level feature set

of the pth visual texture, where i = 1, 2 . . . n, j = 1, 2 . . . s,
k = 1, 2 . . . t represents the number of different texture feature
subsetsA,B,C, etc. The aesthetics values of the affective layer, the
judgment layer and the emotional layer for the pth visual texture

are represented by Gp =
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2 ; g
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}
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3 ; t
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}
,

and Qp =
{
qp

}
, respectively. Considering the ideas conveyed

in Figure 2, we employ six activation functions to construct the
three perception channels.

The perception model of the affective layer is given by:

G = F1(M)+ R0 (8)

that of the judgment layer by:
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FIGURE 2 | Structure of the hierarchical feed-forward model of aesthetic perception of visual texture, the horizontal arrows indicate input flows to the

different layers: e.g., the inputs to the judgment layer are low-level features (gray arrow) plus properties of the affective layer (white arrow).

T = F2(M)+ F3(G)+ R1 (9)

and that of the emotional layer by:

Q = F4(M)+ F5(G)+ F6(T)+ R2 (10)

where F1, F2, F3, F4, F5, and F6 are the six activation functions
that can be linear or non-linear, and R0, R1, and R2 refer to
the emotion thresholds. The symbol “+” indicates emotions
accumulated through different perception stages. Note that in
our model-building cycles (as explained in the Results section), a
particular set of activation functions best suited to the problem at
hand is automatically applied. A standard procedure consists of a
weighted linear combination of these activation functions where
the weights are derived by least-squares optimization to obtain
an optimal solution within a closed analytical formula, see Ljung
(1999) or Lughofer (2011).

When aesthetic emotions are predicted for new incoming
textures, the adjectives in the affective layer G(1), G(2), and
G(3) are predicted using the low-level feature set stored inM
and applying the activation function F1. Next, the adjectives
in the judgment layer T(1), T(2), T(3), and T(4) are predicted
using the low-level feature setM and the predicted adjective
values G(1) to G(3) by applying activation functions F2 and F3.
Finally, the emotional layer adjective (“like-dislike”) is predicted
using the low-level feature set M, the predicted adjective values
G(1) to G(3) and the predicted values T(1), T(2), T(3), and T4)
by applying activation functions F4, F5, and F6. Alternatively,

if adjective values for G(1) to G(3) and/or T(1) to T(4) are
already given by humans, these can be used in place of the
predictions.

RESULTS AND DISCUSSION

The Selected Top Features
After feature selection, the original 106-D features were ranked
according to their Laplacian scores. The first and most important
15 features are listed in Table 2.

The first 15 texture features are listed in Table 2 according to
their Laplacian score in ascending order. The first feature is the
mean saturation, which is extracted from the HSV space. The
number of contrast and homogeneity calculated using GLCMs
is eight, which accounts for 53%. The ranks of coarseness and
directionality are the seventh and the eighth, respectively. The
ranks of the wavelet-based energy texture features (L1 norm and
L2 norm) calculated from the horizontal and vertical sub-band at
the first level are the ninth, the tenth and the fifth.

Visualization of the Selected Features
The magnitudes of the features extracted using the algorithms
mentioned in Section Materials and Methods are different. In
Figure 3, the feature set after normalizing to the interval [−1, 1]
using feature scalingmethod is visualized. In our experiment, 151
selected visual textures are used and 106 features are calculated
for each visual texture. So, the size of the feature database is
151× 106.
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TABLE 2 | Feature list after selection using the Laplacian score.

ID Laplacian score Category Parameters Name

f1 0.9742 Color characteristics Mean of saturation Mean of saturation

f2 0.9101 GLCMs d = 8, θ = 45◦ Contrast

f3 0.8995 GLCMs d = 6, θ = 45◦ Contrast

f4 0.8855 GLCMs d = 8, θ = 135◦ Contrast

f5 0.8785 GLCMs d = 8, θ = 90◦ Contrast

f6 0.8778 GLCMs d = 4, θ = 45◦ Contrast

f7 0.8690 Tamura texture Coarseness

f8 0.8656 Tamura texture Directionality

f9 0.8551 Wavelet-based energy horizontal sub-band at level 1 L2 norm

f10 0.8434 Wavelet-based energy vertical sub-band at level 1 L2 norm

f11 0.8434 Tamura texture Contrast

f12 0.8427 GLCMs d = 8, θ = 45◦ Homogeneity

f13 0.8367 GLCMs d = 8, θ = 135◦ Homogeneity

f14 0.8306 GLCMs d = 6, θ = 45◦ Homogeneity

f15 0.8282 Wavelet-based energy horizontal sub-band at level 1 L1 norm

FIGURE 3 | The full feature matrix comprising 106 features and 151 textures.

In Figure 3, one color represents each type of features that
locate in each dimensionality. We can find that the majority
of the feature values compactly locates at the bottom of the
space and only a few sparsely scatter among the concentrated
feature stripes. One possible conclusion is that the features
extracted using the algorithms mentioned in Section Materials
and Methods are highly redundant, correlative and there is a
quite low diversity of the features. In order to further examine this
issue, the cross correlation coefficients of the 106-D features are
calculated and illustrated in Figure 4. There are 1370 correlation

coefficients that are larger than 0.75 in their absolute values,
which accounts for 12.19% in total.

The first 10 features are visualized in Figure 5.
In Figure 5, the normalized 10 features regularly locate in

the feature space. The features in the first feature vector, are
much larger than the left ones. We also found that the first 10
selected feature vectors can be divided into two clusters, which
locate on two poplars of the feature space. The structural risk
and the computation complexity of the model will be under
constraints through controlling the number of features that are
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used as inputs. Thus, in the model building process, the features
with a Laplacian score lower than 0.85 are not used, which means
that we used the first 10 features to build the aesthetic perception
model.

Building a Model of Aesthetic Perception
Below, we discuss model building by means of Eureqa Desktop.
Eureqa is a tool that uses a recent breakthrough in machine
learning to unpick intrinsic relationships within complex data
and explains them as simple mathematical formulas (Schmidt
and Lipson, 2009). When the target expressions are defined
by Equations (8–10), the basic, trigonometric and exponential

FIGURE 4 | The colored cross correlation coefficients matrix.

functions are selected in the formula building blocks of
Eureqa Desktop. In detail, the basic functions include addition,
subtraction, multiplication, division and the constant operation.
The trigonometric functions include sine, cosine and tangent
functions. The exponential functions include exponential,
natural logarithmic, factorial, power and square-root functions.

Before model building, the 10 selected features and emotion
values were smoothed, outliers removed and normalized with the
default algorithms embedded in Eureqa Desktop. The 151 visual
textures were divided into two sets. One set is for model building
and the other is for model test. The training set included 90% of
the total number of textures, and was used for model building.
The test set was used to evaluate the performance of the models
built on the training set, to measure the expected quality on new
textures.

We used a parameter called R∧2 goodness of fit to evaluate
the quantitative goodness of fit between each model and the used
data. The model with the greatest R∧2 is considered to be the
best. The models thus selected for the eight pairs of aesthetics
properties distributed in the hierarchical feed-forward model are:

G(1) = 0.03 · f1 + 598.16 · f3 − 234.19 · f5 − 348.67 · f7 · · ·

· · · + 189.82 · f9 − 304.29 · f10 + 22.17 (11)

G(2) = −1.31× 10−13 · f10 − 1.73 (12)

G(3) = 0.29 · f1 + 83.14 · f7 − 53.82 · f5 − 214.60 · f9 · · ·

· · · − 0.34 · f1 · f7 + 216.71 · f∧29 + 19.22 (13)

T(1) = 0.03 · f1 + 119.55 · f6 − 106.46 · f7 + 18.21 · f9

− 51.51 · f10 + 0.76 · G(3)+ 2.86 (14)

FIGURE 5 | The first 10 selected features.
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T(2) = 0.09 · f1 + 691.81 · f3 − 737.98 · f4 − 609.32 · f6

+ 683.64 · f7 · · · − 66.11 · f8 + 0.33G(3)− 9.60 (15)

T(3) = 1135.64 · f2 − 1123.31 · f3 − 582.81 · f4 + 571.40 · f7 · · ·

· · · − 364.15 · f8 + 376.91 · f9 − 14.60 (16)

T(4) = 185.17 · f2 + 68.26 · f3 − 215.02 · f4 − 99.79 · f8 · · ·

· · · + 129.36 · f9 − 0.15 · G(1)+ 24.37 (17)

Q = 123.09 · f2 − 144.83 · f3 − 113.49 · f8 − 148.05 · f9 · · ·

· · · + 0.64 · T(1)+ 0.12 · T(3)+ 1.14 (18)

where fi,i = 1, 2 · · · 10 represents the 10 features selected using
the Laplacian score algorithm.

In fact, 13 different non-linear terms are chosen for model
building in Eureqa, which automatically selects those terms
which are most feasible for establishing a high quality model
(within a cross-validation procedure). During cross-validation,
the training set is split into different folds, and always a separate
test fold is used to elicit the error for each training fold
combination. According to Hastie et al. (2009), CV is a good
method to estimate the expected prediction error on future
samples well. Furthermore, in order to overcome over-fitting, we
studied how the models listed above performed on a separate test
set. We should note the number of variables used to build each
model is different. In detail, an input dimensionality of 10 in case
of G(1) to G(3), of 13 in case of T(1) to T(4) and of 17 in case of Q.

Surprisingly, we found out that for all models linear terms
were sufficient to reach the highest possible quality in terms of
R∧2 goodness of fit for explaining the targets. The exception was
for themodel for G(3), which uses two quadratic terms. However,
these do not boost the quality of this model (cf. Table 3). This is
the most noteworthy results of our experiment, as it keeps the
model complexity low and thus emphasizes high interpretability
capability. Even though the low-level texture features were
integrated using non-linear models, the models bridging the gap

TABLE 3 | Statistical measures and qualities of models on the training

data set (CV-based), the results after the slashes correspond to the

results reported in (Thumfart et al., 2011) (if available), we offer two

additional models for disordered-harmonious (T(4)) and dark-light (G(3)).

Aesthetic R∧2 Basic Enhanced Correlation RMSE

property complexity complexity coefficient

G(1) 0.57 6/3 23 0.80 07.5/8.87

G(2) 1.00 1/6 5 1.00 00.00/7.83

G(3) 0.28 6 17 0.44 10.80

T(1) 0.92 6/12 19 0.97 02.42/05.02

T(2) 0.84 7/5 25 0.93 04.31/04.81

T(3) 0.82 6/6 23 0.91 03.39/04.56

T(4) 0.47 6 29 0.93 1.53

Q 0.95 6/6 23 0.98 01.55/03.35

between computational texture features and aesthetic texture
properties turned out to be linear. Additionally, Equations
(14–18) indicate that the higher level aesthetic properties in the
judgment layer and emotional layers cover—with the exception
of the texture features—the aesthetic properties in the lower-level
layer. Interestingly, G(3) is an important adjective in the models
for T(1) and T(2), whereas T(1) and T(3) have a direct influence
on the “like-dislike” feeling.

The R∧2 goodness of fit values of the eight models [shown in
Equations (11–18)], are listed in Table 3. Complexity, correlation
coefficient and the root mean squared error are also provided to
fully evaluate goodness of fit and predictive power. Complexity
is important to measure the model’s capability in terms of
interpretability because of higher complex models are always
suffering from interpretability. The root mean squared error
shows the expectation deviation between observed and predicted
aesthetic property values. Correlation coefficient denotes the
correlation between predicted and observed values. Thus, a value
close to 1 indicates a nearly perfect prediction; usually, a value
of 0.5 and below denotes a useless model. Eureqa’s complexity
metric (or size) is measured by the number of variables and
the relative weights of each of the building blocks used in the
solution. This is referred to as “enhanced complexity” in Table 3.
Additionally, we report the basic complexity, which is simply
the number of input terms in each model. These values are
directly comparable with the values in Thumfart et al. (2011)
and are directly related to the transparency and understandability
of the model (a model with 100 terms can be hard to read and
understood, for instance).

InTable 3, the R∧2 (goodness of fit) forG(2),T(1),T(2),T(3),
and Q are greater than 0.8. In other words, the models
for G(2),T(1),T(2),T(3), and Q are instantiated that provide
suitable representations of the aesthetic perceptions. However,
it can be seen that the R∧2 goodness of fit values for G(1),T(4)
and particularly G(3) are obviously lower than those of the
other models. And, the MSEs of G(1) and G(3) are significantly
greater when compared with the others. The models for T(1)
and Q are fully useable and highly precise in case when real
G(3) values are available for new textures. Another finding is
that our new models based on specifically selected features can
significantly outperform the models proposed by Thumfart in
terms of prediction error (much lower MSE values).

Note that in model training and evaluation cycles, we always
used the original data gotten from the semantic differential. In
particular, for establishing a model for T(1) and Q, which both
use G(3) as input, the original G(3) values from the interview data
were used and not the predictions of the G(3) model (which were
particularly poor as can be seen in Table 3). Model building and
the final models for T(1) and Q were therefore not affected.

The aesthetics properties predicted using these models
[according to Equations (11–18)] and the values from the
interview-based test set that comprises 14 textures are plotted
in Figures 6–8 for the three most interesting and challenging
properties “artificial-natural,” “disordered-harmonious,” and
“like-dislike.” The statistical measures of the predicted and real
aesthetic property values from interviews for the test set are given
in Table 4.
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FIGURE 6 | The predicted and the interviewed test sample values for T(3).

FIGURE 7 | The predicted and the interviewed test sample values for T(4).

As shown in Figures 6–8, the prediction power of G(1), G(2),
T(1), T(2), and T(3) is better than that of G(3), T(4), and Q.
However, the predictive power of G(3) and T(4) is much better on
the test set than on the training set, at least for T(4). We therefore

conclude that the models can be used to calculate the properties
of textures. In fact, the maximum correlation coefficient of the
training set is greater than that of the test set in all cases, as can be
seen in Table 3, 4. In other words, the multiple linear regression
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FIGURE 8 | The predicted and the interviewed test sample values for Q.

TABLE 4 | Statistical measures for the test set.

Aesthetic property Correlation coefficient RMSE

G(1) 0.99 1.74

G(2) 0.99 1.13

G(3) 0.76 9.28

T(1) 0.99 1.79

T(2) 0.99 2.51

T(3) 0.98 3.77

T(4) 0.94 5.68

Q 0.97 4.73

models can predict the aesthetic property well for some new
visual textures that were not used in the training stage, even
though the correlation coefficient on the overall training set is
unsatisfactory. Another indication is that the bias is higher than
the variance error, and thus over-fitting does not take place. On
the other hand, we could find out that also the models for G(3)
and T(4) can perform well on a subset of the whole texture set,
which makes them promising for other textures collected in the
future.

CONCLUSIONS

In this paper, we have proposed a hierarchical feed-forward layer
structure built by multiple linear regression to investigate the
relationship between human aesthetic texture perception and
computational low-level texture features. Rather than black-box
models, we sought to build nearly white-box models that can be

interpreted both in terms of structure and interrelations between
aesthetic properties and texture features according to feature
weights.

First, we carried out a texture analysis and calculated 106
color and texture features for each visual texture. To achieve
the best possible prediction rate and reduce the complexity of
model building, feature selection using the Laplacian Score was
employed to choose the best feature subset (finally comprising
10 features). Then, the aesthetic properties of a set of 151 visual
textures were collected in a semantic differential experiment with
20 subjects. Eight pairs of antonyms were selected to describe
aesthetic properties for emotion perception in different affective
layers. Finally, we utilized multiple regression techniques
employing a variety of functional terms to bridge the gap between
computational texture features and aesthetic emotions in form of
mappings within a hierarchical layered structure model.

The best model for each of the 8 aesthetic properties (except
for the “dark-light” pair) is a linear function, even though non-
linear terms were selected in Eureqa Desktop when models
are initialized. Furthermore, these built models are in low
dimensionality. In other words, the models only use a quite low
number of terms, namely 7 maximal, and in most cases 6. This is
helpful to the readability, interpretability and understandability
for psychologists. The 8 models have lower errors than the
models designed in Thumfart et al. (2011) for all aesthetic
properties, which confirms the feasibility and applicability of our
models in future works. Additionally, the experiment indicates
that—with the exception of texture features—the higher level
aesthetic properties in the judgment and emotional layers cover
the aesthetic properties in the lower-level layer.
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As part of future work, we will select more visual texture
samples and include more subjects in the semantic differential
experiment, especially to investigate the influences of the types of
features and functions selected for model building. This should
help to improve the lower quality models, especially that built for
G(3). Additional future work will include:

1. Considering more complex non-linear regression modeling
architectures (rather than plain transformations), especially
regression trees and/or fuzzy systems, which both offer
interpretability from another viewpoint. Their structures are
readable as IF-THEN rules and provide better insights into the
relations between input features and targets.

2. Perceptionmodeling that considers different groups of people,
e.g., a gender study or a study with respect to age, education
etc.: the interview data is split into different groups and a
model is created for each group. This could provide interesting

answers to questions such as “Do women or men rate textures

more consistently?” or “Do women or men trigger creation of
different models?”
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