About this Research Topic
This Research Topic collection also aims to fill the information gap related to the effect of male and female microenvironments over sperm physiology. In this direction, as in vitro capacitation media mimic physiological fluids and most knowledge comes from murine and human models that only need ClNa, HCO3, BSA, Calcium and energy sources, bovine, stallion and ram sperm capacitation inductors have not been yet well defined. On the other side, proteomic studies demonstrated that seminal plasma composition in camelids is distinct from other mammals. Given the discovery that seminal plasma molecules regulate sperm physiology, the understanding of the molecular mechanisms in this species requires particular studies.
From the point of view of the female gamete, there are also unique features that require deeper understanding. In-vitro maturation from preantral follicles, followed by fertilization and birth of offspring, has formerly been successful in the mouse where physiological processes are accelerated. In other species with longer cycles, media conditions must stabilize the cycle of genomic activation. Lipid β-oxidation is required for the resumption of meiosis and nuclear maturation. However, physiological studies are interesting in light of mouse comparatively low levels of intracellular lipid stores compared with bovine and porcine oocytes. Additionally, most domestic and wild animal females have estrous cycles linked to the photoperiod, differently from mice and human.
This Research Topic aims to gather research on distinct molecular and cellular physiological processes in both spermatozoa and oocyte of non-murine or human models, focused on understanding reproductive competence in domestic and wild animals. This knowledge will contribute not only with animal production biotechnology, but also with the conservation of animal biodiversity, especially of wild animals.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.