About this Research Topic
Much is known about the molecular regulation of fuel uptake into cells, such as expression or localization of transport proteins, and knowledge of factors regulating mitochondrial biogenesis and function is growing rapidly. Even in tissues with a high capacity for fuel oxidation, fuel storage is also a critical function and is regulated by various factors, such as perilipin proteins for lipid droplet stabilization, capacity for glycogen synthesis as a factor in glucose storage, and translation initiation as a factor in non-oxidative amino acid use. Vascular health is also important for proper delivery of nutrients and metabolic fuels to tissues. Much is known about the basic biology of these processes. From translational and clinical research, knowledge of diet and exercise prescription to achieve specific health outcomes is also reasonably strong. However, new hypotheses, and additional support for established hypotheses, is needed to link health outcomes to transport and metabolism of nutrients and metabolic fuels. Through this Research Topic, we encourage authors to link basic science knowledge to clinical impacts of diet and exercise, in order to further our understanding of the role of fuel metabolism in the health effects of lifestyle.
We invite original mechanistic research aimed at linking changes in energy substrate transport and metabolism to specific health benefits of diet and exercise. We also invite reviews of the literature in which new hypotheses are proposed describing how specific metabolic changes may leads to health improvements in response to dietary macronutrient composition, energy intake, and exercise. We encourage submissions of the following article types: Original Research, Brief Research Report, Review, Systematic Review, Mini Review, General Commentary, Hypothesis and Theory, and Opinion. Potential topics to address are listed as examples below, and work in related areas will also be considered.
• Lipotoxicity or inflammation as a mechanism underlying changes in insulin sensitivity in response to diet or exercise
• Changes in mitochondrial function in response to positive or negative energy balance
• Changes in resting metabolic rates or substrate selection as a mechanism for improved metabolic health
• Lipid droplet biology and its role in disease susceptibility
• Mechanisms underlying the benefits of lifestyle factors in the prevention or treatment of non-alcoholic fatty liver disease
• Metabolic signals driving crosstalk between tissues, such as myokine signals from muscle to brain impacting cognitive health
• Muscle quality and performance as a function of ectopic lipid accumulation within the tissue bed
• Endothelial function as a factor in metabolic fuel delivery
Brian Irving is a co-investigator on a clinical trial 'Surgical Weight-Loss to Improve Functional Status Trajectories Following Total Knee Arthroplasty (SWIFT Trial) (SWIFT)' sponsored by Ethicon-Endosurgery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Keywords: Mitochondria, Fatty Acids, Amino Acids, Glucose, Insulin Sensitivity
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.