About this Research Topic
The current COVID-19 pandemic poses urgent and prolonged threats to the health and well-being of the population worldwide. As we face the unprecedented level of uncertainty, doctors, patients, policy makers, and many more urgently need answers to questions that can help them make decisions and guide them to take the most appropriate course of action. The novel coronavirus behind the COVID-19 is new, but scientists have published a mountain of research findings on coronavirus in a broad context. What can we learn from the vast amount of studies in the coronavirus research landscape? How can we draw inspirations from collective knowledge as a whole?
The number of open datasets of the scholarly literature on coronavirus is rapidly increasing, notably including the COVID-19 Open Research Dataset (CORD-19) from the Allen Institute for AI and its partner institutions, the COVID-19 Datasets of scholarly works and patents released by The Lens, and an increasing number of openly accessible Special Collections of Cochrane Reviews. The increasingly accessible scholarly literature needs to be digested, systematically reviewed, and translated into actionable answers. Furthermore, it is important for findings and insights derived from the study of these newly available scholarly works to reach everyone who can benefit from it.
The purpose of this Research Topic is to provide a forum and a gateway to make the collective knowledge more accessible, timely and effective. We will welcome contributions that can shed lights on our understanding of the COVID-19 disease and research in a broader context of coronavirus. Welcome contributions to the Research Topic include, but are not limited to:
• new resources of scholarly datasets on the topic
• novel utilities and enabling tools that may make these datasets more accessible and understandable
• systems and tools for analyzing available scholarly literature datasets
• applications of text mining and literature-based discovery techniques to the study of the relevant scholarly literature
• applications of machine learning and AI techniques to the study of the relevant scholarly literature
• meta-analyses, systematic reviews, and scientometric reviews of the landscape of the scholarly works, patents, clinical trials, grants, and other integral parts of scientific inquiries.
Our aim, in the long run, is to establish a sustainable platform for researchers to share resources and results of studies that utilize these resources.
Qualified contributions to this Research Topic will be eligible for full waivers of author fees. Specifically, manuscripts are eligible if the focus is on the subject of coronavirus and its medical, economic and societal implications. For example, original research with the aim to further our understanding and recommendations for this pandemic, reviews to summarize current knowledge and opinions on pertinent themes. A simple mention of the pandemic or coronavirus does not qualify, for example, if the focus of a study is on a different topic. A dedicated team at Frontiers will screen submissions for these criteria.
Keywords: COVID-19, coronavirus research, literature datasets, studies of scholarly literature, literature reviews
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.