About this Research Topic
The advance of large scale omics and the refinement of transgenic tools and other reverse genetic methodologies has allowed a deeper understanding of multisystemic regulation of invertebrate homeostasis. For example, Drosophila amino acid sensing following gut uptake was recently shown to drive the TOR-regulated production of the peptide “Stunted” by fat body cells. “Stunted” was shown to drive the brain cell production of insulin, which coordinates a plethora of physiological pathways. Other recent works have detailed the mechanisms used by insulin to modulate energy expenditure during immune responses. Regulation of these signaling and metabolic pathways are also determinants of the ability of pathogens to multiply inside invertebrates. For example, two independent publications have collectively evidenced the importance of mosquito lipid homeostasis for Plasmodium development. The mosquito endocrine system was shown to be an important co-regulator of egg and parasite growth and the proper circulation of a lipid transporter was shown to be essential for parasite viability.
This Research Topic will focus on the mechanisms of sensing, action and transport involved in the multi-systemic coordination of physiological features. We anticipate that future work will continue to use molecular and cellular biology tools to provide exciting new evidence of this coordination in invertebrates. We expect contributions to this topic, including work on:
• The role of nutrient-sensing pathways in defining metabolic and physiological status;
• The coordination of metabolic status among multiple systems through the production and sensing of putative effectors;
• Metabolic regulation of energy expenditure, nutrient storage, and fecundity;
• Mechanisms and pathways of regulation of homeostasis following environmental cues;
• Coordination of transport and diffusion of metabolites and regulators through circulatory systems; • Mechanisms of homeostasis involved in metabolic regulation of immunity, vector competence and parasite development;
• The role of multiple systems and organs in the coordination of immune responses;
• The role of microbiota in the regulation of host metabolism and immunity, and effects of nutrition, metabolism and immune status on microbiota levels and diversity;
• Effects of infection on the arthropod metabolome.
• Systemic regulation of reproductive fitness and egg or yolk production.
Keywords: homeostasis, systemic, metabolism, microbiota, immunity
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.