About this Research Topic
CDS can be Artificial Intelligence-based, where the AI areas involved are inference and logics and non-Artificial Intelligence-based, where machine learning is used. CDS can support all aspects of clinical tasks, but, to be effective, it must be properly integrated within the clinical workflow, as well as with health records. A typical application of CDS is a Computer Aided Diagnosis (CAD) to assist doctors in the interpretation of medical images. CAD involves, not only AI, but also Computer Vision, Signal Processing and specific medical aspects. CADs find application in breast cancer, lung cancer, colon cancer, coronary artery disease, Alzheimer’s disease and many others.
The goal of this Research Topic is to publish original manuscripts that address broad challenges on both theoretical and application aspects of AI in eHealth, biomedical, health informatics, and medical image analysis. The development of medical artificial intelligence has been related to the development of AI programs intended to help the clinician in the formulation of a diagnosis, the making of therapeutic decisions and the prediction of outcome. This Research Topic provides an opportunity to scholars and researchers to contribute original research articles as well as review articles that will stimulate the continuing effort on the application of AI approaches to solve eHealth and medical problems.
The topics of interest in this Research Topic include, but are not limited to:
• Applications of AI in eHealth
• Knowledge Management of Medical Data
• Evolutionary algorithms for optimization methodologies for eHealth applications
• Data Mining and Knowledge Discovery in Medicine
• Medical Expert Systems
• Personal medical feature data
• Medical device technologies
• Machine learning and deep learning based medical system
• Pattern Recognition in Medicine
• Ambient Intelligence and Pervasive Computing in Medicine and Health Care
• Brain-computer interfaces
• Biological and clinical medicine
• Behavioral, Environmental, and Public health informatics
• Biological network modeling and analysis
• Biomedical imaging and data visualization
• Intelligent medical information systems
• Virtual and augmented reality
The authors are encouraged greatly to submit data or any supplementary material with each article, and possible experiences-feedback reported by physicians and medical staff since these may add important value in terms of increasing visibility, and citations. Also, negative results are awaited since they will contribute to the understanding of the current and future potential of Artificial Intelligence, particularly for eHealth.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.