About this Research Topic
Clearly, both the assessment of the relevance of big data information to diagnosis and treatment, and the new modalities to convey it to the patients through efficient decision support systems remain main challenges. This Research Topic is intended to present novel technological breakthroughs and state-of-the-art developments in the big data analytics for precision health and prevention. Ultimately, more widespread applications of big data analytics in individuals’ health could lead to earlier detection of diseases, preventing them from causing real damage. Potential topics include, but are not limited to:
- Big data analytics for clinical decision support
- Natural language processing of electronic health records (EHR)
- Cancer registries and classification
- Bioinformatics for individualized health care
- Machine learning models for early disease detection
- Treatment response prediction
- New patient stratification strategies
- Integrative inference tools
- EHR phenotyping
Keywords: big data analytics, precision medicine, machine learning, prevention, clinical decision systems
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.