
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Sustain. Food Syst.
Sec. Sustainable Food Processing
Volume 9 - 2025 | doi: 10.3389/fsufs.2025.1590775
This article is part of the Research Topic Nutraceutical Potential of Dietary Fibers from Agro-Byproducts: Extraction, Characterization, and Applications View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This study employed ultrasound-assisted extraction to obtain polysaccharides from Albizia julibrissin Durazz. leaf and pod agricultural by-products, with subsequent process optimization. A comparative analysis was then conducted on the physicochemical properties and anticomplementary activity of the isolated polysaccharides derived from two parts. The investigation identified different extraction conditions for leaf and pod, leaf demonstrated maximum polysaccharide yield (1.07 ± 0.20%) at 70°C, 40 mL/g, 50 min and 249 W, contrasting with pod which achieved 8.32 ± 0.27% yield at 70°C, 28 mL/g, 40 min and 201 W. Besides, physicochemical characterization demonstrated distinct molecular weights between leaf (AJLP) and pod (AJPP) polysaccharides (62.55-232.30 kDa) despite shared functional groups. Both polysaccharides contained mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and arabinose in varying ratios, while displaying divergent microstructures and excellent thermal stability. In vitro, leaf (AJLP) and pod (AJPP) polysaccharides exhibited potent anticomplementary activity in alternative and classical pathways, respectively. This study established a foundation for developing and utilizing polysaccharide resources from A. julibrissin agro-byproducts, while providing a theoretical basis for their application in complement system overactivation.
Keywords: Albizia julibrissin Durazz., Different parts, agroindustrial subproducts, Polysaccharides, characterization
Received: 10 Mar 2025; Accepted: 04 Apr 2025.
Copyright: © 2025 Duan, Jiang, Gu, Sun, Sun, Xu, Jin, Sun, Zhou, Hu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhengyu Hu, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
Gao Li, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.