
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Robot. AI
Sec. Biomedical Robotics
Volume 12 - 2025 | doi: 10.3389/frobt.2025.1520374
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
A significant number of individuals have been affected by pandemic diseases, such as COVID-19 and seasonal influenza. Nucleic acid testing is a common method for identifying infected patients. However, manual sampling methods require the involvement of numerous healthcare professionals. To address this challenge, we propose a novel transoral swab sampling robot designed to autonomously perform nucleic acid sampling using a visual-tactile fusion approach. The robot comprises a series-parallel hybrid flexible mechanism for precise distal posture adjustment and a visual-tactile perception module for navigation within the subject’s oral cavity. The series-parallel hybrid mechanism, driven by flexible shafts, enables omnidirectional bending through coordinated movement of the two segments of the bendable joint. The visual-tactile perception module incorporates a camera to capture oral images of the subject and recognize the nucleic acid sampling point using a deep learning method. Additionally, a force sensor positioned at the distal end of the robot provides feedback on contact force as the swab is inserted into the subject’s oral cavity. The sampling robot is capable of autonomously performing transoral swab sampling while navigating using the visual-tactile perception algorithm. Preliminary experimental trials indicate that the designed robot system is feasible, safe, and accurate for sample collection from subjects.
Keywords: transoral swab manipulation, Automatic sampling, Flexible robot, Visual-tactile fusion, deep learning
Received: 26 Nov 2024; Accepted: 26 Feb 2025.
Copyright: © 2025 Dong, Li, Liu, Liu, Wang, Zhao and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Peng Li, College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
Quanquan Liu, Shenzhen MSU-BIT University, Shenchzhen, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.