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A significant number of individuals have been affected by pandemic diseases,
such as COVID-19 and seasonal influenza. Nucleic acid testing is a common
method for identifying infected patients. However, manual sampling methods
require the involvement of numerous healthcare professionals. To address
this challenge, we propose a novel transoral swab sampling robot designed
to autonomously perform nucleic acid sampling using a visual-tactile fusion
approach. The robot comprises a series-parallel hybrid flexible mechanism for
precise distal posture adjustment and a visual-tactile perception module for
navigation within the subject’s oral cavity. The series-parallel hybrid mechanism,
driven by flexible shafts, enables omnidirectional bending through coordinated
movement of the two segments of the bendable joint. The visual-tactile
perception module incorporates a camera to capture oral images of the subject
and recognize the nucleic acid sampling point using a deep learning method.
Additionally, a force sensor positioned at the distal end of the robot provides
feedback on contact force as the swab is inserted into the subject’s oral
cavity. The sampling robot is capable of autonomously performing transoral
swab sampling while navigating using the visual-tactile perception algorithm.
Preliminary experimental trials indicate that the designed robot system is
feasible, safe, and accurate for sample collection from subjects.

KEYWORDS

transoral swab manipulation, automatic sampling, flexible robot, visual-tactile fusion,
deep learning

1 Introduction

Respiratory epidemic diseases, such as Coronavirus Disease 2019 (COVID-19) and
seasonal influenza, pose significant threats to human health. Identifying infected individuals
and isolating them from others is an effective strategy to mitigate the spread of these
diseases. A commonly used diagnostic method is the nucleic acid test conducted through
oropharyngeal (OP) swab sampling (Chen et al., 2020). Nucleic acid sampling continues
to be a routine procedure at key locations, including customs, to prevent the transmission
of respiratory diseases. Conventionally, sampling is manually performed by healthcare
professionals (Kim et al., 2020). The quality of sampling, which is closely linked to the
sampling position and sample volume, heavily depends on the operator’s skill, leading
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to inconsistencies and potential misdiagnoses (Li et al., 2020).
Additionally, healthcare workers performing swab sampling are
at risk of exposure, as close contact is a primary mode of virus
transmission (Jin et al., 2020). On the other hand, in response to
the insufficient nucleic acid testing capacity during the pandemic,
self-sampling has emerged as a feasible option (Boum et al.,
2021). Although this method helps reduce population movement
and lowers the risk of virus transmission, it also presents some
challenges, such as improper sampling techniques that may result
in poor sample quality, difficulties in implementation for certain
populations, and various factors that may influence the testing
process (Lindner et al., 2021). Therefore, implementing non-contact
sampling methods through teleoperation is an alternative strategy
to minimize person-to-person contact, improve the consistency
of sample quality, and protect operators by eliminating direct
interaction with the testee (Feizi et al., 2021).

The typical teleoperated samplingmethod utilizes amaster-slave
configuration, where the operator maneuvers a master handle to
remotely control a slave robot for sampling operations (Liu et al.,
2022; Li et al., 2021; Hu et al., 2022). This approach helps to
protect the operator from virus exposure resulting from person-
to-person contact, however, it presents several challenges for
precise samplings, such as eye-hand coordination issues, lack of
immersion, and high workload (Zhong et al., 2020; Naceri et al.,
2021). To address these limitations, recent efforts have focused on
developing unmanned sampling robots that integrate visual and
tactile feedback and robotic control. These systems aim to reduce
dependency on human intervention while enhancing consistency
in sampling quality (Huang et al., 2022; Sun et al., 2022). For
example, image processing modules are commonly employed to
guide sampling tasks, improving both accuracy and reliability.
Furthermore, employing flexible and compact manipulators to
facilitate transoral nucleic acid sampling is a promising solution to
improve the automation of the sampling process and reduce the
need for healthcare professional involvement. A low-cost, miniature
robot with an active end-effector, a passive positioning arm, and
a detachable swab gripper equipped with integrated force sensing
capabilities has been introduced to assist with nasopharyngeal
swab sampling (Wang et al., 2021). The system allows for large-
range movement of the end effector through manual adjustment
of the 6-DOF passive arm by medical personnel or the testee.
Subsequently, the active end effector performs the swab collection
task through translational and rotational movements. While the
design offers advantages in cost and assembly simplicity, its 2-DOF
end-effector severely limits mobility, particularly when handling
nasal cavities of varying shapes and sizes. This constraint often
leads to insufficient flexibility and positional inaccuracy during
sampling. To overcome such challenges, researchers have explored
continuum robots, such as concentric tube robots and tendon-
driven systems, which demonstrate potential in delicate surgical
tasks. For example, Webster’s research has revealed the potential
of concentric tube robots in performing precise movements
in constrained environments, such as during colorectal cancer
resection surgeries (Dang et al., 2024).Morimoto, on the other hand,
has assessed the feasibility of concentric tube robots for micro-
laryngeal surgery, leveraging their small size and strong navigation
ability in confined spaces (Lin et al., 2024). However, manufacturing
challenges still exist for concentric tube robots, including the high

cost of pre-bent tube fabrication and significant uncertainty in
the manufacturing process, making its challenging in large-scale
deployment in certain application, such as transoral swab sampling.
While tendon-driven robots offer high flexibility and adaptability
(Dupont et al., 2022; Della Santina et al., 2023), the durability issues
related to long-term operation of the tendons affect the robots’
stability and performance. Additionally, the complexity of real-time
deformation computation and control of flexible actuators increases
the time cost of sampling procedures. It is important to note that
both types of robots are still in the research stage and have not
yet matured.

Compared to existing methods, this paper proposes a flexible
robotic system for automatic swab sampling, which employs a 4-
DOF hybrid series-parallel mechanism and a 1-DOF linear motion
module to achieve precise and flexible operation of the active
end effector. The rigid hybrid mechanism is driven by double-
screws, avoiding the nonlinear modeling errors caused by the use
of flexible components, thereby significantly improving the system’s
accuracy and responsiveness. Additionally, the system integrates
visual and tactile feedback modules, enhancing the accuracy and
ease of operation in the automated sampling process, thus alleviating
the strain onmedical resources.Themain contributions of this work
are as follows:

• A robotic system featuring a flexible mechanism for transoral
swab sampling is introduced. Through a 4-DOF hybrid series-
parallel mechanism with a dual-segment orthogonal planar
bending configuration and a 1-DOF linear motion module, the
system is capable of performing precise and flexible sampling
operations within a confined space.

• An automatic identification algorithm for the posterior OP
wall is developed, enabling precise navigation of the sampling
position using a deep learning method.

• A visual-tactile fusion method for autonomous sampling is
introduced, integrating visual image recognition and contact
force feedback for enhanced operational accuracy.

The remainder of this paper is structured as follows: Section 2
describes the mechanical components of the robotic system and
the visual-tactile fusion algorithm for position identification in
autonomous sampling. Section 3 details the experimental results and
discussion. Finally, Section 4 presents the conclusions.

2 Materials and methods

2.1 Mechanical components of the robotic
system

The manual method for transoral OP swab sampling is
depicted in Figure 1. In this procedure, the testee opens their mouth
to expose the OP wall while tilting their head back at an angle of
approximately 15°–45°. Simultaneously, the healthcare professional
inserts an OP swab into the testee’s mouth and collects a nucleic
acid specimen from the OP wall using a pendulum-like movement,
guided by visual feedback and force perception through their eyes
and hands, respectively.
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FIGURE 1
Transoral OP swab sampling. (A) Manual sampling scene. (B) Sampling practice with the OP swab.

To replicate the nucleic acid sampling practices of medical
workers, the proposed robotic system must provide dexterous
manipulation along with visual and tactile force feedback. Based on
these requirements, the proposed sampling robot comprises a linear
motion module, a flexible series-parallel hybrid mechanism, and
a visual-tactile fusion module. The flexible sampling mechanism,
mounted on the movable platform of the linear motion module,
enables straight reciprocating motion. A series-parallel hybrid
mechanism is designed to achieve omnidirectional bending for
the pose adjustment of the swab while providing tactile feedback
through a force sensor mounted at the distal end. A camera
captures an image of the testee’s OP with light assistance while the
testee maintains an open-mouth position. A monitor displaying the
camera’s live feed is placed in front of the testee to prompt them to
expose their posterior pharyngeal wall as fully as possible. Flexible
shafts are employed to connect the samplingmechanism to the drive
module, serving as a power transmission medium that enables a
compact and dexterous spatial layout (Liu et al., 2017).The overview
of the OP swab sampling robotic system is presented in Figure 2.

2.2 Transoral sampling workspace analysis
based on flexible mechanism

Similar to manual sampling manipulation, the sampling robot
utilizes a linear motion module for large-scale movement and
employs a flexible series-parallel hybrid mechanism for precise pose
regulation. In this study, the series-parallel hybrid mechanism has
a diameter of 8 mm and is composed of two bendable segments,
each able to achieve a maximum omnidirectional bending angle of
45°. The nomenclature of the robot is depicted in Figure 3, and the
kinematics parameters are detailed in Table 1.

Where the kinematics parameters are noted as follows: Mi (i
= 0, …,4): feature point of the origin, the pivot point of the bent
joint, and both ends of the distal part. Ni (i = 1, …,5): pivot point
of the universal joint. s: translational journey along axis z. α: polar
angle of the distal of the robot under a spherical coordinate system.

β: azimuthal angle of the distal of the robot under a spherical
coordinate system. θi (i = 1, …,4): the bending angle of the bendable
segments along axis x or y. Li (i = 1, …5): L1 represents the deviation
between the support rod and the origin of the coordinate system
along axis x. L2 represents the deviation between the active rod and
the origin of the coordinate system along axis x. L3 represents the
distance between two active rods. L4 represents the distance between
two support rods. L5 represents the length of the distal part. di (i = 1,
…4): d1 represents the length of the support rod. d2 and d3 represent
the length of the active rods in segment I, respectively. d4 and d5
represent the length of the active rods in segment II, respectively.
Each of these rods is designed with a uniform diameter of 2 mm.

During the sampling process, each testee positions their chin
on a fixed chin strap, pressing it firmly against an inclined plane
tilted at a 30° angle to ensure their head is raised with a backward
angle of 30°. The testee then opens their mouth to expose the
posterior pharyngeal wall as much as possible, preparing for
automatic sampling with robotic assistance. To reduce the risk
of cross-contamination, the testee will be provided with a sterile
paper, shaped to fit the chin strap, which they will place before
the sampling procedure. Additionally, healthcare staff will regularly
clean and disinfect the chin strap to ensure hygiene and minimize
potential transmission risks. Typically, the mouth opening of an
adult measures approximately 50 mm in height. The OP swab
head is inserted into the testee’s oral cavity and directed toward
the oropharyngeal wall through joint motion facilitated by the
linear motion module and the series-parallel hybrid mechanism.
In this study’s sampling robot platform, the camera captures a
two-dimensional (2D) image without depth information. Therefore,
the position of the sampling point in ot-xtyt is identified using
visual feature recognition, while the position along the z-axis is
determined through tactile force sensing feedback. The details of
the position recognition process using the visual-tactile fusion
algorithm are discussed in Section 2.3. The relationship among
the world coordination system o-xyz, the camera coordination
system oc-xcyczc, and the sampling point coordination system ot-xtyt
is shown in Figure 4A.
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FIGURE 2
System overview of the sampling robotic system.

In order to calculate the workspace of the sampling robot, we
define a homogenous transformation matrix as

 i
i−1T = [

[

Rx|y|z T

0 1
]

]
(1)

where

Rx =
[[[[

[

1 0 0

0 cosθx − sinθx
0 sinθx cosθx

]]]]

]

,Ry =
[[[[

[

cosθy 0 sinθy
0 1 0

− sinθy 0 cosθy

]]]]

]

,

Rz =
[[[[

[

cosθz − sinθz 0

sinθz cosθz 0

0 0 1

]]]]

]

,T =
[[[[

[

Px
Py
Pz

]]]]

]

and θx, θy, θz represent rotating angles along axes x, y, z,
respectively. Px, Py, Pz represent coordinates along axes x, y, z,
respectively.

By substituting the parameters from Table 1 into Equation 1, the
forward kinematic chain can be expressed as

8
0T =

8

∏
i=1

 i
i−1T (2)

Based on Equation 2 describing the kinematic transformation,
the coordinate of the distal of the OP swab is given by

PM4 = [
8
0T(1,4)

8
0T(2,4)

8
0T(3,4)]

T (3)

Therefore, the workspace of the sampling robot can be
determined by substituting the kinematic parameters from Table 1
into Equation 3. The calculated workspace is illustrated in Figure 4.

Suppose the coordinate and orientation of sampling point M as

PM =
[[[[

[

Mx

My

Mz

]]]]

]

,MoR =
[[[[

[

ux vx wx

uy vy wy

uz vz wz

]]]]

]

(4)

where PM represents the coordinate of OP swab tip, and M
o R

represents the orientation matrix of OP swab in o-xyz coordination
system; they can be obtained via Bryan angle transformation.
As shown in Equation 5, the coordinate of point o′ can be
calculated as

Po′ = PM +MoR • PΔ (5)

where Po′represents the coordinate of point o′ in the o-xyz
coordination, and PΔ = [0 0 −L5]T.

Combining Table 1 and (Equation 1), vector M⃗1M2 and M⃗2M3
can be computed as

M⃗1M2 =
[[[[

[

2d1sinθ2

−2d1cosθ2sinθ1

2d1cosθ1cosθ2

]]]]

]

,

M⃗2M3 =
[[[[

[

d1cosθ4 sin(θ2 + θ3)

d1 (−cosθ1sinθ4 − sinθ1cosθ4 cos(θ2 + θ3)

d1 (−sinθ1sinθ4 + cosθ1cosθ4 cos(θ2 + θ3)

]]]]

]

(6)

In this study, the series-parallel structure is configured to
conform to an arc shape. Therefore, the polar angle of the vector
M⃗1M2, M⃗2M3 is α/2 and α respectively. Based on Equation 6, the
relation between θi (i = 1, …,4) and α, β can be expressed by

cosα
2
= 2cosθ1cosθ2 (7)
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FIGURE 3
Nomenclature of the kinematics description for the sampling robot. (A) Kinematic skeleton frame of the robot. (B) Pose state in a polar
coordinate system.

TABLE 1 The kinematics parameter of the sampling robot.

i θx(degree) θy(degree) θz(degree) Δx(mm) Δy(mm) Δz(mm) Range

1 0 0 0 L1 (2.4) 0 s + d1 (15) 0–100 mm

2 θ1 0 0 0 0 0 −45°–45°

3 0 θ2 0 0 0 0 −45°–45°

4 0 0 0 -L4 (4.8) 0 2d1 (30)

5 0 θ3 0 0 0 0 −45°–45°

6 θ4 0 0 0 0 0 −45°–45°

7 0 0 0 L1 (2.4) 0 d1

8 0 0 0 0 0 L5 (168)

tgβ = −sinθ1
cosθ2

sinθ2
(8)

cosα = −sinθ1sinθ4 + cosθ1cosθ4cos(θ2 + θ3) (9)

tgβ =
−cosθ1sinθ4 − sinθ1cosθ4cos(θ2 + θ3)

cosθ4sin(θ2 + θ3)
(10)

Based on the combined use of (Equations 7, 8), θi (i = 1,2) can
be calculated as

θ2 = arcsin
sin (α/2)

√1+ tg2β
,θ1 = arcsin (−tgβ ⋅ tgθ2) (11)

Due to θ3 and θ4 coupling with each other, an iterative algorithm
is established to calculate θ3 and θ4 to reduce the difficulty of the
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FIGURE 4
Workspace of the flexible sampling robot. (A) Spatial configuration between the sampling robot and the testee’s oral cavity. (B) Illustration of the
bending movement facilitated by the series-parallel hybrid mechanism. (C) Positioning of the workspace of the distal end of the OP swab relative to the
testee’s oral cavity. (D) Enlarged partial view of (C). (E) Workspace of the distal end of the OP swab.
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TABLE 2 Pseudo code for angle calculation of θ3 and θ4

Calculate angle θ3 and θ4 from (α, β, θ1, θ2)

1. Input: (α, β, θ1, θ2)

2. for θ3 = −45°,…, 45° do

 3. θ4_1 = arctan
−sinθ1cos(θ2+θ3)−tgβsin(θ2+θ3)

cosθ1
← (Equation 10)

  θ4_2 = arccos
cosαcosθ1

cos(θ2+θ3)+tgβsinθ1sin(θ2+θ3)
← (Equations 9, 10)

   4. α′ = arc cos (−sinθ1sinθ4_1 + cosθ1cosθ4_1cos(θ2 + θ3)) ← (θ1,θ2,θ3,θ4_1)

     β′ = arctan( −cosθ1sinθ4_1−sinθ1cosθ4_1cos(θ2+θ3)
cosθ4_1sin(θ2+θ3)

) ← (θ1,θ2,θ3,θ4_1)

    α′′ = arccos(−sinθ1sinθ4_2 + cosθ1cosθ4_2cos(θ2 + θ3)) ← (θ1,θ2,θ3,θ4_2)

     β′′ = arc tan ( −cosθ1sinθ4_2−sinθ1cosθ4_2cos(θ2+θ3)
cosθ4_2sin(θ2+θ3)

) ← (θ1,θ2,θ3,θ4_2)

   5. f1(θ1,θ2,θ3,θ4_1)
= |α− α′| + |β− β′| , f2(θ1,θ2,θ3,θ4_2)

= |α− α′′| + |β− β′′|

   6. (θ1,θ2,θ3,θ4) ←min( f1(θ1,θ2,,θ3,θ4_1)
, f2(θ1,θ2,,θ3,θ4_2)

)

7. Output: optimal solution (θ1,θ2,θ3,θ4)

solving process. Combining Equations 9-11, the Pseudo code is
presented in Table 2.

By substituting the optimal solution into Equation 3, the
translational journey s can then be calculated using the combined
application of Equations 3, 4.

2.3 Visual-tactile fusion algorithm of
position identification for autonomous
sampling

The posterior pharyngeal wall is the recommended site for
oropharyngeal swab sampling. As illustrated in Figure 1, the camera
captures an image of the testee’s oral cavity after they open their
mouth to expose the posterior pharyngeal wall. Since the image
input into the computer is of a fixed size, the top left corner of
the image is defined as the origin. The coordinates of the posterior
pharyngeal wall relative to this origin are then calculated in the
ot-xtyt frame (Figure 5). To effectively identify the boundaries of the
posterior pharyngeal wall, the features of the tonsil glands, posterior
pharyngeal wall, and uvula are initially labeled. Subsequently, a
recognition model for the posterior pharyngeal wall is developed
using a deep learning algorithm. The algorithm steps are as follows.

2.3.1 Dataset construction
To address the challenge of boundary recognition, this study

creates a dataset by collecting oral cavity images and manually
annotating the boundary box labels for the 42 images. Two
regions are identified: the blue box (uvula) and the red box
(posterior pharyngeal wall), as shown in Figure 5. The required
regional coordinates are determined based on the positions of these
two regions. The coordinates obtained from the object detection
model for the two target regions are represented by the blue box
((x3,y3), (x4,y4)) and the red box ((x1,y1), (x2,y2)). Meanwhile, the

FIGURE 5
ROI coordinates calculation based on uvula and posterior
pharyngeal wall.

coordinates of the Region of Interest (ROI), enclosed by braces, are
calculated as ((x1,y1), (x3,y2)) and ((x4,y1), (x2,y2)). The obtained
oral cavity images are divided into two sets: the positive sample
set and the negative sample set. In the positive sample set, the
features of the tonsil glands, posterior pharyngeal wall, and uvula
are labeled using a bounding box frame (Figure 5). Conversely, no
labels are marked in the images of the negative sample set due to
the absence of identifiable features. To enhance the adaptability of
the recognition model to input images of the oral cavity in varying
poses, Mosaic data augmentation techniques are applied to the
input images prior to model training, including rotation, flipping,
or randomly cropping, as shown in the Figure 6B. Then, multi-scale
features of the posterior pharyngeal wall are used for training, and
the model is optimized with adaptive anchor strategies to ensure
dynamic recognition of feature zones of varying sizes.

2.3.2 Parameterization and modeling
Yolov5 model is used for feature detection in this study, the loss

function (Zheng et al., 2020; Jocher et al., 2021) is expressed as

Ltotal = 0.05Lbox + 0.5Lclass + Lconfidence (12)

where Ltotal means the total loss, Lbox represents the loss between the
prediction box and the ground truth box, Lclass represents the class
loss of the prediction box, Lconfidence represents the confidence loss of
the prediction box. They can be further expressed as Equation 13.

Lbox = 1− IoU+
ρ2 (b,bgt)

c2
+ αv (13)

where IoU means the Intersection of Union, the parameter v
measures the consistency of aspect ratio, and parameter α is a
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FIGURE 6
Procedures of training model. (A) Image data collection of the oral cavity. (B) Data augmentation using the input image. (C) Transfer learning algorithm
for training model.

positive trade-off parameter,

v = 4
π2(arctan

wgt

hgt
− arctanw

h
)

2
,

α = v
(1− IoU) + v

The b and bgt denote the central points of the prediction box and
ground truth box, ρ(⋅) is the Euclidean distance, and c is the diagonal
length of the smallest enclosing box covering these two boxes.

Further, Lclass, Lconfidence can be calculated using Equation 14.

Lclass,Lconfidence =
1
N

N

∑
i=1
(yi • log(σ(pi)) + (1− yi) • log(1− σ(pi))) (14)

The parameter yi is a binary label 0 or 1 of sample xi, and pi
represents the probability of sample xi being predicted as a positive
class. σ refers to the sigmoid function. The model training process
is shown in Figure 6C.

The dataset of oral cavity images is divided into a training set
(80%) and a test set (20%). All images are standardized to a size
of 640∗640 pixels and then input into the Yolov5 model within
the PyTorch environment. Stochastic Gradient Descent (SGD)
and Automatic Mixed Precision (AMP) methods are employed to

TABLE 3 The Effect of target detection model on detecting uvula and
posterior oropharynx.

Class Precision Recall mAP50 mAP

Uvula 0.891 0.824 0.857 0.522

Posterior oropharynx 0.99 0.842 0.979 0.626

accelerate computation speed and reduce memory usage, enabling
a significantly larger batch size. A learning rate schedule is
implemented to dynamically adjust the learning rate parameter. The
experimental results for the test set after running the training model
for 300 epochs are presented in Table 3.

As shown in Table 3, based on the training model, the average
precision (mAP50) for uvula detection is 85.7%. Meanwhile, the
mAP50 for posterior pharyngeal wall detection is 97.9%. The
inference speed is 15.0 ms per image at a resolution of (640, 640),
making it suitable for sampling navigation.

In this study, the sampling positions along the x and y-axes can
be calculated using the aforedescribed visual processing algorithm.
The disposable swab comprises a handle, a slender connecting rod,
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FIGURE 7
Force estimate experiment for OP swab sampling. (A) Experimental setup (B–F) Force measurement from five subjects with self-feeling the contact is
not too hard to cause discomfort.

and a sampling head. The slender connecting rod has sufficient
flexibility under lateral force, allowing a force-sensing capability
along the axial direction of the connecting rod to be implemented
to ensure sampling safety. A force sensor mounted at the distal
end of the sampling robot is used to determine whether the head
of the OP swab has reached the testee’s oropharyngeal wall. Since
the goal is to obtain the axial contact force threshold along the
Z-axis and to subjectively perceive the contact force threshold
as a rough validation for the final contact force threshold, the
contact force threshold assessment in this study was conducted
through manual sampling. The experimental setup is shown in the
Figure 7A. An OP swab and a rod are mounted on both sides of
the tension/compression force sensor. a tester holds the rod and
manually inserts the OP swab into a testee’s mouth to measure the
contact force during swab sampling. Five subjects were invited to
participate in this test. The testee raises their hand with an OK
gesture when they feel that the contact force is appropriate after the
swab contacts their oropharyngeal wall. The contact forces collected
from OP swab sampling are shown in Figures 7B–F. The peaks
in the contact force curve indicate that the tester has observed
the testee’s OK gesture and ceased advancing the OP swab. As
shown in Figure 7, all contact force peaks fall within the range of
0.1 N–0.2 N, with most centered around 0.15 N. At the same time,
compared to previous studies (Sun et al., 2022) which reported
a required sampling force threshold of at least 0.1 N for effective
epithelial cell collection, the experimental results (0.1–0.2 N) fully
meet this criterion while avoiding excessive forces that may cause
discomfort. Therefore, a contact force threshold of 0.15 N is set
to assess whether the OP swab advances appropriately during the
sampling procedure.

The position of the sampling point in the xoy plane can
be calculated using the visual processing algorithm, while the
translational movement along the z-axis is determined through
contact force feedback.

The application of the visual-tactile fusion method ensures
that the OP swab accurately collects nucleic acid specimens while
preventing excessive contact that could cause discomfort.

3 Experiments and discussion

We conducted experimental assessments to evaluate the
effectiveness of the sampling robotic system in comparison to
manual sampling procedures. A visual-tactile fusion module was
developed to replicate the eye-hand coordination of testers during
OP swab sampling.

3.1 Autonomous OP swab sampling

Figure 8 illustrates the operation of the sampling robot during
OP swab sampling. The detailed procedures are as follows: ① the
sampling robot moves to its initial straight position (s = 0, θi =
0, i = 1, …,4). ② A testee takes a disposable OP swab and sits in
front of the sampling robot. ③ the testee inserts the OP swab into
the distal holder of the sampling robot. ④ the testee leans their
chin against the tilted chin strap and opens their mouth as wide as
possible to expose the oropharyngeal wall while self-checking the
monitor image suspended in front. The coordinates of the sampling
point are calculated using the method described in Section 2.3. The
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FIGURE 8
Experimental procedures.

polar angle α and azimuthal angle β of the flexible mechanism are
subsequently computed based on the coordinates of the sampling
point. ⑤ the translational joint advances forward and stops when
the base of the sampling robot reaches fixed point 1, positioning the
head of the OP swab near the testee’s oral cavity.⑥ the distal of the
sampling robot is adjusted to posture with parameters (α, β).⑦ the
translational joint moves forward until the head of the OP swab has
contacted the oropharyngeal wall, then stops moving forward when
the contact force exceeds 0.15 N.➇ the distal of the sampling robot
will perform an arcing trail to pose (α, β+20°), which allows the
head of the OP swab to collect enough sampling specimens. ➈ the
sampling robot returns to the initial position. ➉ the testee removes
the swab and leaves.

A volunteer was invited to participate in this experiment. The
volunteer opens his mouth and self-checks the mouth pose on
the monitor located at the front. Then, the zone of the posterior
pharyngeal wall was identified, and the coordinates of the corner
points were calculated by visual processing with a deep learning
algorithm. The experimental results during sampling work are
shown in Figure 9. The variation of a trace of the robot parameters
during sampling operation is presented in Figure 9A, the meanings
of labels from ④ to ➈ are the same as that of labels in Figure 8.
In this sampling trail, the coordinates of the sampling point in
the oral cavity were (−1.67, 149.05) mm and (17.71, 149.05) mm
computed by the visual processing method (Figure 9C), then, the

polar angle and the azimuthal angle of the sampling robot were
calculated as (34.18°, 0.64°) at the left sampling point, which could
be further used to resolve the bending angles of the series-parallel
mechanism. The OP swab was inserted into the testee’s oral cavity
after the distal posture had been adjusted to the angle of (34.18° and
0.64°), and stopped when the tactile force detection had exceeded
0.15 N. Then, the posture of the OP swab was driven to (34.18°,
20.64°) to collect more specimens, mimicking the sampling skill
of the medical professional. The tactile force of the sampling robot
was shown in Figure 9B, and the value was around 0.15 N during the
whole sampling practice.

3.2 Discussion

Nucleic acid testing is an effective method for identifying
individuals infected with COVID-19 or seasonal influenza. OP swab
sampling is commonly used to collect specimens from the testee’s
oral cavity. Despite stringent protective measures, medical staff
remain at risk of infection due to the close contact nature of the
procedure. In this study, we proposed an OP swab sampling robotic
system comprising a series-parallel hybrid structure manipulator
and a visual-tactile fusion module for autonomous sampling
navigation. The system aims to minimize interaction between
medical personnel and the testee, addressing safety concerns and
improving sample quality consistency. Amonitor positioned in front
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FIGURE 9
Experimental results. (A) Variation in the trace of the robot parameters during sampling manipulation. (B) Enlarged view of the tactile force curve. (C)
Position recognition. (D) Angular variation in the trace of the robot joint as the OP swab performs the wiping movement on the posterior
pharyngeal wall.

of the testee replicates the image of the oral cavity captured by the
camera, allowing the testee to self-check their oral posture. A deep
learning algorithm was developed to identify the sampling position
in the posterior oropharynx. The preliminary trial demonstrated
the feasibility of the robotic system for OP swab sampling,
as shown in Figure 9. However, further research is needed to

improve the system’s precision and adaptability in different clinical
environments.

We designed a serial-parallel hybrid structure manipulator to
perform posture adjustments for OP swab sampling. Compared to
existing autonomous sampling systems that rely on limited DOF
manipulators [such as the 2-DOF end effector in (Wang et al.,

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1520374
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Dong et al. 10.3389/frobt.2025.1520374

2021) and the 3-DOF end effector in (Hu et al., 2022)], our
4-DOF serial-parallel hybrid mechanism demonstrates superior
adaptability to complex oral anatomies, achieving full workspace
coverage in simulated oral cavities (Figures 4B–E). Additionally, the
successful implementation of the automatic oropharyngeal swab
experiment further validates the flexibility in posture adjustment
provided by this hybrid mechanism. It can be configured into
an arc shape by minimizing the deviation angle between the two
bendable segments, and it can also be adjusted into a z shape by
driving the two segments to bend in opposite directions.This enables
the robotic system to adapt to a variety of oral configurations,
reducing the potential for inaccurate sampling caused by rigid
manipulators. At the same time, compared to serial-jointed end
effectors (Hu et al., 2022; Wang et al., 2021; Li et al., 2021), the
serial-parallel hybrid manipulator offers significant potential for
OP swab sampling, even in scenarios involving obstacles such as
an arched tongue or tooth occlusion. Although promising results
were achieved, several challenges remain. For example, in the series-
parallel hybrid mechanism, driven by flexible shafts, the rotational
drive amount from the motor output is not perfectly transmitted to
the distal end. Due to the elasticity and friction of the flexible shafts,
one full rotation of the motor does not equivalently drive the distal
segment of the flexible shafts to reach the expected drive amount,
which makes the intermediate transmission model require more
precise construction to ensure accurate system control. Additionally,
the complexity of the system increases the time required for each
test. While the duration is competitive with manual procedures,
it may still vary depending on the testee’s cooperation and the
complexity of the oral anatomy. Furthermore, to further optimize
the system’s design and functionality, future research will also focus
on user experience evaluations.This will include collecting feedback
from medical personnel and testees to assess the system’s usability,
ease of operation, and comfort during the testing process.

Traditional methods for detecting the posterior pharyngeal
wall typically involve first detecting the face and oral cavity,
followed by identifying the posterior pharyngeal region within
the oral cavity (Sun et al., 2022). In this study, the developed
recognition algorithm directly trains on multi-scale features of
the posterior pharyngeal wall and is optimized using adaptive
anchor strategies, ensuring adaptive recognition of feature regions
of varying sizes. Mosaic data augmentation was applied to 42
original images to expand and construct the dataset, resulting in
a posterior oropharynx detection accuracy of 97.9%, highlighting
the effectiveness of the method. Moreover, the model achieved an
average precision (mAP50) of 85.7% for uvula detection, indicating
good performance across both target regions. These techniques
ensure that the model can better generalize the target location
information in images, making it more adaptable to real-world data
inputs. Additionally, our approach demonstrates the potential to
achieve high performance with a smaller training dataset, which is
a key advantage when dealing with the time-consuming and costly
image collection process in clinical environments. Furthermore, the
model’s fast inference speed of 15 ms per image makes it suitable
for real-time applications. While data augmentation helps mitigate
the limitation of a relatively small dataset, future work will involve
incorporating larger and more diverse datasets to improve the
model’s generalization ability and extend its application in a wider
range of clinical settings.

4 Conclusion

This study demonstrated a new flexible robotic system designed
to perform OP swab sampling tasks. The sampling robot primarily
comprises a flexible series-parallel hybrid manipulator and a visual-
tactile fusionmodule.The series-parallel hybridmechanism consists
of two omnidirectional bendable segments, enabling dexterous pose
adjustments for sampling manipulation. The visual-tactile fusion
module incorporates a 2D camera to capture an image of the oral
cavity after the testee opens their mouth, followed by recognition
of the posterior oropharynx position in the xoy plane using a deep
learning algorithm. The force sensor within the visual-tactile fusion
module detects contact force at the distal end of the OP swab.
data from the visual-tactile fusion module is used to control the
distal pose of the series-parallel hybridmanipulator for autonomous
sampling operations. Preliminary experiments demonstrated that
the robotic system is effective for OP swab sampling. Future work
will involve integrating protective covers and disinfection measures
to prevent potential contamination from viruses.
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