The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Nutr.
Sec. Nutrition and Sustainable Diets
Volume 11 - 2024 |
doi: 10.3389/fnut.2024.1487074
This article is part of the Research Topic Integrative Multi-omics and Artificial Intelligence (AI)-driven Approaches for Superior Nutritional Quality and Stress Resilience in Crops View all articles
Improving Agricultural Spraying with Multi-Rotor Drones: A Technical Study on Operational Parameter Optimization
Provisionally accepted- 1 University of Agricultural Sciences Raichur, Raichur, India
- 2 Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- 3 National Research Centre on Seed Spices (ICAR), Ajmer, Rajasthan, India
Drones play a key role in enhancing nutrient management efficiency under climate change scenarios by enabling precise and adaptable spray applications. Current aerial spray application research is primarily focused on examining the influence of drone spraying parameters viz., flight height, travel speed, rotor configuration, droplet size, payload, spray pressure, spray discharge and wind velocity on spray droplet deposition characteristics. The present study aimed to study and optimize the effect of spray height, operating pressure, nozzle spacing and spray nozzle mounting configuration on spray discharge rate, spray width, spray distribution pattern, spray uniformity and spray liquid loss. A spray patternator of 5.0 m x 5.0 m was developed per Bureau of Indian Standards (BIS) standard to study the spray volume distribution pattern of boom and hex nozzle configuration. Initially, drone spray operational parameters viz., spray discharge rate (Lm -1 ), operating pressure (kg cm -2 ) and spray angle (º) were measured using digital nozzle tester, digital pressure gauge and digital protractor respectively in the laboratory. Then optimized the nozzle spacing for boom configuration attachment to drone sprayer and recorded best spray uniformity at 0.6 m nozzle spacing. The drone sprayer hovered at three different heights, viz.,1.0, 2.0 and 3.0 m from the top of the patternator and spray operating pressure was maintained at 4.0 kg cm-2 in outdoor condition. Single pass distribution pattern and one-direction application distribution pattern method used for optimizing height of spray, operating pressure and nozzle mounting confirmation from the results of discharge rate, spray angle, effective spray width, spray liquid loss and spray distribution uniformity. Results showed that, the better spray uniformity distribution was found when the drone sprayer hover height was increased from the top of the patternator (2.0 m). More round spray droplet vertex pattern was generated during the 1.0m hover height compared to the 2.0 and 3.0 m hover heights due to the direct impact of downwash airflow generated by the rotors. Finally it was concluded that, the good spray volume distribution was found at 2.0m height of spray with standard hexa nozzle configuration arrangement as compared to the boom spray nozzle arrangement.
Keywords: Boom spray, Discharge rate, drone sprayer, distribution pattern, Hover height, Patternator
Received: 27 Aug 2024; Accepted: 21 Nov 2024.
Copyright: © 2024 YALLAPPA, Kavitha, Surendrakumar, Suthakar, Mohan and Ravi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
D YALLAPPA, University of Agricultural Sciences Raichur, Raichur, India
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.