About this Research Topic
Benthic communities are especially useful in long‐term comparative investigations such as in the context of studying climate change effects because most of the constituent species are sessile or have low mobility, are relatively long-lived, and integrate the effects of environmental change over time. Macro-, meio-, and microbenthos of hard and soft bottoms are also ubiquitous and can thrive in almost any marine environment, including the most extreme (i.e. Arctic, Antarctic, deep-sea, caves, hydrothermal vents, cold seeps, sulphidic, etc...), making them ideal subjects to assess climate change effects in extreme environments.
The discovery of communities in extreme environments and the study of their benthic variability, as well as their relation to climate change and other effects (anthropogenic such as eutrophication and pollution or otherwise), are still in progress as more evidence and long-term observations become more and more available. Climate change may modify population dynamics over time and space, phenology, and the geographical distribution of benthic communities and species. These modifications could result in habitat loss and species extinctions, with consequences for biogeochemical fluxes, ecosystem functioning, and biodiversity.
Global change and all the changes it entails generally has a negative impact on marine life, especially benthic organisms. The increase of atmospheric greenhouse gases is causing significant changes in the environmental properties of the oceans in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on extreme deep-sea ecosystems. Projections suggest that abyssal ocean temperatures could increase by 1°C over the next 80 years, while abyssal seafloor habitats under areas of deep-water formation may experience significant reductions in water column oxygen concentrations. The ocean has become 30% more acidic since pre-industrial times and is predicted to increase in acidity with increased greenhouse gas emissions. The impact for marine benthos is that warmer seawater carries less oxygen and warmer water expands the low-oxygen zones in coastal areas. Acidic ocean environments hinder benthic organisms since it limits their ability to calcify (e.g. coralline algae, mollusk with shells, calcareous sponges, corals, bryozoans and various exoskeletons).
All studies related with benthos in extreme environments and how benthic populations react to Global Change pressures, including the consequences on ecosystem functioning and structure, as well as on the social benefits deriving from a healthy ocean in the future, are welcome.
Keywords: Benthos, Global change, Extreme environment, Ecosystem functioning, Biodiversity
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.