About this Research Topic
Analyzing the state-of-the-art, variable impedance robot skills are typically investigated in two different perspectives: namely, control theory and machine learning. Control approaches are model-based and provide analytical solutions, where the models are often simplified computational representations. Classical robotics, mostly characterized by high gain negative error feedback control, is not suitable for tasks that involve interaction with the environment (possibly humans), because of possible high impact forces. The use of impedance control provides a feasible solution to overcome position uncertainties and subsequently avoid large impact forces, since robots are controlled to modulate their motion or compliance according to force perceptions. However, we still need to avoid hard-coding such skills. In contrast, humans have much superior performance due to their ability to variate the impedance as much as it is necessary. In this context, robot learning provides suitable approaches to learn variable impedance skills from human demonstrations or by transferring human's impedance skills to robots. Therefore, robot learning and impedance control would give us the ability to enhance robot manipulation performance and safety in unstructured environments, and better handling of perturbations during the interaction.
The aim of this Research Topic is to examine current research on how to successfully transfer compliant motions from humans to robots, allowing for safe and energy-efficient interactions. In this manner, we enable robots to perform in many scenarios, not only the ones that need physical interaction with the human but also in industrial settings.
Keywords: Impedance Control, Robot Learning, Human Impedance, Physical Interaction Control, Physical Human-Robot Collaboration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.