About this Research Topic
More recently, deep learning methods have made rapid progress and have shown particular success with problems associated with large amounts of biological data. Typically popular amongst them have been convolutional neural networks (CNN), multi-layer feed forward neural networks and long short-term memory (LSTM) networks, along with their variants.
In parallel with machine learning, the biological understanding of molecular function and organization of knowledge on this subject has also undergone rapid advances. Instead of scattered and ambiguous labelling of function, systematic annotations in terms of ontologies, in the form of hierarchical and nested labels have made the task of annotation learning and prediction much more robust.
Much has been achieved on biological and technical aspects of functional annotations but many hurdles remain. Consequently, there are clear opportunities for researchers to fill the gaps.
This Research Topic invites submissions of original research or review papers based on the above framework as outlined but not limited to the description below:
1) From researchers working on intelligent systems and statistical/machine learning techniques for biological function prediction from sequence, structure or gene expression data.
2) Analyzing gene ontologies or specialized functions such as protein-protein or protein-RNA interaction and disease associations.
3) Dealing with biological function as a single unit such as being kinase or protease as well as in a pathway will be considered.
4) Broader biological function prediction or identification of genomic features such as DNA methylation and other genome-wide functional patterns at individual or systems level specifically addressing some aspect of the problem of characterizing the function of genomes annotations. General theoretical methods of artificial intelligence and deep learning without a direct application to these biological problems are out of the scope.
The papers must be written in a language accessible to biologists. Mathematical expressions and technical terminology may be used, but these should be presented in an easy-to-understand manner for life scientists.
Keywords: Functional annotations; Machine learning; Prediction methods; Protein function; Interaction; Gene Ontology
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.