About this Research Topic
Heat shock proteins are elevated following various forms of stress, such as heat, heavy metals, ethanol, hypoxia, ischemia, and they are also deregulated in several diseases and infections, indicating their primary role in cell protection. The level and chaperone activity of heat shock proteins decline with age, correlating with a loss in the capacity of cells to maintain protein homeostasis. It is, therefore, foreseeable that the prevalence of diseases with enhanced protein aggregation, such as Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and other amyloidopathies, increases with age. However, several studies have demonstrated the neuroprotective effect of elevating Hsp levels in models of neurodegenerative disease. For example certain symptoms in a transgenic mouse model of Alzheimer’s disease can be ameliorated by overexpressing HSPB1 in brain or administering small molecules that induce Hsp expression). Thus, Hsps are pharmacologically relevant and could have therapeutic potential in several human diseases. Although logical in principle, clinical application has been limited by the high threshold for stress-induced upregulation of Hsps in neurons, suppression by the disease process itself and toxicity of certain classes of inducers. Further work is needed to exploit Hsps as a therapeutic target, including identifying pharmaceuticals with favourable CNS bioavailability and safety profile and understanding the mechanisms underlying neuroprotection.
This Research Topic aims to provide an overview of our current knowledge on the protective role of Hsps in the nervous system and particular neural cell types. In doing so, the pathway to pharmacological intervention will be further developed in a variety of neurological disorders upstream and downstream in signalling networks involving Hsps. We welcome Original Research papers, Review articles and brief communications addressing the molecular mechanisms and therapeutic potential of Hsps in neurological disorders
Keywords: Heat shock proteins, chaperons, Hsp-mediated neuroprotection, molecular mechanism of Hsps action, Hsps and neurological diseases
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.