About this Research Topic
Although overall more effort has been expended in developing models of molecular sequence evolution, critical advances have also included approaches to modeling taxonomic diversification and fossilization. In particular, recent advances in birth-death process models have allowed for continuous sampling along lineages, enabling more information from the fossil record to be incorporated into dating analyses in a statistically coherent way. In addition, available dating methods can now be applied to scenarios in which no molecular data may be available, allowing for novel insights into the evolution of entirely extinct clades. Other recent innovations enable us to date divergence times among taxa that have no fossil record, including the use of gene duplication events or biogeographic evidence.
Furthermore, time-calibrated trees are necessary for obtaining phylogenetic estimates of taxonomic diversification and extinction rates, which can now be jointly inferred along with lineage divergence times. These approaches offer an exciting opportunity to understand the evolution of life in deep time, although key challenges remain, especially with regards to modeling the processes of genome evolution, taxonomic diversification and fossil recovery.
In this Research Topic, we focus on recent advances in methodology, outstanding challenges, and the application of molecular and paleontological dating methods to empirical case studies across the Tree of Life.
Keywords: Molecular dating, Tip-dating, Fossil record, Birth-and-death models, Geological age
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.