About this Research Topic
This Research Topic is intended to provide an overview of the research being carried out in the areas of cognitive and AI systems designed to learn capabilities for language learning, understanding and grounding. As language learning and grounding problem requires an interdisciplinary attitude, the research topic aims to gather researchers with broad expertise in various fields — machine learning, computer vision, natural language, neuroscience, and psychology — to discuss their cutting edge work as well as perspectives on future directions in this exciting space of language, grounding and interactions. Therefore, this collection aims to address the following problems:
• How natural language can be represented into an artificial system
• How to jointly represent verbal and visual information coming from different perceptual systems
• How to store, selectively process and form words and sentences in natural language tasks
• How to ground words in perceptual representations of the visible surroundings and embodied experience
• How to answer questions emulating natural language reasoning
• How to learn and progressively improve communicative and multimodal skills, interactively or autonomously
• How to build an internal representation of the world and effectively reuse it to address novel and unknown tasks
• How to detect sentiments and emotions in language expressions.
Original contributions addressing these issues are sought, covering the whole range of theoretical and practical aspects, technologies and systems.
Keywords: Artificial intelligence, Language learning, Machine Learning, Language modeling, Cognitive systems
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.