About this Research Topic
Published data suggest that treatment failure rate during human chlamydial infections ranges from 8-23%. Multiple mechanisms have been proposed for such failures, including: i) development of heterotypic antibiotic resistance due to slower growth in non-optimal environments and/or entry into stress-induced developmental cycle arrest; and ii) infection of anatomic sites where chlamydiae are protected from antibiotics. Recent work has provided compelling data that AZM anti-chlamydial activity is reduced in hypoxic conditions, as well as when the chlamydiae enter a reversible, non-replicating but viable developmental state. Finally, animal model experiments have determined that the GI tract may be an antibiotic protected anatomical site, which serves as a reservoir for re-establishment of genital infection post-antibiotic treatment.
Though chlamydial biology has become increasingly understood over the last 30 years, the number of effective anti-chlamydials has remained essentially unchanged. Furthermore, sustained AZM therapy has been associated with adverse cardiovascular outcomes in patients, raising the possibility that increasing AZM doses to eliminate GI carriage might be contraindicated. Emergence of stable homotypic antibiotic resistance in human chlamydial species also remains a threat. Thus, development of novel anti-chlamydials remains a high priority. Recently identified candidates include bacterial type III secretion inhibitors, chlamydial enzyme inhibitors, and antagonists of host cell functions essential to chlamydial development. We also expect that identification of new anti-chlamydials will be hastened by the recent development of methods to engineer targeted gene deletions in the chlamydiae. This Research Topic will highlight development of new anti-chlamydial approaches by including original research and review papers that investigate: i) new chlamydial or host cellular drug targets identified using biochemical or by genetic methods; ii) novel methods for identifying potential drug targets; iii) inhibitors of infection or development that target chlamydial or host cell genes; iv) non-chemical methods to inhibit chlamydial development or inactivate the organism; v) treatment failure in humans or animals; and vi) identification and/or characterization of mechanisms that allow chlamydiae to escape antimicrobial effects in culture or in vivo.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.