About this Research Topic
Furthermore, understanding human disease caused by Yersinia is enhanced through studies of Y. enterocolitica and Y. pseudotuberculosis pathogenesis. Despite only being responsible for self-limiting gastrointestinal infections in healthy humans, relevant mouse infection models that mirror disseminated Yersinia infection has helped uncover Yersinia virulence determinants that have evolved to overcome host defences. Moreover, complementing studies on Yersinia pathogens of humans are those that investigate Y. ruckeri pathogenesis. Aided by natural infection models, studies of Y. ruckeri are revealing true pathogenic mechanisms used by these bacteria to overcome both non-specific and specific immune responses of infected fish. In combination with assorted genome sequencing analyses, these mechanistic studies are collectively benefitting understanding of Yersinia pathogen evolution as well as Yersinia pathogen adaptation to changing environments both inside and outside of the host.
This includes uncovering novel regulatory mechanisms controlling virulence gene expression in response to prevailing nutrient resources associated with the infected host or in the environment. This Research Topic therefore welcomes new contributions that lead to an improved molecular understanding of Yersinia-host cell interactions and the network of regulatory control mechanisms that define Yersinia survival in the host or when free living in the environment. It also welcomes studies that define potential targets for the design and development of anti-Yersinia therapeutic drugs and vaccines, as well as translational studies that involve unique cooperation between diverse disciplines.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.