About this Research Topic
Membrane of eukaryotes and prokaryotes represent not only the “skin” of the cell, but also the “brain” of the cell, as all signal transduction is perceived for different signals in the environment through this vital organele. Interestingly, eukaryotes and prokaryotes produce extracellular nanovescicles that contain RNAs and other molecules that they exploit to communicate. This inter-kingdom crosstalk suggest that the microbiome and the virobiome in the different mucosa of metazoans interact with its host complementing their biology. However, equally astonishing, are the studies that demonstrate that some nutrients produces small RNA molecules that have been detected in human serum, suggesting an additional, but still unexplored, regulatory level. Such fascinating studies using nutrigenomic animal models are oriented to identify pattern of effects at cellular and systemic levels.
Furthermore, C. elegans is currently being used to evaluate nutrigenomic studies in the field of anti-ageing and customize nutritional solutions in the form of supplements to meet the optimal nutrition required by the body to prevent aging of cells by the formation of excess free radicals.
While undernutrition and compensatory growth have been extensively studied in animal models, obesity is also one of the most widely studied topics in nutrigenomics by exploring the interaction between dietary pattern and genetic factors.
This Research Topic also welcomes original studies linked to cancer and certain nutrients that play a role as cofactors or metazoan models to evaluate new, alternative treatments that target the altered cancer cell metabolism.
Keywords: Metazoan models, Nutrigenomics, Human nutrition, Health promotion, Disease prevention, Inflammation, Cancer, Diabetes, Undernutrition, Obesity, Arthritis
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.