About this Research Topic
Research in disordered systems allows the development of innovative methods that range from optical techniques for imaging to the mathematical and computational modelling for analysis of the structural organization and dynamics of the components. Examples of techniques originated from the physics of disordered systems include cross-correlation microscopy, Brillouin microscopy, and the exploitation of disordered fibre optics. These optical methods are used to gather new insights on previously unknown features of biomaterials and further investigate known properties in untested conditions. Key examples of mathematical and computational models include the structural factor, active matter models, order-disorder transitions and the nematic order.
These models allow the investigation of self-organization processes and collective migration in biomaterials as well as organic tissue development. Among the most relevant applications, they can be used to characterize the difference between healthy and diseased biological tissues. Even within the cellular environment there are phase transitions that organize the activity of proteins and other molecules.
This Research Topic aims to present the state of the art in quantitative biomaterial science and cell biology. We would like to include papers that discuss the applications of methods from the physics of disordered systems to quantitative cell biology. These methods can be either technological tools or mathematical and computational methods aimed at the analysis of the experimental data such.
The papers in this Research Topic should discuss one or more of the following subjects:
1. Technological applications from disordered systems to biomaterials
2. Mathematical and computational models for the quantitative description of the collective
properties observed in experiments on biomaterials and cell populations
3. Protein assembly with RNA in the nucleus or cytoplasm
Moreover, they should consider specific experimental questions involving:
1. Biomaterial formation and self-organization
2. Development, repair, and homeostasis in biological tissues
3. Mechanical properties of cells
4. Cell mechanosensing
5. Phase transitions in the cell driven by protein-protein and protein-RNA interactions
Some examples are:
1. Biomaterials Brillouin microscopy
2. Biomaterials cross-correlation microscopy
3. Structural characterization of biomaterials (nematic order, structure factor)
4. Active matter in biomaterials
5. Liquid-to-solid or liquid-to-liquid demixing in the cytoplasm
6. Intrinsically disordered proteins, interactions and functions
7. Protein aggregates, ribonucleoprotein granules, structure, interactions and cytotoxicity
Keywords: Disordered systems, Biophysics, Collective behaviour, Cell dynamics, Statistical mechanics
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.