About this Research Topic
These promising advances have already started bringing about significant development to many areas of interest to the engineering community. The proliferation of data, combined with effective means to obtain, store, manage and analyze massive volumes of data with agility and speed at scale, is driving innovation and appears to be one of the key disruptive enablers in engineering in the coming decade, playing a key role in (or even shaping in some cases) the design of materials, products, and systems ranging from tech, heavy equipment and energy industry to avionics, geospatial technology and healthcare.
The purpose of this Research Topic is to provide a forum for engineers, data scientists, researchers and practitioners to present new academic research and industrial development on big data and machine learning for engineering applications. The Research Topic aims at original research papers in the field, covering new theories, algorithms, systems, as well as new implementations and applications incorporating state-of-the-art machine learning techniques. Review articles and works on performance evaluation and benchmark datasets are also solicited.
Potential topics of interest include but are not limited to the following:
• Novel machine learning algorithms for large volumes of data
• Multimodal data fusion techniques
• Innovative hardware and network architecture for machine learning from big data
• Data mining and management methods
• Analysis, modeling and visualization
• Big data analytics
Indicative domains of application of interest to the Research Topic include:
• Computer vision, language understanding, speech and video analysis, robotics and automation
• Electrical and mechanical engineering, production management and optimization, manufacturing, fail-ure detection, energy management, smart grid
• Civil engineering, construction management and optimization, structural health monitoring, earth-quake engineering, urban planning
• Transportation, hydraulics, water power and environmental engineering
• Surveying and geospatial engineering, remote sensing and geosciences
• Biomedical engineering
• Materials science and engineering
Keywords: Machine learning, big data, engineering applications, artificial intelligence
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.