About this Research Topic
Bacteria are known to sense their environment, including pH, nutrient conditions, presence of antimicrobials, neighboring cells, and the chemical and physical properties of substratum materials. For instance, upon adhesion to a surface, bacteria may respond by excretion of extracellular-polymeric-substances (EPS) through a mechanism called mechanosensing, allowing them to grow in their preferred, matrix-protected biofilm-mode of growth. While the “good” biofilms have wide applications, such as in bioremediation and biofuel production, “bad” biofilms are problematic as they are involved in numerous drug resistant infections and biofouling in industrial settings.
Over the past decades, research has focused on controlling the numbers of bacteria adhering to surfaces in order to promote the “good” biofilms and find better solutions to control the “bad” ones. However, it may be equally if not more important to understand how bacteria interact and sense their environment in order to control their adaptive responses to promote or inhibit biofilm formation.
In this collection, we welcome contributions from researchers in this active and emerging field to present new findings (both experimental and computational studies) and reviews of recent advances. The topics of interest include but are not limited to:
(1) Bacterial genes and pathways involved in sensing material properties.
(2) New methods and tools to characterize bacteria-material interactions.
(3) Effects of material properties on bacterial attachment.
(4) New materials or surface design to promote or reduce biofilm formation.
(5) New control agents that can promote or reduce biofilm formation.
(6) Influence of nanostructures and micron scale topographies on bacteria-material interactions.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.