Cluster-based Intelligent Recommendation System for Hybrid Healthcare Units

  • 5,635

    Total downloads

  • 23k

    Total views and downloads

About this Research Topic

Submission closed

Background

With the surge in patient numbers, specialists have sought a balance between patients and caretakers, paving the way for valued healthcare and patient data. Hybrid Health Care Units combine technology and human care, offering an innovative approach that merges non-profit and for-profit aspects. This model has become the preferred solution for delivering innovative, cost-effective health care. By consolidating healthcare services in one location, these organizations improve resource sharing, enhancing care and reducing costs.

The Cluster-based Intelligent Recommendation System analyzes user data via a complex network, obtaining a preference shift-vector based on user preferences. It uses a scale-free stochastic block model to identify clusters of similar users. Hybrid healthcare units provide supportive, compassionate care, and leverage enhanced technologies to deliver high-quality, safe, and sustainable healthcare services. Intelligent information systems improve staff performance and ease pressure on health service systems.

The hybrid intelligent system, Cluster-based Intelligent Recommendation System in Hybrid Healthcare Units, has successfully been applied in cluster-based recommendation systems. This system employs a hierarchical clustering algorithm and artificial neural network classifier. It applies to various aspects of patients' information, including conventional and complementary medicine. It serves as an optimal tool to alleviate suffering, improve quality of life, and support individuals throughout all stages of illness. Users are initially grouped using the k-means clustering approach, and treatment recommendations are obtained based on disease or symptoms using association rule mining techniques.

A hybrid system combines disease and symptoms-based recommendations with collaborative filtering to generate the final set of treatments. Personalization is a major challenge in healthcare information technology, but intelligent systems like the Cluster-based Intelligent Recommendation System enable personalized recommendations in hybrid healthcare units. An intelligent healthcare management system handles the cluster problem, employing clustering algorithms and distance metrics for prediction, analysis, and decision-making based on patients' medical history. While challenges such as performance and scalability exist, insights from practitioners and case studies are welcomed. However, the server approach may compromise privacy due to data synchronization.

The goal of this Research Topic is to explore the innovative business approach offered by Hybrid Health Care Units, which combine non-profit and for-profit entities to achieve cost-effective and successful healthcare. The Cluster-based Intelligent Recommendation System plays a crucial role in this context by analyzing user data and identifying clusters of similar users. In hybrid healthcare units, this system is utilized alongside conventional and complementary medicine to alleviate suffering and enhance quality of life.

We strongly encourage researchers to submit articles that focus on, but are not limited to, the following fields:

1. Semi-supervised learning techniques and topics discovery methods to obtain a high-level representation of items

2. Clustering techniques to group all users into several disjoint clusters

3. Cluster-based recommendation system for patients suffering from Complex diseases

4. Intelligent Recommendation System in hybrid health care units

5. Clustering prepared the dataset for hybrid health care

6. Efficient method for multicast routing schemes for Hybrid Healthcare Units

7. Unified Automatic Intelligent Recommendation System in health care

8. Incremental Clustering by Categorical Optimization in health care

9. Study on k-means clustering and Tensor Decomposition Network

10. Fuzzy Preference Logic theory for hybrid health care

11. Hybrid IR System to exploit the benefits of both content-based and collaborative approaches

12. Cluster-based Intelligent recommendation System using topic modelling and clustering techniques

This Research Topic welcomes all article types available in Frontiers in Medicine including Original Research, Reviews and Mini Reviews, Method and Perspective Articles as well as Hypothesis and Theory Articles

Research Topic Research topic image

Keywords: Scale-free Stochastic block model, Graph-based recommender system, Artificial neural network classifier, Decision-making, Hierarchical clustering algorithm, Hybrid intelligent system, Collaborative filtering method, Personalization

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Impact

  • 23kTopic views
  • 14kArticle views
  • 5,635Article downloads
View impact