About this Research Topic
New tools such as next generation sequencing (NGS) permit the study of HGT in new ways, and this has brought the realization that HGT occurs more pervasively than originally suspected. However a systematic and in-depth understanding of HGT is lacking. Classical ways of HGT include transformation (direct DNA absorption), transduction (by viruses or phages), bacterial conjugation (by plasmids), and an atypical way of HGT by integrative conjugative elements (ICEs) has been explored in recent years, which suggests that there might be other new ways of HGT undiscovered. While the scope of HGT elements (together with the functions) and their evolutional origins remains elusive. Further exploration of the detailed mechanism of HGT is needed to advance the field.
HGT overcomes a diverse array of bacteria strategies (e.g. restriction-modification systems and CRISPR-Cas systems) to resist heterogeneous DNA incorporation. This makes the frequency of HGT in the natural environment surprising; understanding of how HGT accomplishes this feat will open the door to new techniques for gene knock-out/knock-in experiments. Studies are needed to further understand how these heterogeneous DNAs (HGT elements) break through the protection barriers and successfully integrate into specific chromosome loci or maintain freely in hosts. In addition to NGS, new technologies including transcriptomics and proteomics are now available to help tackle the questions surrounding HGT. Scientists should take advantage of these tools to study donor and recipient cells where HGT occurs. Exploring HGT will expand our understanding of bacterial evolution and facilitate the development of powerful genetic tools for bacterial manipulation as well as provide insight into the spread of novel bacterial functions such as antimicrobial resistance traits across taxa.
This proposed Research Topic will focus on all areas relating to HGT including the diversity of transferrable genetic elements, functions conveyed on those elements (e.g. antimicrobial resistance and substrate utilization), mechanisms of gene transfer and integration, and mechanisms of overcoming host defenses. Articles on focused on exploring bacterial diversity in the context of HGT are also encouraged.
Keywords: gene, genetic diversity, bacteria, horizontal gene
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.