Quasars at All Cosmic Epochs

  • 33k

    Total downloads

  • 226k

    Total views and downloads

About this Research Topic

Submission closed

Background

The last 50 years have seen a tremendous progress in the research on quasars. From a time when quasars were unforeseen oddities, we have come to a view that considers quasars as active galactic nuclei, with nuclear activity a coming-of-age experienced by most or all galaxies in their evolution. We have passed from a few tens of known quasars in the early 1970s to the almost 200,000 known today. Not surprisingly, accretion processes on the central black holes in the nuclei of galaxies — the key concept in our understanding of quasars and active nuclei in general — have gained an outstanding status in present-day astrophysics. Accretion produces a rich spectrum of phenomena in all bands of the electromagnetic spectrum. The power output of highly-accreting quasars has impressive effects on their host galaxies.

All the improvement in telescope light gathering and in computing power notwithstanding, we still miss a clear connection between observational properties and theory for quasars, as provided, for example, by the H-R diagram for stars. We do not yet have a complete self-consistent view of nuclear activity with predictive power, as we do for main-sequence stellar sources.

At the same time quasars offer many “windows open onto the unknown". On small scales, quasar properties depend on phenomena very close to the black hole event horizon. On large scales, quasars may effect evolution of host galaxies and their circum-galactic environments. Quasars’ potential to map the matter density of the Universe and help reconstruct the Universe’s spacetime geometry is still largely unexploited.

The times are ripe for a critical assessment of our present knowledge of quasars as accreting black holes and of their evolution across the cosmic time. The aim of the Research Topic is to review and contextualize the main observational scenarios following an empirical approach, to present and discuss the accretion scenario, and then to analyze how a closer connection between theory and observation can be achieved, identifying those aspects of our understanding that are still on a shaky terrain and are therefore uncertain knowledge.

The Research Topic will cover topics ranging from the nearest environment of the black hole, to the environment of the host galaxies of active nuclei, and to the quasars as markers of the large scale structure and of the geometry of spacetime of the Universe. The spatial domains will encompass the accretion disk, the emission and absorption regions, circum-nuclear starbursts, the host galaxy and its interaction with other galaxies. Systematic attention will be devoted to some key problems that remain outstanding and are clearly not yet solved: the existence of two quasar classes, radio quiet and radio loud, and in general, the systematic contextualization of quasar properties the properties of the central black hole, the dynamics of the accretion flow in the inner parsecs and the origin of the accretion matter, the quasars’ small and large scale environment, the feedback processes produced by the black hole into the host galaxy, quasar evolutionary patterns from seed black holes to the present-day Universe, and the use of quasars as cosmological standard candles.

The timing is appropriate as we are now witnessing a growing body of results from major surveys in the optical, UV X, near and far IR, and radio spectral domains. Radio instrumentation has been upgraded to linear detector — a change that resembles the introduction of CCDs for optical astronomy — making possible the study at radio frequency of radio quiet quasars. Herschel and ALMA are especially suited to study the circum-nuclear star formation processes. The new generation of 3D magnetohydrodynamical models offers the prospective of a full physical modeling of the whole quasar emitting regions. At the same time, on the forefront of optical astronomy, applications of adaptive optics to long-slit spectroscopy is yielding unprecedented results on high redshift quasars. Other measurement techniques like 2D and photometric reverberation mapping are also yielding an unprecedented amount of data thanks to dedicated experiments and instruments. Thanks to the instrumental advances, ever growing computing power as well as the coming of age of statistical and analysis techniques, the smallest spatial scales are being probed at unprecedented resolution for wide samples of quasars. On large scales, feedback processes are going out of the realm of single-object studies and are entering into the domain of issues involving efficiency and prevalence over a broad range of cosmic epochs.

The Research Topic will serve as the Proceedings of an international meeting to be held in downtown Padova, Italy, on April 2-9, 2017

Research Topic Research topic image

Keywords: quasars, active galactic nuclei, observational cosmology, extragalactic astronomy, evolution of galaxies, galaxies, supermassive black holes, Eigenvector 1 of quasars, quasar spectral energy distribution, extragalactic radio jets, QSOs, accretion disks, photometry, spectroscopy

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Participating Journals

Impact

  • 226kTopic views
  • 184kArticle views
  • 33kArticle downloads
View impact