About this Research Topic
The oligotrophic conditions of the NPSG and the resident microbial populations present a unique set of challenges to microbial oceanographers. Many organisms are sensitive to environmental manipulation, resisting cultivation efforts and complicating experimental manipulations. Furthermore, the low phytoplankton biomass and low nutrient concentrations necessitate highly sensitive analytical methods to quantify temporal and spatial changes in material and energy fluxes and distributions. Nonetheless, through development of sensitive methodologies we now recognize subtle yet important biogeochemical and ecological dynamics occurring over timescales ranging from diel to interannual. These temporal patterns would be more difficult to resolve in more variable, heterogeneous marine environments such as coastal habitats. The microbial oceanography research being conducted in the NPSG continues to progress rapidly and includes remote, autonomous and in situ observations; laboratory and at-sea experiments; and cultivation-dependent and -independent approaches. Such work is facilitated through a combination of shipboard expeditions, satellites, moorings, Seagliders, and free-drifting autonomous floats. Several research programs host these activities, and one of them, the Hawaii Ocean Time-series program, has sustained long-term time-series observations at its deep water site, Station ALOHA. Additional research programs have examined the pelagic ecosystem of the NPSG at greater temporal and spatial resolution than afforded by fixed-point observations at one site. For example, the Center for Microbial Oceanography: Research and Education (C-MORE) conducted more than 20 separate research expeditions in the NPSG exploring the ecology and biogeochemistry of planktonic microbes in this ecosystem.
This Research Topic welcomes submissions covering all aspects of microbial oceanography in the oligotrophic North Pacific Subtropical Gyre including identification and isolation of microorganisms, quantification of microbial biomass and turnover, metabolism and physiological activities, and microbial-mediated biogeochemical cycling. We welcome field, laboratory, and modeling studies which have a focus on the microbial oceanography in the North Pacific Subtropical Gyre.
Keywords: microbiology, phytoplankton, biogeochemical cycling, oceanography, physiology, North Pacific Ocean, Station ALOHA
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.