Frontiers of Computational Approaches to Correlated Matter

  • 3,083

    Total Downloads

  • 20k

    Total Views and Downloads

About this Research Topic

Submission closed

Background

The development of novel analytical and numerical methods, specifically designed to study correlated electronic materials and their many body ground states, now forms an important pillar of quantum condensed matter physics. Several electronic and thermodynamic properties of innumerable exotic phenomena such as metal-insulator transitions, strange metal phases and non-Fermi liquid behavior, unconventional superconductivity, multi-ferro and magnetoelectricity, nematic and related symmetry broken orders, spin/orbital liquids, spin charge separation, many body localization etc. have now been either well established or studied with an enormous assistance from computation. Many of these phenomena have been observed in materials such as high temperature superconductors, heavy fermion systems, one dimensional copper oxides, Vanadium and Iridium oxides, to name a few.

Over the last couple of decades, the evolution of diverse numerical techniques and the increased availability of computational muscle has brought an unprecedented level of possibilities to attack research problems in condensed matter physics. Among the class of stochastic methods, Quantum Monte Carlo (QMC) provides a very promising avenue to extract reliable ground state and thermodynamic information due to its exactness and ability to scale up calculations to large system sizes. Several flavors of QMC such as Diffusion MC, Variational MC, Path Integral MC and Cluster MC have made major inroads and have enabled better descriptions of the system's observable properties. However, QMC simulations suffer from the Fermionic sign problem and there have been considerable efforts to circumvent the issue. Density Matrix Renormalization Group (DMRG) provides an efficient representation of the ground state solution in terms of matrix product states for 1D/quasi-1D systems with local interactions. On the down side, DMRG works best only for one dimensional systems or systems that can be effectively reduced to one dimension. Other iterative approaches such as Dynamical Mean Field Theory (DMFT), Hierarchical MFT and Numerical Renormalization Group (NRG) have become popular but are seriously limited by the size of the clusters chosen. In certain cases, not all spatial correlations are present, and one needs to take special care in incorporating these effects especially when the correlation lengths are larger than the cluster sizes. Other variational methods like the use of Tensor networks, where one allows greater flexibility for optimization by a Hilbert space expansion, has aided greater accuracy in computing ground state properties.

A basic knowledge of these techniques, their capabilities, the class of problems they are most suited to solve, along with an appreciation of their advantages and limitations, is a crucial aspect that this Research Topic will address. Many researchers in different branches of condensed matter physics and statistical mechanics have little or no experience with each and every technique that has been listed here; therefore, a Research Topic section devoted to 'Frontiers of computational approaches to correlated matter' is highly called for. We hope that this effort will hugely benefit researchers who have novel ideas to attack outstanding physical problems, but lack the necessary expertise to quickly narrow down on what methods could best enable them to achieve their objectives.

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and they fall under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

      In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Impact

  • 20kTopic views
  • 15kArticle views
  • 3,083Article downloads
View impact