About this Research Topic
Using development as a roadmap, the strategy for repurposing transcription factors to alter transcriptional regulatory networks, change cellular transcriptomes and promote differentiation has been employed for regeneration. Study of the developing inner ear has posed many different challenges due to the small size of the organ and limited number of cells. Use of conventional and emerging single cell analysis methods provides a means to obtain insight into proliferation, specification and differentiation of HCs and SGNs.
Mouse inner ear development starts ~ E8.5 when ectoderm between rhombomeres 5 and 6 thickens to form the otic placode. As the otic placode invaginates to form the otic cup, cells from anteroventral region form the neurosensory domain are further specified to become the future HCs and SGNs. The neurosensory progenitor pool expresses different sets of transcription factors (TF) to determine cell fate, promote differentiation and maturation into multiple cell lineages. The function of transcriptional regulatory networks is modified by the epigenetic landscape of a cell. Chromatin remodeling proteins and microRNAs help determine the epigenetic status and contribute to proper development of HCs and SGNs. Each genetic and epigenetic factor alters the transcriptome to guide HC and SGN development. Using single cell transcriptome analysis, the dynamic changes that occur as these cells develop are being revealed. Genetically modified mice that mark otic cell types undergoing development allow harvesting single cells for deep sequencing. The heterogeneity of harvested cells allows pseudotemporal ordering transcriptomes and depicts the dynamically changing transcriptional landscape that reflects otic development. Repurposing these factors will help guide the transcriptome in pluripotent stem cells into otic cell types and accelerate efforts for inner ear stem cell therapies. The Research Topic will focus on the effects of genetic and epigenetic factors that affect otic neurosensory development and regeneration with an emphasis on single cell analysis techniques.
Keywords: chromatin, transcriptome, development, inner ear, cochlea, stem cell, regeneration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.