About this Research Topic
Repairing CNS injury by grafting exogenous cells to replace lost or dysfunctional neurons or glia has been a major investigative focus. An alternative strategy is recruiting endogenous CNS cells and engineering their fate to produce needed neurons or glia. Both of these strategies require appropriate tools to achieve terminal fate engineering and identification of the suitable cell population upon which to focus these efforts. With the advance of cellular reprogramming approaches, first to a pluripotent state and more recently to direct lineage reprogramming, it has now become possible to induce lineage respecification in progenitor cells or terminally differentiated cells. The capacity to lineage reprogram has been investigated both in vitro and directly in vivo and an understanding is emerging of the mechanisms and conditions regulating successful transition to directed terminal differentiation state. The goal of this Special Topic, Engineering Adult Neurogenesis and Gliogenesis, is to summarize the current state of the art in neural engineering through original research reports and reviews to foster continued advancement of this field.
Subjects for open call for submissions:
Direct reprogramming of cell lineage
- In vitro lineage respecification
- In vivo reprogramming
Directing terminal differentiation of lineage restricted progenitors
- Adult neurogenic niches
- Adult glial progenitor cells
Neuronal and glial cell fate specification of ESCs and iPSCs
- Regulating in vitro lineage specification
- Terminal differentiation following CNS engraftment
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.