About this Research Topic
With the recent breakthrough in synthetic biology and systems biology, the portfolio of chemicals that are produced from microbial hosts has been dramatically enlarged. For example, by constructing synthetic pathways, a panel of natural products that are originally produced in fungi and plants can now be synthesized in industrial workhorses such as yeast. Using novel biomolecular approaches to compartmentalize metabolic pathways, several chemicals that used to be difficult for microbial synthesis can now be produced at high yield. Further, the advance of systems biology approaches such as multi-omics analysis allow the in-depth mining of complex metabolic network to discover novel route for chemical synthesis, while the development of genome editing tools such as CRISPR facilitates the molecular design of pathways for metabolic engineering.
This Research Topic in Frontiers in Microbiology provides recent advances in metabolic engineering, focusing on development of novel biomolecular and computational strategies for discovering and synthesizing novel chemicals in microorganisms. The Topic covers two aspects of metabolic engineering: biomolecular design and pathway optimization. It serves to showcase the significance of synergizing synthetic biology and systems biology to reprogram cells for biochemical production, and also provides key examples of novel metabolic insights that facilitate the optimization of novel biosynthesis pathways.
Keywords: synthetic biology, bioenergy, systems biology, microbial metabolism, genome editing
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.