About this Research Topic
Since ML services are often served online for a long period of time, issues such as auto model re-training with incremental feedback, handling concept drift and environment changing become very critical. Moreover, as there are costs in providing such services, how to strike a balance among performance, computation resources, and ease of maintenance can be very challenging.
To advance the research in this direction, we would like to solicit articles on the following topics:
- Dealing with dynamic environment in ML handling concept drift
- Learning given incremental feedbacks
- Causality inference
- Dealing with noise and missing in data
- Dealing with sampling, measuring, and algorithmic bias in ML
- Resourced constrained machine learning
- Evaluation metrics in reliability and sustainability for ML
- Auto machine learning
- Life-long learning
- Invariant learning
Keywords: artificial intelligence, machine learning, auto machine learning, Life-long learning, Open-set learning, Machine learning services, Invariant learning
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.