About this Research Topic
Near-infrared diffuse optical spectroscopy (NIRS) has been attracting the attention of scientists and clinicians in the psychiatric field as a low cost and highly sensitive approach to assess cerebral haemodynamics that are closely associated with human functional capacities (e.g., cognitive and emotional functions). Over the past forty years, owing to the faster sampling rate and higher sensitivity in probing brain cortex activations than the morphologic responses probed by CT or MRI, NIRS was utilized to build functional brain networks (namely fNIRS) that have been translated into clinical use for the diagnosis and therapeutic evaluation of various mental diseases including depression and schizophrenia. Additionally, many advanced algorithms for analysing fNIRS data e.g., principle component analysis (PCA), independent component analysis (ICA), general linear model (GLM), functional connectivity density (FCD), graph theory and deep learning, have increased the identifying accuracy that underpins the utility of the technique. Therefore, these advances in analysis have greatly enhanced the clinicians’ capabilities for characterizing specific psychiatric diseases relevant to functional deficits.
To promote the latest progress in the applications of fNIRS for probing mental health disorders, we invite the submission of original research or review articles to this Research Topic. The focus of this Research Topic is on new principles, technologies, or applications of fNIRS modalities for assessing mental health, as well as relevant analysis approaches for differentiating a variety of psychiatric disorders such as depression, anxiety, bipolar disorder, schizophrenia and cognitive impairment.
Potential fNIRS modalities and analysis approaches for detecting mental health disorders include, but are not limited to, the following subject areas:
• Technical improvements in fNIRS (optical design, instrument, probe, etc.)
• New modalities in fNIRS (e.g., diffuse correlation spectroscopy-DCS)
• fNIRS expansion for brain imaging (e.g., diffuse optical tomography-DOT)
• Functional brain network methodologies with fNIRS
• Clinical applications with fNIRS
• Algorithms for fNIRS signal/image analysis
• Advanced fNIRS protocol for cognitive or emotional activations
Keywords: fNIRS, Functional, Mental Health, Deficits, Modalities, Analysis, Optical Spectroscopy, #CollectionSeries
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.