Interpretable Predictive Analytics for Precision Cardio-Oncology Preventive Care

  • 3,526

    Total downloads

  • 13k

    Total views and downloads

About this Research Topic

Submission closed

Background

Cardiovascular disease has been a leading death cause of human beings among cancer survivors (almost 370,000 each year around the world), followed by the death cause of new tumor development or cancer recurrence. In recent years, cardio‐oncology arises as the growing awareness of side cardiac dysfunctions from cancer therapies such as chemotherapy, radiotherapy, immunotherapy, etc. Early detection, monitoring, prevention, and treatment of cardiovascular toxicity in cancer therapies is increasingly becoming urgent in precision cardio‐oncology preventive care.

Precision cardio-oncology emphasizes individualized algorithms based on cardiovascular risk, cancer, and cancer treatments, and it considers treatment risks from oncologic care. For instance, patient-specific tumor genetics and therapy-specific cardiovascular risks are useful to redefine tumor classification and dictate cancer treatment algorithms. Artificial intelligence (AI)-based predictive analytics (supervised learning and unsupervised learning) are just available to use in recent decade in capturing dependent patterns between cardiovascular diseases and cancer therapies, which provides transformative analytical routes for prediction and diagnosis of individualized cardio-oncology risks. Notably, interpretable machine learning models show promises from its strengths in accurately identifying and capturing patient-specific complex hidden interaction patterns of longitudinal/multimodal data (omics, ECGs, drugs/therapies) with cardiac dysfunctions for clinical cancer treatment decisions in a methodologically explainable way.

This Research Topic aims to create a forum for current advances of interpretable predictive analytics in AI development to deal with the challenges regarding precision and accuracy of cardiotoxicity risk assessment in cancer survivors. Of special interest are: (I) innovative methodologies that ease the interpretability of AI predictions towards the validation of respective diagnostic, prognostic, and therapeutic models for side cardiac dysfunctions/complications before, during, or after cancer therapies; and (II) translational medical implications of interpretable AI-based predictive risk analytics for cancer therapy-related cardiac dysfunctions, including novel automatic data processing techniques for massive growth of longitudinal/multimodal heterogeneous data on cardio-oncology, development and configuration of advanced cardiotoxicity workflows or systems that tailored innovative data patterns discovery/visualization, risk predictions, and treatment recommendations in cardio-oncology care.

This Research Topic reports latest interdisciplinary research on developing novel interpretable predictive analytics for precision cardio-oncology preventive care, to capitalize on cardio-oncology big data.
- Interpretable machine learning/deep learning techniques in cardio-oncology complications treatment
- Institutional cardio-oncology data to predict adverse cardiac outcomes
- ECG/Image data for prediction and prognostication in cardio-oncology
- Biologically relevant AI models in precision and translational cardio-oncology
- Novel data patterns discovery/visualization in cardiology clinical practice
- Data science and AI techniques to discover new cardiotoxic pharmacologic agents
- Network analytics for longitudinal/multimodal heterogeneous cardio-oncology data
- Dynamic complexity of evolving cardio-oncology processes
- Predictive data analytics in chemotherapy, radiotherapy, and immunotherapy-related cardiotoxicity
- Interpretable bioinformatics for drug discovery in cardio-oncology
- Integrative systems for predictive cardiology treatment recommendation
- Translational real applications of predictive analytics for cardiovascular toxicities preventive care

Keywords: cardio-oncology, cardiovascular diseases, computational cancer therapy, biomedical big data analytics, interpretable machine learning

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Participating Journals

Impact

  • 13kTopic views
  • 9,288Article views
  • 3,526Article downloads
View impact