Advances in Shannon-based Communications and Computations Approaches to Understanding Information Processing In The Brain

  • 2,864

    Total downloads

  • 27k

    Total views and downloads

About this Research Topic

Submission closed

Background

In the context of communications and computations, Claude E. Shannon is well-known for at least 3 things. First, the source coding theorem (i.e., noiseless coding theorem), which defines the maximum limit of data compression (e.g., minimum number of bits required to represent audio music). Second, the noisy-channel coding theorem, which defines the maximum rate that information can be transmitted almost error-free through a noisy channel (e.g., maximum number of bits per second that the fiber optic broadband internet can transmit). Third, through his MIT master’s thesis, the implementation of Boolean algebra (i.e., AND, OR, NOT, XOR) using electric circuits of relays and switches; this subsequently became the basis of all modern transistor-based computers. Thus, Shannon is the father of both information theory and modern computing. Shannon’s key discoveries on communications and computations serve as the foundational basis for understanding all information processing systems, including the brain.

In all modern computers, communications precede and succeed computation. For example, video data (e.g., MPEG-2) must be transmitted to your computer (e.g., via broadband internet) before the data is processed (e.g., video decoding computations). Even within the computer itself, data must be transmitted between various locations (e.g., hard drive, RAM) before computations can take place (in the microprocessor). Once decoded, the video information must be further transmitted to the computer screen. Both communications and computations aspects are crucial to information processing. The circumstance is similar in the brain. For example, visual information from the eye must be transmitted from rods and cones in the retina to the visual cortex in the occipital lobe before the visual information can be processed (i.e., computed). From there, the processed information is further transmitted to other locations of the brain (e.g., prefrontal cortex). Despite the importance of both computations and communications, neuroscience research has traditionally focused predominantly on computational aspects, with communications largely being omitted. Research momentum and advances have, however, begun to shift very recently. For example, it has now been estimated that communications consume 35 times more energy than computations in the human cortex. Furthermore, a recent exhumation of the long-forgotten discovery that single cell organisms (Paramecium aurelia) are capable of Pavlovian conditioning called into question the widely held Hebbian synaptic hypothesis. This Research Topic aims to spotlight research works that incorporate communications aspects in the brain. Specifically, the goal is to gather recent advances that apply Shannon’s key discoveries on communication and computation to better understand neuronal information processing. Another concurrent goal is to complete this Research Topic by/before early 2023 to commemorate the 75th anniversary of Shannon’s pioneering 1948 paper, “A Mathematical Theory of Communication”.

The scope of this Research Topic covers computations and communications aspects in the brain, based on humans and animal/organism models. On computations, we are open to both school of thoughts, namely, Hebbian synaptic hypothesis (e.g., long-term potentiation) and cell-intrinsic hypothesis (e.g., RNA-based memories and computations), as applied to areas such as perception, cognition, learning, memory, and decision making. On communications, we encourage submissions that cover fundamental aspects of neuronal communications, such as quantization, error control coding, modulation, channel noise, synchronization, inter-symbol interference (equalization), queueing theory (Poisson process, buffering), energy requirements (signal-to-noise ratio), and error rate estimations. In terms of methods, we welcome submissions employing mathematical modeling, computer simulation, data analysis, new hypothesis and theory, new methods (e.g., algorithms), and existing methods from communications systems engineering applied to the brain. In terms of manuscript types, we are interested in original research, methods, review, mini review, hypothesis and theory, perspective, brief research report, and opinion.

In Memoriam: Dr Desmond Taylor (co-topic editor) who sadly passed away during the early stages of this research topic. https://www.comsoc.org/about/news/memoriams/desmond-p-des-taylor

Keywords: Communications, computations, Shannon, brain, information theory, information processing

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Impact

  • 27kTopic views
  • 24kArticle views
  • 2,864Article downloads
View impact