About this Research Topic
This Research Topic is anticipated to become a central forum to discuss the above mentioned and related questions. The topic will also serve as an important depository for state-of-the-art technologies, methods, theoretical simulations and innovative ideas and hypotheses for future testing. Integrating the information gained from various angles will likely help decipher how a relatively simple cell such as a bacterium incorporates its multitude of pathways and processes into a highly efficient self-organized system. The knowledge may be helpful in the ambition to artificially reconstruct a simple living system and to develop new antibacterial drugs.
Be it the Min system, nucleoid occlusion or another, yet unrecognized cue, the basic premise of this Frontiers’ snapshot is existence of a necessary coupling between the only singular macromolecules (structures) in a bacterial cell, DNA (nucleoid) and peptidoglycan (PG; sacculus). The submitted articles will be arranged in the following topical areas: Cell Cycle: Mass Growth and Nucleoid Duplication/ Segregation; Chromosome Replication: Initiation and Elongation; Signals for Cell Division; Unique Macromolecular Hyperstructures: Nucleoid, Orisome, Replisome, Segrosome, Sacculus and Divisome; Cell Dimensions and Shape.
The proposed contributors are experts in the field—some of whom are promising early-career scientists, including Geneticists, Chemists, Physicists and Physiologists. Two of the groundbreaking founders of the field (M Schaechter and CE Helmstetter) will be requested to present appropriate historical perspectives.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.